Building Block Engineering toward Realizing High-Performance Electrochromic Materials and Glucose Biosensing Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedure of Mono-Stannylation Reaction
2.2. General Experimental Procedure of Typical Stille Cross-Coupling
2.3. Biosensing Studies
3. Results
3.1. Synthetic Studies
3.1.1. Multi-Scan Cyclic Voltammetry Polymerization Studies
3.1.2. Single-Scan Cyclic Voltammetry Studies
3.2. Spectroelectrochemical Studies
3.2.1. Optical Studies
3.2.2. Kinetic Studies
3.3. Biosensor Studies
3.3.1. Optimization Studies and Investigation of Electrochemical and Surface Characteristics of the Biosensor
3.3.2. Analytical Characterization of the GE/poly(EDOT-TPD)/GOx Biosensor
3.3.3. Real Sample Analysis of GE/poly(EDOT-TPD)/GOx Biosensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Gunbas, G.; Toppare, L. Electrochromic Conjugated Polyheterocycles and Derivatives—Highlights from the Last Decade towards Realization of Long Lived Aspirations. Chem. Commun. 2012, 48, 1083–1101. [Google Scholar] [CrossRef]
- Lee, J.S.M.; Cooper, A.I. Advances in Conjugated Microporous Polymers. Chem. Rev. 2020, 120, 2171–2214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jadoun, S.; Rathore, D.S.; Riaz, U.; Chauhan, N.P.S. Tailoring of Conducting Polymers via Copolymerization—A Review. Eur. Polym. J. 2021, 155, 110561. [Google Scholar] [CrossRef]
- Haque, A.; Alenezi, K.M.; Khan, M.S.; Wong, W.Y.; Raithby, P.R. Non-Covalent Interactions (NCIs) in π-Conjugated Functional Materials: Advances and Perspectives. Chem. Soc. Rev. 2023, 52, 454–472. [Google Scholar] [CrossRef]
- Roncali, J. Synthetic Principles for Bandgap Control in Linear π-Conjugated Systems. Chem. Rev. 1997, 97, 173–205. [Google Scholar] [CrossRef]
- Delaire, J.A.; Nakatani, K. Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials. Chem. Rev. 2000, 100, 1817–1845. [Google Scholar] [CrossRef]
- Cornil, J.; Beljonne, D.; Calbert, J.P.; Brédas, J.L. Interchain Interactions in Organic π-Conjugated Materials: Impact on Electronic Structure, Optical Response, and Charge Transport. Adv. Mater. 2001, 13, 1053–1067. [Google Scholar] [CrossRef]
- Le, T.H.; Kim, Y.; Yoon, H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers 2017, 9, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, B.; Ham, D.Y.; Yarimaga, O.; An, H.; Lee, C.W.; Kim, J.M. Inkjet Printing of Conjugated Polymer Precursors on Paper Substrates for Colorimetric Sensing and Flexible Electrothermochromic Display. Adv. Mater. 2011, 23, 5492–5497. [Google Scholar] [CrossRef]
- Kim, J.; Rémond, M.; Kim, D.; Jang, H.; Kim, E.; Kim, J.; Rémond, M.; Kim, D.; Jang, H.; Kim, E. Electrochromic Conjugated Polymers for Multifunctional Smart Windows with Integrative Functionalities. Adv. Mater. Technol. 2020, 5, 1900890. [Google Scholar] [CrossRef]
- Facchetti, A. π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications. Chem. Mater. 2011, 23, 733–758. [Google Scholar] [CrossRef]
- Wadsworth, A.; Moser, M.; Marks, A.; Little, M.S.; Gasparini, N.; Brabec, C.J.; Baran, D.; McCulloch, I. Critical Review of the Molecular Design Progress in Non-Fullerene Electron Acceptors towards Commercially Viable Organic Solar Cells. Chem. Soc. Rev. 2019, 48, 1596–1625. [Google Scholar] [CrossRef] [Green Version]
- Al-Azzawi, A.G.S.; Aziz, S.B.; Dannoun, E.M.A.; Iraqi, A.; Nofal, M.M.; Murad, A.R.; Hussein, A.M. A Mini Review on the Development of Conjugated Polymers: Steps towards the Commercialization of Organic Solar Cells. Polymers 2023, 15, 164. [Google Scholar] [CrossRef] [PubMed]
- Isikgor, F.H.; Zhumagali, S.; Luis, L.V.; De Bastiani, M.; McCulloch, I.; De Wolf, S. Molecular Engineering of Contact Interfaces for High-Performance Perovskite Solar Cells. Nat. Rev. Mater. 2023, 8, 89–108. [Google Scholar] [CrossRef]
- Bertrandie, J.; Han, J.; De Castro, C.S.P.; Yengel, E.; Gorenflot, J.; Anthopoulos, T.; Laquai, F.; Sharma, A.; Baran, D. The Energy Level Conundrum of Organic Semiconductors in Solar Cells. Adv. Mater. 2022, 34, 2202575. [Google Scholar] [CrossRef] [PubMed]
- Rosseinsky, D.R.; Mortimer, R.J. Electrochromic Systems and the Prospects for Devices. Adv. Mater. 2001, 13, 783–793. [Google Scholar] [CrossRef]
- Gu, C.; Jia, A.B.; Zhang, Y.M.; Zhang, S.X.A. Emerging Electrochromic Materials and Devices for Future Displays. Chem. Rev. 2022, 122, 14679–14721. [Google Scholar] [CrossRef]
- Beaujuge, P.M.; Reynolds, J.R. Color Control in π-Conjugated Organic Polymers for Use in Electrochromic Devices. Chem. Rev. 2010, 110, 268–320. [Google Scholar] [CrossRef]
- Chen, X.; Hussain, S.; Abbas, A.; Hao, Y.; Malik, A.H.; Tian, X.; Song, H.; Gao, R. Conjugated Polymer Nanoparticles and Their Nanohybrids as Smart Photoluminescent and Photoresponsive Material for Biosensing, Imaging, and Theranostics; Springer: Vienna, Austria, 2022; Volume 189, ISBN 0060402105. [Google Scholar]
- Bigham, A.; Rahimkhoei, V.; Abasian, P.; Delfi, M.; Naderi, J.; Ghomi, M.; Dabbagh Moghaddam, F.; Waqar, T.; Nuri Ertas, Y.; Sharifi, S.; et al. Advances in Tannic Acid-Incorporated Biomaterials: Infection Treatment, Regenerative Medicine, Cancer Therapy, and Biosensing. Chem. Eng. J. 2022, 432, 134146. [Google Scholar] [CrossRef]
- Işik, S.; Alkan, S.; Toppare, L.; Cianga, I.; Yaǧci, Y. Immobilization of Invertase and Glucose Oxidase in Poly 2-Methylbutyl-2-(3-Thienyl) Acetate/Polypyrrole Matrices. Eur. Polym. J. 2003, 39, 2375–2381. [Google Scholar] [CrossRef]
- Dzudzevic Cancar, H.; Soylemez, S.; Akpinar, Y.; Kesik, M.; Göker, S.; Gunbas, G.; Volkan, M.; Toppare, L. A Novel Acetylcholinesterase Biosensor: Core-Shell Magnetic Nanoparticles Incorporating a Conjugated Polymer for the Detection of Organophosphorus Pesticides. ACS Appl. Mater. Interfaces 2016, 8, 8058–8067. [Google Scholar] [CrossRef]
- Ponnappa, S.P.; MacLeod, J.; Umer, M.; Soda, N.; Pannu, A.S.; Shiddiky, M.J.A.; Ayoko, G.A.; O’Mullane, A.P.; Sonar, P. Electropolymerized Porous Polymer Films on Flexible Indium Tin Oxide Using Trifunctional Furan Substituted Benzene Conjugated Monomer for Biosensing. ACS Appl. Polym. Mater. 2020, 2, 351–359. [Google Scholar] [CrossRef]
- Heydari Gharahcheshmeh, M.; Gleason, K.K. Recent Progress in Conjugated Conducting and Semiconducting Polymers for Energy Devices. Energies 2022, 15, 3661. [Google Scholar] [CrossRef]
- Dimitriev, O.P. Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chem. Rev. 2022, 122, 8487–8593. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Cong, S.; Geng, F.; Zhao, Z. Fusing Electrochromic Technology with Other Advanced Technologies: A New Roadmap for Future Development. Mater. Sci. Eng. R Rep. 2020, 140, 100524. [Google Scholar] [CrossRef]
- Rohaizad, N.; Mayorga-Martinez, C.C.; Fojtů, M.; Latiff, N.M.; Pumera, M. Two-Dimensional Materials in Biomedical, Biosensing and Sensing Applications. Chem. Soc. Rev. 2021, 50, 619–657. [Google Scholar] [CrossRef] [PubMed]
- Farahmand Nejad, M.A.; Ranjbar, S.; Parolo, C.; Nguyen, E.P.; Álvarez-Diduk, R.; Hormozi-Nezhad, M.R.; Merkoçi, A. Electrochromism: An Emerging and Promising Approach in (Bio)Sensing Technology. Mater. Today 2021, 50, 476–498. [Google Scholar] [CrossRef]
- Deng, S.; Li, L.; Zhang, J.; Wang, Y.; Huang, Z.; Chen, H. Semiconducting Polymer Dots for Point-of-Care Biosensing and In Vivo Bioimaging: A Concise Review. Biosensors 2023, 13, 137. [Google Scholar] [CrossRef]
- Kappen, J.; Skorupa, M.; Krukiewicz, K. Conducting Polymers as Versatile Tools for the Electrochemical Detection of Cancer Biomarkers. Biosensors 2023, 13, 31. [Google Scholar] [CrossRef]
- Roglic, G. WHO Global Report on Diabetes: A Summary. Int. J. Noncommunicable Dis. 2016, 1, 3. [Google Scholar] [CrossRef]
- Lopes, F.M.; Batista, K.d.A.; Batista, G.L.A.; Fernandes, K.F. Biosensor for Determination of Glucose in Real Samples of Beverages. Food Sci. Technol. 2012, 32, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Gandini, A.; Lacerda, T.M. Furan Polymers: State of the Art and Perspectives. Macromol. Mater. Eng. 2022, 307, 2100902. [Google Scholar] [CrossRef]
- Sabouraud, G.; Schottland, P.; Sadki, S.; Brodie, N. The Mechanisms of Pyrrole Electropolymerization. Chem. Soc. Rev. 2000, 29, 283–293. [Google Scholar] [CrossRef]
- De, S.; Kumar, S.K.A.; Shah, S.K.; Kazi, S.; Sarkar, N.; Banerjee, S.; Dey, S. Pyridine: The Scaffolds with Significant Clinical Diversity. RSC Adv. 2022, 12, 15385–15406. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, T.; Zhou, Y. Recent Advances of Synthesis, Properties, Film Fabrication Methods, Modifications of Poly(3,4-Ethylenedioxythiophene), and Applications in Solution-Processed Photovoltaics. Adv. Funct. Mater. 2020, 30, 2006213. [Google Scholar] [CrossRef]
- Mantione, D.; del Agua, I.; Sanchez-Sanchez, A.; Mecerreyes, D. Poly(3,4-Ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics. Polymers 2017, 9, 354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petsagkourakis, I.; Kim, N.; Tybrandt, K.; Zozoulenko, I.; Crispin, X. Poly(3,4-Ethylenedioxythiophene): Chemical Synthesis, Transport Properties, and Thermoelectric Devices. Adv. Electron. Mater. 2019, 5, 1800918. [Google Scholar] [CrossRef]
- Roncali, J.; Blanchard, P.; Frère, P. 3,4-Ethylenedioxythiophene (EDOT) as a Versatile Building Block for Advanced Functional π-Conjugated Systems. J. Mater. Chem. 2005, 15, 1589–1610. [Google Scholar] [CrossRef]
- Cojocaru, C.; Peptu, C. Inclusion Complexes of 3,4-Ethylenedioxythiophene with Per-Modified β- and γ-Cyclodextrins. Molecules 2023, 28, 3404. [Google Scholar]
- Ye, S.; Lotocki, V.; Xu, H.; Seferos, D.S. Group 16 Conjugated Polymers Based on Furan, Thiophene, Selenophene, and Tellurophene. Chem. Soc. Rev. 2022, 51, 6442–6474. [Google Scholar] [CrossRef]
- Qi, F.; Lin, F.R.; Jen, A.K.Y. Selenium: A Unique Member in the Chalcogen Family for Conjugated Materials Used in Perovskite and Organic Solar Cells. Sol. RRL 2022, 6, 2200156. [Google Scholar] [CrossRef]
- Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a Cornerstone of Heterocyclic Chemistry. Chem. Rev. 2004, 104, 2777–2812. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Zheng, R.; Zhao, Y.; Zhang, E.; Dou, L.; Yang, Y. Near-Infrared Materials: The Turning Point of Organic Photovoltaics. Adv. Mater. 2022, 34, 2107330. [Google Scholar] [CrossRef] [PubMed]
- Pirotte, G.; Verstappen, P.; Vanderzande, D.; Maes, W. On the “True” Structure of Push–Pull-Type Low-Bandgap Polymers for Organic Electronics. Adv. Electron. Mater. 2018, 4, 1700481. [Google Scholar] [CrossRef]
- Yasa, M.; Toppare, L. Thieno[3,4-c]Pyrrole-4,6-Dione-Based Conjugated Polymers for Nonfullerene Organic Solar Cells. Macromol. Chem. Phys. 2022, 223, 2100421. [Google Scholar] [CrossRef]
- Najari, A.; Beaupré, S.; Berrouard, P.; Zou, Y.; Pouliot, J.R.; Lepage-Pérusse, C.; Leclerc, M. Synthesis and Characterization of New Thieno[3,4-c]Pyrrole-4,6-Dione Derivatives for Photovoltaic Applications. Adv. Funct. Mater. 2011, 21, 718–728. [Google Scholar] [CrossRef]
- Dian, G.; Barbey, G.; Decroix, B. Electrochemical Synthesis of Polythiophenes and Polyselenophenes. Synth. Met. 1986, 13, 281–289. [Google Scholar] [CrossRef]
- Marsh, A.V.; Heeney, M. Conjugated Polymers Based on Selenophene Building Blocks. Polym. J. 2022, 55, 375–385. [Google Scholar] [CrossRef]
- Atlı, G.Ö.; Yılmaz, E.A.; Aslan, S.T.; Udum, Y.A.; Toppare, L.; Çırpan, A. Synthesis and Characterization of Optical, Electrochemical and Photovoltaic Properties of Selenophene Bearing Benzodithiophene Based Alternating Polymers. J. Electroanal. Chem. 2020, 862, 114014. [Google Scholar] [CrossRef]
- Turkoglu, G.; Ozturk, T. Electropolymerization, Spectroelectrochemistry and Electrochromic Properties of Cross-Conjugated and Conjugated Selenophenothiophenes with Thiophene Bridge. Synth. Met. 2021, 278, 116836. [Google Scholar] [CrossRef]
- Yasa, M.; Goker, S.; Toppare, L. Selenophene-Bearing Low-Band-Gap Conjugated Polymers: Tuning Optoelectronic Properties via Fluorene and Carbazole as Donor Moieties. Polym. Bull. 2020, 77, 2443–2459. [Google Scholar] [CrossRef]
- Kalay, E.; Cetin, S.; Kolemen, S.; Metin, Ö. A Facile Synthesis of Mesoporous Graphitic Carbon Nitride Supported Palladium Nanoparticles as Highly Effective and Reusable Catalysts for Stille Coupling Reactions under Mild Conditions. New J. Chem. 2020, 44, 6714–6723. [Google Scholar] [CrossRef]
- Holliday, S.; Ashraf, R.S.; Wadsworth, A.; Baran, D.; Yousaf, S.A.; Nielsen, C.B.; Tan, C.H.; Dimitrov, S.D.; Shang, Z.; Gasparini, N.; et al. High-Efficiency and Air-Stable P3HT-Based Polymer Solar Cells with a New Non-Fullerene Acceptor. Nat. Commun. 2016, 7, 11585. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Ye, G.; Potgieser, H.G.O.; Koopmans, M.; Sami, S.; Nugraha, M.I.; Villalva, D.R.; Sun, H.; Dong, J.; Yang, X.; et al. Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient N-Type Organic Thermoelectrics. Adv. Mater. 2021, 33, 2006694. [Google Scholar] [CrossRef] [PubMed]
- Durmus, A.; Gunbas, G.E.; Toppare, L. New, Highly Stable Electrochromic Polymers from 3,4-Ethylenedioxythiophene-Bis-Substituted Quinoxalines toward Green Polymeric Materials. Chem. Mater. 2007, 19, 6247–6251. [Google Scholar] [CrossRef]
- Gunbas, G.E.; Durmus, A.; Toppare, L. Could Green Be Greener? Novel Donor-Acceptor-Type Electrochromic Polymers: Towards Excellent Neutral Green Materials with Exceptional Transmissive Oxidized States for Completion of RGB Color Space. Adv. Mater. 2008, 20, 691–695. [Google Scholar] [CrossRef]
- Çetin, G.A.; Balan, A.; Durmuş, A.; Günbaş, G.; Toppare, L. A New P- and n-Dopable Selenophene Derivative and Its Electrochromic Properties. Org. Electron. 2009, 10, 34–41. [Google Scholar] [CrossRef]
- Balan, A.; Gunbas, G.; Durmus, A.; Toppare, L. Donor-Acceptor Polymer with Benzotrìazole Moiety: Enhancing the Electrochromic Properties of the “Donor Unit”. Chem. Mater. 2008, 20, 7510–7513. [Google Scholar] [CrossRef]
- Lu, B.; Ming, S.; Lin, K.; Zhen, S.; Liu, H.; Gu, H.; Chen, S.; Li, Y.; Zhu, Z.; Xu, J. Chalcogenodiazolo[3,4-: C] Pyridine and Selenophene Based Donor-Acceptor-Donor Electrochromic Polymers Electrosynthesized from High Fluorescent Precursors. New J. Chem. 2016, 40, 8316–8323. [Google Scholar] [CrossRef]
- Karabay, L.C.; Karabay, B.; Karakoy, M.S.; Cihaner, A. Effect of Furan, Thiophene and Selenophene Donor Groups on Benzoselenadiazole Based Donor-Acceptor-Donor Systems. J. Electroanal. Chem. 2016, 780, 84–89. [Google Scholar] [CrossRef]
- Gokoglan, T.C.; Soylemez, S.; Kesik, M.; Toksabay, S.; Toppare, L. Selenium Containing Conducting Polymer Based Pyranose Oxidase Biosensor for Glucose Detection. Food Chem. 2015, 172, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Bright, H.J.; Appleby, M. The PH Dependence of the Individual Steps in the Glucose Oxidase Reaction. J. Biol. Chem. 1969, 244, 3625–3634. [Google Scholar] [CrossRef] [PubMed]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2001; Volume 2, ISBN 0471043729. [Google Scholar]
- Wang, J. Analytical Electrochemistry. Available online: https://books.google.com.tr/books?hl=en&lr=&id=eNywEAAAQBAJ&oi=fnd&pg=PR9&dq=Wang,+J.+(2023).+Analytical+electrochemistry.+John+Wiley+%26+Sons&ots=Jl9ew7TxIj&sig=W1_NS0AJRySHd8iWgp1DG8SBgZo&redir_esc=y#v=onepage&q=Wang%2C%20J.%20(2023).%20Analytical%20electrochem (accessed on 27 April 2023).
- Ozkan, S.A.; Kauffmann, J.-M.; Zuman, P. Electroanalytical Method Validation in Pharmaceutical Analysis and Their Applications. In Electroanalysis in Biomedical and Pharmaceutical Sciences; Springer: Berlin/Heidelberg, Germany, 2015; pp. 235–266. [Google Scholar] [CrossRef]
- Ashrafi, A.M.; Sýs, M.; Sedláčková, E.; Farag, A.S.; Adam, V.; Přibyl, J.; Richtera, L. Application of the Enzymatic Electrochemical Biosensors for Monitoring Non-Competitive Inhibition of Enzyme Activity by Heavy Metals. Sensors 2019, 19, 2939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, A.B.; Tulip, F.S.; Islam, S.K.; Rahman, T.; MacArthur, K.C. A Mediator Free Amperometric Bienzymatic Glucose Biosensor Using Vertically Aligned Carbon Nanofibers (VACNFs). IEEE Sens. J. 2011, 11, 2798–2804. [Google Scholar] [CrossRef]
- Tekbaşoğlu, T.Y.; Soganci, T.; Ak, M.; Koca, A.; Şener, M.K. Enhancing Biosensor Properties of Conducting Polymers via Copolymerization: Synthesis of EDOT-Substituted Bis(2-Pyridylimino)Isoindolato-Palladium Complex and Electrochemical Sensing of Glucose by Its Copolymerized Film. Biosens. Bioelectron. 2017, 87, 81–88. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, L.; Wu, T.; Wang, Q.; Wang, H.; Liang, J.; Chen, S. Flexible and Conductive Titanium Carbide–Carbon Nanofibers for High-Performance Glucose Biosensing. Electrochim. Acta 2018, 281, 517–524. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Q.; Han, X.; Zhang, Q. MnO2 Nanoparticles and Carbon Nanofibers Nanocomposites with High Sensing Performance Toward Glucose. J. Clust. Sci. 2018, 29, 1089–1098. [Google Scholar] [CrossRef]
- Yoon, J.; Lee, S.N.; Shin, M.K.; Kim, H.W.; Choi, H.K.; Lee, T.; Choi, J.W. Flexible Electrochemical Glucose Biosensor Based on GOx/Gold/MoS2/Gold Nanofilm on the Polymer Electrode. Biosens. Bioelectron. 2019, 140, 111343. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Yang, T.; Zhang, Y.; Tao, D.; Hasebe, Y.; Zhang, Z. Electrochemical Evaluation of Sulfide Mineral Modified Glassy Carbon Electrode as Novel Mediated Glucose Biosensor. J. Electroanal. Chem. 2021, 894, 115357. [Google Scholar] [CrossRef]
- Bulut, U.; Oyku Sayin, V.; Altin, Y.; Can Cevher, S.; Cirpan, A.; Celik Bedeloglu, A.; Soylemez, S. A Flexible Carbon Nanofiber and Conjugated Polymer-Based Electrode for Glucose Sensing. Microchem. J. 2023, 184, 108148. [Google Scholar] [CrossRef]
- Li, B.; Wu, X.; Shi, C.; Dai, Y.; Zhang, J.; Liu, W.; Wu, C.; Zhang, Y.; Huang, X.; Zeng, W. Flexible Enzymatic Biosensor Based on Graphene Sponge for Glucose Detection in Human Sweat. Surf. Interfaces 2023, 36, 102525. [Google Scholar] [CrossRef]
- Yaylali, F.V.; Ozel, H.; Udum, Y.A.; Toppare, L.; Soylemez, S.; Gunbas, G. ProTOT: Synthesis of the Missing Member of the 3,4-Chalcogen Substituted Bridged Thiophenes and Its Utilization in Donor-Acceptor Polymers. Polymer 2021, 212, 123076. [Google Scholar] [CrossRef]
Optical Studies | Kinetic Studies | |||||
---|---|---|---|---|---|---|
Monomer | (nm) | (nm) | (eV) | (eV) | ΔT (%) | (s) |
1 * | 512 | 733 | 1.69 | −3.96 | 13 (512 nm) 5 (850 nm) 54 (1593 mm) | 5.1 (512 nm) 6.3 (850 nm) 6.0 (1593 mm) |
2 * | 635 | 807 | 1.54 | - | 45 (635 nm) 41 (900 nm) 82 (1850 mm) | 5.2 (635 nm) 5.1(900 nm) 5.1 (1850 mm) |
3 * | 650 | 875 | 1.42 | - | 38 (650 nm) 24 (850 nm) 78 (1260 mm) | 6.1 (650 nm) 5.2 (850 nm) 5.3 (1260 mm) |
poly(Se-TPD) | poly(EDOT-TPD) | poly(EDOT-Se-TPD) | ||||||
---|---|---|---|---|---|---|---|---|
+0.2 V | +1.2 V | −0.3 V | +1.0 V | −0.3 V | +0.8 V | |||
L: 32.24 | L: 42.93 | L: 44.02 | L: 33.00 | L: 45.68 | L: 5515 | L: 26.40 | L: 37.97 | L: 41.43 |
a: 13.12 | a: 6.773 | a: −0.905 | a: −3.054 | a: −1.085 | a: −3.577 | a: −2.054 | a: −2.624 | a: −2.413 |
b: 6.648 | b: 15.53 | b: 15.62 | b: −19.33 | b: −6.546 | b: −0.663 | b: −13.58 | b: −7.288 | b: −0.851 |
Modified Electrode | Linear Range [mM] | LOD [mM] | Sensitivity [µA/(mM·cm2)] | Application | Ref. |
---|---|---|---|---|---|
GCE/MWCNTs-RuO2/GOx/Nafion | 0.1–0.8 | 17.4 × 10−3 | NA | Heavy metals | [67] |
VACNF/HRP/GOx | 4.0 × 10−4–4.0 × 10−2 | 4.0 × 10−4 | 89.035 | NA | [68] |
P(EDOT-PdBPI-co-HKCN)/GOx | 0.25–2.5 | 0.176 | NA | Coke Juice | [69] |
GOx-TiCNFs | 0.013–10.5 | 3.7 × 10−3 | 628.82 | Human serum | [70] |
CS/GOx/MnO2-CNFs | 0.08–4.6 | 0.015 | 1.425 | Human urine | [71] |
GOx/Gold/MoS2/ Gold | 0.5–10.0 | 0.01 | NA | Human serum | [72] |
GOx/GA/GN/GCE | 0.5–90 | 0.06 | NA | Beverages | [73] |
PET/CNF/P-BDT-BTz:BDA/GOx | 0.02–0.5 | 8.5 × 10−3 | 98.192 | Coke®Zero Sugar and CapriSun® | [74] |
CTS/Nafion/GS/GOx | 8.17 × 10−3–1.0 | 2.45 × 10−3 | 1.790 | Human sweat | [75] |
P(ProTThia)/CHIT/ MWCNT/GOx | 0.01–0.75 | 3.2 × 10−2 | 63.76 | L®Ice tea | [76] |
GE/poly(EDOT-TPD)/GOx | 0.1–0.5 | 0.018 | 65.765 | Coke®Zero Sugar | This work |
Sample | |||
---|---|---|---|
Coke®Zero Sugar | Spiked with Glucose (mmol/L) | Found with the Biosensor (mmol/L) | Recovery (%) |
0.0 | 0.07 ± 0.0031 | – | |
0.30 | 0.301 ± 0.0061 | 100.3 | |
0.50 | 0.501 ± 0.0054 | 100.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karabag, A.; Soyler, D.; Udum, Y.A.; Toppare, L.; Gunbas, G.; Soylemez, S. Building Block Engineering toward Realizing High-Performance Electrochromic Materials and Glucose Biosensing Platform. Biosensors 2023, 13, 677. https://doi.org/10.3390/bios13070677
Karabag A, Soyler D, Udum YA, Toppare L, Gunbas G, Soylemez S. Building Block Engineering toward Realizing High-Performance Electrochromic Materials and Glucose Biosensing Platform. Biosensors. 2023; 13(7):677. https://doi.org/10.3390/bios13070677
Chicago/Turabian StyleKarabag, Aliekber, Dilek Soyler, Yasemin Arslan Udum, Levent Toppare, Gorkem Gunbas, and Saniye Soylemez. 2023. "Building Block Engineering toward Realizing High-Performance Electrochromic Materials and Glucose Biosensing Platform" Biosensors 13, no. 7: 677. https://doi.org/10.3390/bios13070677
APA StyleKarabag, A., Soyler, D., Udum, Y. A., Toppare, L., Gunbas, G., & Soylemez, S. (2023). Building Block Engineering toward Realizing High-Performance Electrochromic Materials and Glucose Biosensing Platform. Biosensors, 13(7), 677. https://doi.org/10.3390/bios13070677