Recent Advances of Electrode Materials Applied in an Electrochromic Supercapacitor Device
Abstract
:1. Introduction
2. Fundamentals of Electrochromic and Supercapacitor Devices
2.1. Supercapacitor Devices
2.2. Electrochromic Devices
3. Inorganic Materials
3.1. Transition Metal Oxides
3.1.1. Tungsten Oxide
3.1.2. Nickel Oxide
Electrode Material | ΔT% | Coloring Efficiency | Specific Capacitance | References |
---|---|---|---|---|
Molybdenun-doped WO3 | 56.7% | 123.5 cm2 C−1 | 55.89 F g−1 | [46] |
WO3 polycrystalline | 76.2% | 54.8 cm2 C−1 | 639.8 F g−1 | [48] |
WO3 | - | 140 cm2 C−1 | 68.4 mF cm−2 | [49] |
NiO nanoparticle | 63.6% | 42.8 cm2 C−1 | 1386 F g−1 | [52] |
NiO nanosheet | 40% | 63.2 cm2 C−1 | 74.8 mF cm−2 | [53] |
NiO/Ag/NiO | 70% | 76.6 cm2 C−1 | 364 F g−1 | [54] |
Silver nanowire/NiO | 15% | 51.9 cm2/C | 3.47 mF cm−2 | [55] |
PANI nanowire arrays | 60% | - | 17 mF cm−2 | [56] |
PProDOT-Me2 | - | - | 55 F g−1 | [57] |
PDThOB | - | - | 112.4 F g−1 | [58] |
Poly(3,4-dibromothiophene) | 43% | 357 cm2 C−1 | 229.6 F g−1 | [59] |
PCDB-EDOT | 25% | 158 cm2 C−1 | 4.65 mF cm−2 | [60] |
PThQ-Ph | 80% | 300 cm2 C−1 | 1.58 mF cm−2 | [61] |
PC10QA-2EDOT | 40% | 498 cm−2 C−1 | 322 F cm−3 | [62] |
PANI/WO3 nanocomposite | 35.3% | 98.4 cm−2 C−1 | 0.025 F cm−2 | [63] |
PANI/MoO3−x composite | 33% | - | 606 F g−1 | [64] |
PICA/TiO2 composite | 36% | 124 cm2/C | 23.34 mF cm−2 | [65] |
P5ICA/WO3 composite | - | - | 30.2 mF cm−2 | [66] |
PB/P5ICA composite | 60.1% | 262 cm2/C | 98.12 mF cm−2 | [67] |
3.2. Inorganic Nonmetallic Oxide
4. Organic Materials
4.1. Organic Conducting Polymer
4.1.1. Polyaniline
4.1.2. Polythiophene
4.2. Viologen Small Molecules
5. Inorganic/Organic Composite Materials
5.1. Transition Metal Oxides/Conducting Polymer Composite Materials
5.2. Other Inorganic/Organic-Based Composite Materials
6. Current Research Challenges
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sriram, G.; Hegde, G.; Dhanabalan, K.; Kalegowda, Y.; Mouraliraman, D.; Vishwanath, R.S.; Kurkuri, M.; Oh, T.H. Recent trends in hierarchical electrode materials in supercapacitor: Synthesis, electrochemical measurements, performance and their charge-storage mechanism. J. Energy Storage 2024, 94, 112454. [Google Scholar] [CrossRef]
- Chernysheva, D.V.; Smirnova, N.V.; Ananikov, V.P. Recent trends in supercapacitor research: Sustainability in energy and materials. ChemSusChem 2024, 17, e202301367. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Liu, H.; Ran, F. Nano gold for supercapacitors and batteries. Nano Energy 2024, 128, 109839. [Google Scholar] [CrossRef]
- Ma, L.; Li, F.; Zhou, M.; Dong, J.; Luo, H.; Zhang, W.; Zhao, W.; Li, X.; Jiang, Z.; Huang, Y. Phase reconfiguration of heterogeneous CoFeS/CoNiS nanoparticles for superior battery-type supercapacitors. J. Energy Chem. 2024, 96, 217–225. [Google Scholar] [CrossRef]
- Xu, C.; Tong, L.; Zhang, W.; Zhao, X.; Yang, L.; Yin, S. One-step synthesis of g-C3N4/TiVCTx MXene electrodes for lithium-ion batteries and supercapacitors. Chem. Eng. J. 2024, 497, 154449. [Google Scholar] [CrossRef]
- Li, K.; Zhang, J. Recent advances in flexible supercapacitors based on carbon nanotubes and graphene. Sci. China Mater. 2018, 61, 210–232. [Google Scholar] [CrossRef]
- Zhao, J.; Burke, A.F. Electrochemical capacitors: Materials, technologies and performance. Energy Storage Mater. 2021, 36, 31–35. [Google Scholar] [CrossRef]
- Hou, S.; Zhang, G.; Zeng, W.; Zhu, J.; Gong, F.; Li, F.; Duan, H. Hierarchical core–shell structure of ZnO nanorod@ NiO/MoO2 composite nanosheet arrays for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 13564–13570. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Duan, H.; Li, L.; Zhu, D.; Cao, T.; Lv, Y.; Xiong, W.; Wang, Z.; Liu, M.; Gan, L. High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5 V gel-type electrolyte. Chem. Eng. J. 2019, 372, 1216–1225. [Google Scholar] [CrossRef]
- Zydlewski, B.Z.; Milliron, D.J. Dual-band electrochromic devices utilizing Niobium Oxide nanocrystals. ACS Appl. Mater. Interfaces 2024, 16, 24920–24928. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, Y.; Wang, G.; Kuang, Y.; Xiang, X.; Chen, X.; Cai, Q.; Wang, K.; Lv, X. Advances in the visualization and thermal management of electrochromic materials. J. Mater. Chem. C 2024, 12, 15833–15854. [Google Scholar] [CrossRef]
- Ma, B.; Tang, L.; Zhang, Y.; Li, Z.; Zhang, J.; Zhang, S. Ionic gel electrolytes for electrochromic devices. ACS Appl. Mater. Interfaces 2024, 16, 48927–48936. [Google Scholar] [CrossRef]
- Yang, P.; Sun, P.; Mai, W. Electrochromic energy storage devices. Mater. Today 2016, 19, 394–402. [Google Scholar] [CrossRef]
- Mohanadas, D.; Sulaiman, Y. Recent advances in development of electroactive composite materials for electrochromic and supercapacitor applications. J. Power Sources 2022, 523, 231029. [Google Scholar] [CrossRef]
- Lv, X.; Xu, H.; Yang, Y.; Ouyang, M.; Xia, M.; Liu, C.; Wright, D.S.; Zhang, C. Flexible laterally-configured electrochromic supercapacitor with feasible patterned display. Chem. Eng. J. 2023, 458, 141453. [Google Scholar] [CrossRef]
- Kandpal, S.; Ghosh, T.; Rani, C.; Chaudhary, A.; Park, J.; Lee, P.S.; Kumar, R. Multifunctional electrochromic devices for energy applications. ACS Energy Lett. 2023, 8, 1870–1886. [Google Scholar] [CrossRef]
- Jiao, X.; Wang, J.; Yuan, Z.; Zhang, C. Smart current collector for high-energy-density and high-contrast electrochromic supercapacitors toward intelligent and wearable power application. Energy Storage Mater. 2023, 54, 254–265. [Google Scholar] [CrossRef]
- Ming, S.; Zhang, H.; Zhen, S.; Zhang, Y.; Lu, B.; Zhao, J.; Nie, G.; Xu, J. Influence of fluorine substitution position on electrochromic and capacitive properties of hybrid conjugated polymer. Dye. Pigment. 2022, 208, 110819. [Google Scholar] [CrossRef]
- Yang, H.; Chow, B.; Awoyomi, A.; D’Arcy, J.M. Nanostructured poly(3,4-ethylenedioxythiophene) coatings on functionalized glass for energy storage. ACS Appl. Mater. Interfaces 2023, 15, 3235–3243. [Google Scholar] [CrossRef] [PubMed]
- Beaujuge, P.M.; Reynolds, J.R. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 2010, 110, 268–320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, H.; Yu, W.W.; Elezzabi, A.Y. Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices. Light Sci. Appl. 2020, 9, 121. [Google Scholar] [CrossRef] [PubMed]
- Pandit, B.; Dubal, D.P.; Sankapal, B.R. Large scale flexible solid state symmetric supercapacitor through inexpensive solution processed V2O5 complex surface architecture. Electrochim. Acta 2017, 242, 382–389. [Google Scholar] [CrossRef]
- Guo, L.; Hu, P.; Wei, H. Development of supercapacitor hybrid electric vehicle. J. Energy Storage 2023, 65, 107269. [Google Scholar] [CrossRef]
- Wang, Y. Nanowire materials for supercapacitor electrode: Preparation, performance and prospects. J. Energy Storage 2024, 97, 112848. [Google Scholar] [CrossRef]
- Khan, A.; Grabher, G.; Hossain, G. Smart-textile supercapacitor for wearable energy storage system. J. Energy Storage 2023, 73, 108963. [Google Scholar] [CrossRef]
- Salah, N.; Shehab, M.; El Nady, J.; Ebrahim, S.; El-Maghraby, E.M.; Sakr, A.H. Polyaniline/ZnS quantum dots nanocomposite as supercapacitor electrode. Electrochim. Acta 2023, 449, 142174. [Google Scholar] [CrossRef]
- Gao, C.; Liu, J.; Han, Y.; Chen, R.; Huang, J.; Gu, Y.; Zhao, Y.; Qu, L. An energy-adjustable, deformable, and packable wireless charging fiber supercapacitor. Adv. Mater. 2024, 36, 2413292. [Google Scholar] [CrossRef]
- Kang, S.; Kim, B.; Lee, S.; Baek, J.; Yoo, J. Tailoring porosity of starch-derived biocarbon for enhanced supercapacitor performance. Mater. Technol. 2024, 39, 2338628. [Google Scholar] [CrossRef]
- Elbasiony, A.M.; Abdelhamied, M.M.; AbdElrahman, M.; Said, B.A.M.; Awed, A.S. Ag-decorated ZnCo2S4/SiO2 nanocomposite as a high-performance supercapacitor electrode. J. Alloy. Compd. 2024, 1009, 176992. [Google Scholar] [CrossRef]
- Liang, F.; Wu, M.; Meng, J.; Yu, L.; Zhi, C. Research progress in conductive polymer-based electrochromic fabrics. Text. Res. J. 2023, 93, 5092–5111. [Google Scholar] [CrossRef]
- Constantin, C.P.; Damaceanu, M.D. A refreshing perspective on electrochromic materials: Phenoxazine as an opportune moiety towards stable and efficient electrochromic polyimides. Chem. Eng. J. 2023, 465, 142883. [Google Scholar] [CrossRef]
- Nuroldayeva, G.; Balanay, M.P. Flexing the spectrum: Advancements and prospects of flexible electrochromic materials. Polymers 2023, 15, 2924. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.; Cui, J.; Lv, X.; Feng, M.; Ouyang, M.; Chen, Z.; Wright, D.S.; Zhang, C. Hydrogen-bonding induced crosslinked polymer network for highly stable electrochromic device and a construction strategy for black-bilayer electrochromic film. Small 2023, 19, 2303359. [Google Scholar] [CrossRef]
- Mo, D.; Tong, T. Tunable optoelectronic performances of fluorinated benzene-EDOT based hybrid electrochromic polymers. Polymer 2024, 303, 127117. [Google Scholar] [CrossRef]
- Tang, Y.; Qiao, H.; Chen, X.; Huang, Z.; Qi, X. Performance optimization for multicolor electrochromic devices: Morphology and composition regulation of inorganic electrochromic materials and selectivity of Ions. Adv. Mater. Technol. 2024, 9, 2302139. [Google Scholar] [CrossRef]
- Guo, Q.; Sun, C.; Li, Y.; Li, K.; Tai, X. Facile preparation of high-performance polythiophene derivative and effect of torsion angle between thiophene rings on electrochromic color change. Molecules 2024, 29, 5477. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Ma, Q.; Dong, S. Well-matched materials: Color palettes-like multicolor electrochromic displays. Appl. Mater. Today 2024, 37, 102119. [Google Scholar] [CrossRef]
- Ganesha, M.K.; Hakkeem, H.; Singh, A.K. Redox potential based self-powered electrochromic devices for smart windows. Small 2024, 20, 2403156. [Google Scholar] [CrossRef]
- Zhu, X.; Zong, H.; Viasus Pérez, C.J.; Miao, H.; Sun, W.; Yuan, Z.; Wang, S.; Zeng, G.; Xu, H.; Jiang, Z.; et al. Supercharged CO2 photothermal catalytic methanation: High conversion, rate, and selectivity. Angew. Chem. Int. Ed. 2023, 62, e202218694. [Google Scholar] [CrossRef]
- Feng, F.; Guo, S.; Ma, D.; Wang, J. An overview of electrochromic devices with electrolytes containing viologens. Sol. Energ. Mat. Sol. C. 2023, 254, 112270. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhu, X.; Gao, X.; An, C.; Wang, Z.; Zuo, C.; Dionysiou, D.D.; He, H.; Jiang, Z. Enhancing photocatalytic CO2 reduction with TiO2-based materials: Strategies, mechanisms, challenges, and perspectives. Environ. Sci. Ecotechnol. 2024, 20, 100368. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wang, M.; Ma, J.; Cao, Y.; Deng, Y. Electrochromic metal oxides: Recent progress and prospect. Adv. Electron. Mater. 2018, 4, 1800185. [Google Scholar] [CrossRef]
- Poonam; Sharma, K.; Arora, A.; Tripathi, S.K. Review of supercapacitors: Materials and devices. J. Energy Storage 2019, 21, 801–825. [Google Scholar] [CrossRef]
- Nisa, M.U.; Nadeem, N.; Yaseen, M.; Iqbal, J.; Zahid, M.; Abbas, Q.; Mustafa, G.; Shahid, I. Applications of graphene-based tungsten oxide nanocomposites: A review. J. Nanostructure Chem. 2023, 13, 167–196. [Google Scholar] [CrossRef]
- Xie, S.; Bi, Z.; Chen, Y.; He, X.; Guo, X.; Gao, X.; Li, X. Electrodeposited Mo-doped WO3 film with large optical modulation and high areal capacitance toward electrochromic energy-storage applications. Appl. Surf. Sci. 2018, 459, 774–781. [Google Scholar] [CrossRef]
- Zhou, D.; Shi, F.; Xie, D.; Wang, D.; Xia, X.; Wang, X.; Gu, C.; Tu, J. Bi-functional Mo-doped WO3 nanowire array electrochromism-plus electrochemical energy storage. J. Colloid Interf. Sci. 2016, 465, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Malik, G.; Mourya, S.; Hirpara, J.G.; Chandra, R. Surface modification of sputter deposited γ-WO3 thin film for scaled electrochromic behaviour. Surf. Coat. Technol. 2019, 375, 708–714. [Google Scholar] [CrossRef]
- Yang, P.; Sun, P.; Chai, Z.; Huang, L.; Cai, X.; Tan, S.; Song, J.; Mai, W. Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage. Angew. Chem. Int. Edit. 2014, 53, 11935–11939. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Chen, Z.; Cong, S.; Zhao, Z. Fabry–Perot cavity-type electrochromic supercapacitors with exceptionally versatile color tunability. Nano Lett. 2020, 20, 1915–1922. [Google Scholar] [CrossRef] [PubMed]
- Sutar, S.H.; Babar, B.M.; Pisal, K.B.; Inamdar, A.I.; Mujawar, S.H. Feasibility of nickel oxide as a smart electrochromic supercapacitor device: A review. J. Energy Storage 2023, 73, 109035. [Google Scholar] [CrossRef]
- Lee, S.H.; Tracy, C.E.; Yan, Y.; Pitts, J.R.; Deb, S.K. Solid-state nanocomposite electrochromic pseudocapacitors. Electrochem. Solid-State. Lett. 2005, 8, A188–A190. [Google Scholar] [CrossRef]
- Cai, G.; Wang, X.; Cui, M.; Darmawan, P.; Wang, J.; Eh, A.L.S.; Lee, P.S. Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy 2015, 12, 258–267. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Sun, P.; Yang, P.; Du, L.; Mai, W. Nickel oxide nanoflake-based bifunctional glass electrodes with superior cyclic stability for energy storage and electrochromic applications. J. Mater. Chem. A 2015, 3, 20614–20618. [Google Scholar] [CrossRef]
- Qin, S.; Zhang, Q.; Yang, X.; Liu, M.; Sun, Q.; Wang, Z. Hybrid piezo/triboelectric-driven self-charging electrochromic supercapacitor power package. Adv. Energy Mater. 2018, 8, 1800069. [Google Scholar] [CrossRef]
- Dong, W.; Lv, Y.; Zhang, N.; Xiao, L.; Fan, Y.; Liu, X. Trifunctional NiO–Ag–NiO electrodes for ITO-free electrochromic supercapacitors. J. Mater. Chem. C 2017, 5, 8408–8414. [Google Scholar] [CrossRef]
- Wang, K.; Wu, H.; Meng, Y.; Zhang, Y.; Wei, Z. Integrated energy storage and electrochromic function in one flexible device: An energy storage smart window. Energy Environ. Sci. 2012, 5, 8384–8389. [Google Scholar] [CrossRef]
- Liu, D.Y.; Reynolds, J.R. Dioxythiophene-based polymer electrodes for supercapacitor modules. ACS Appl. Mater. Interfaces 2010, 2, 3586–3593. [Google Scholar] [CrossRef]
- Yuksel, R.; Cevher, S.C.; Cirpan, A.; Toppare, L.; Unalan, H.E. All-organic electrochromic supercapacitor electrodes. J. Electrochem. Soc. 2015, 162, A2805–A2810. [Google Scholar] [CrossRef]
- Guo, Q.; Du, C.; Deng, X.; Cheng, Y.; Tai, X.; Nie, G. High performance polythiophene derivative with good electrochromic and energy storage properties electrochemical synthesized in boron triffuoride diethyl etherate. Dye. Pigment. 2023, 220, 111709. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, J.; Yan, S.; Shao, X.; Dong, Y.; Liu, J.; Li, W.; Zhang, C. New donor–acceptor-donor conjugated polymer with twisted donor–acceptor configuration for high-capacitance electrochromic supercapacitor application. ACS Sustain. Chem. Eng. 2021, 9, 13807. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, W.; Chen, H.; Han, Y.; Liu, J. Electropolymerization of D–A–D type monomers consisting of thiophene and quionaxline moieties for electrochromic devices and supercapacitors. J. Solid State Chem. 2022, 307, 122739. [Google Scholar] [CrossRef]
- Lv, X.; Li, J.; Zhang, L.; Ouyang, M.; Tameev, A.; Nekrasov, A.; Kim, G.; Zhang, C. High-performance electrochromic supercapacitor based on quinacridone dye with good specific capacitance, fast switching time and robust stability. Chem. Eng. J. 2022, 431, 133733. [Google Scholar] [CrossRef]
- Wei, H.; Yan, X.; Wu, S.; Luo, Z.; Wei, S.; Guo, Z. Electropolymerized polyaniline stabilized tungsten oxide nanocomposite films: Electrochromic behavior and electrochemical energy storage. J. Phys. Chem. C 2012, 116, 25052–25064. [Google Scholar] [CrossRef]
- Sui, Y.; Ma, Y.; Gao, Y.; Song, J.; Ye, Y.; Niu, H.; Ma, W.; Zhang, P.; Qin, C. PANI/MoO3−x shell-core composites with enhanced rate and cycling performance for flexible solid-state supercapacitors and electrochromic applications. New J. Chem. 2021, 45, 10654–10663. [Google Scholar] [CrossRef]
- Guo, Q.; Li, J.; Zhang, B.; Nie, G.; Wang, D. High-performance asymmetric electrochromic-supercapacitor device based on poly(indole-6-carboxylicacid)/TiO2 Nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 6491–6501. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, X.; Li, Z.; Wang, B.; Wang, D.; Nie, G. High performance multicolor intelligent supercapacitor and its quantitative monitoring of energy storage level by electrochromic parameters. ACS Appl. Energy Mater. 2020, 3, 2727–2736. [Google Scholar] [CrossRef]
- Li, Q.; Wang, B.; Zou, H.; Guo, Q.; Nie, G. High performance multi-color prussian blue/poly(indole-5-carboxylic acid) nanocomposites with multiple layer nanosphere structure for electrochromic supercapacitor application. J. Alloy. Compd. 2022, 921, 166140. [Google Scholar] [CrossRef]
- Kraft, A. Too blue to be good? A critical overview on the electrochromic properties and applications of Prussian blue. Sol. Energ. Mat. Sol. C. 2024, 278, 113195. [Google Scholar] [CrossRef]
- Shan, Y.; Zhang, G.; Yin, W.; Pang, H.; Xu, Q. Recent progress in Prussian blue/Prussian blue analogue-derived metallic compounds. Bull. Chem. Soc. Jpn. 2022, 95, 230–260. [Google Scholar] [CrossRef]
- Kong, B.; Selomulya, C.; Zheng, G.; Zhao, D. New faces of porous Prussian blue: Interfacial assembly of integrated hetero-structures for sensing applications. Chem. Soc. Rev. 2015, 44, 7997–8018. [Google Scholar] [CrossRef]
- Bie, X.; Kubota, K.; Hosaka, T.; Chihara, K.; Komaba, S. Synthesis and electrochemical properties of Na-rich Prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries. J. Power Sources 2018, 378, 322–330. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Yu, L.; Jiao, Z.; Xie, H.; Lou, X.; Sun, X. A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nat. Commun. 2014, 5, 4921. [Google Scholar] [CrossRef]
- Bi, Z.; Li, X.; Chen, Y.; He, X.; Xu, X.; Gao, X. Large-scale multifunctional electrochromic-energy storage device based on tungsten trioxide monohydrate nanosheets and prussian white. ACS Appl. Mater. Interfaces 2017, 9, 29872–29880. [Google Scholar] [CrossRef]
- Niu, J.; Zhang, J.; Wang, Y.; Hu, L.; Tang, S.; Wan, Z.; Jia, C.; Weng, X.; Deng, L. A light-weight, thin-thickness, flexible multifunctional electrochromic device integrated with variable optical, thermal management and energy storage. Electrochim. Acta 2022, 435, 141274. [Google Scholar] [CrossRef]
- Kiruthika, S.; Kulkarni, G.U. Smart electrochromic supercapacitors made of metal mesh electrodes with polyaniline as charge storage indicator. Energy Technol. 2020, 8, 1901364. [Google Scholar] [CrossRef]
- Tong, Z.; Lv, H.; Zhao, J.; Li, Y. Near-infrared and multicolor electrochromic device based on polyaniline derivative. Chin. J. Polym. Sci. 2014, 32, 1040–1051. [Google Scholar] [CrossRef]
- Tong, Z.; Yang, Y.; Wang, J.; Zhao, J.; Su, B.; Li, Y. Layered polyaniline/graphene film from sandwich-structured polyaniline/graphene/polyaniline nanosheets for high-performance pseudosupercapacitors. J. Mater. Chem. A 2014, 2, 4642–4651. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, H.; Jiu, J.; Liu, J.; Yan, H.; Suganuma, K. Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications. Chem. Eng. J. 2018, 345, 290–299. [Google Scholar] [CrossRef]
- He, Z.; Gao, B.; Li, T.; Liao, J.; Liu, B.; Liu, X.; Wang, C.; Feng, Z.; Gu, Z. Piezoelectric-driven self-powered patterned electrochromic supercapacitor for human motion energy harvesting. ACS Sustain. Chem. Eng. 2018, 7, 1745–1752. [Google Scholar] [CrossRef]
- Chen, X.; Lin, H.; Deng, J.; Zhang, Y.; Sun, X.; Chen, P.; Fang, X.; Zhang, Z.; Guan, G.; Peng, H. Electrochromic fiber-shaped supercapacitors. Adv. Mater. 2014, 26, 8126–8132. [Google Scholar] [CrossRef]
- Dyer, A.L.; Grenier, C.R.G.; Reynolds, J.R. A poly(3,4-alkylenedioxythiophene) electrochromic variable optical attenuator with near-infrared reflectivity tuned independently of the visible region. Adv. Funct. Mater. 2007, 17, 1480–1486. [Google Scholar] [CrossRef]
- Guo, Y.; Li, W.; Yu, H.; Perepichka, D.F.; Meng, H. Flexible asymmetric supercapacitors via spray coating of a new electrochromic donor–acceptor polymer. Adv. Energy Mater. 2017, 7, 1601623. [Google Scholar] [CrossRef]
- Zhang, P.; Zhu, F.; Wang, F.; Wang, J.; Dong, R.; Zhuang, X.; Schmidt, O.; Feng, X. Stimulus-responsive micro-supercapacitors with ultrahigh energy density and reversible electrochromic window. Adv. Mater. 2017, 29, 1604491. [Google Scholar] [CrossRef]
- Cho, J.; Yun, T.Y.; Noh, H.Y.; Baek, S.H.; Nam, M.; Kim, B.; Moon, H.C.; Ko, D.H. Semitransparent energy storing functional photovoltaics monolithically integrated with electrochromic supercapacitors. Adv. Funct. Mater. 2020, 30, 1909601. [Google Scholar] [CrossRef]
- Jang, Y.J.; Kim, S.Y.; Kim, Y.M.; Lee, J.K.; Moon, H.C. Unveiling the diffusion-controlled operation mechanism of all-in-one type electrochromic supercapacitors: Overcoming slow dynamic response with ternary gel electrolytes. Energy Storage Mater. 2021, 43, 20–29. [Google Scholar] [CrossRef]
- Zhang, S.; Lei, P.; Fu, J.; Tong, X.; Wang, Z.; Cai, G. Solution-processable multicolor TiO2/polyaniline nanocomposite for integrated bifunctional electrochromic energy storage device. Appl. Surf. Sci. 2023, 607, 155015. [Google Scholar] [CrossRef]
- Cai, G.; Darmawan, P.; Cheng, X.; Lee, P. Inkjet printed large area multifunctional smart windows. Adv. Energy Mater. 2017, 7, 1602598. [Google Scholar] [CrossRef]
- Tian, Y.; Cong, S.; Su, W.; Chen, H.; Li, Q.; Geng, F.; Zhao, Z. Synergy of W18O49 and olyaniline for smart supercapacitor electrode integrated with energy level indicating functionality. Nano Lett. 2014, 14, 2150–2156. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, F.; Chen, S.; Du, Z.; Peng, H.; Yang, F.; Cao, Y. A dual-type electrochromic device based on complementary silica/conducting polymers nanocomposite films for excellent cycling stability. J. Electron. Mater. 2019, 48, 4797–4805. [Google Scholar] [CrossRef]
- Li, Z.; Wang, B.; Zhao, X.; Guo, Q.; Nie, G. Intelligent electrochromic-supercapacitor based on effective energy level matching poly(indole-6-carboxylicacid)/WO3 nanocomposites. New J. Chem. 2020, 44, 20584–20591. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, X.; Zhu, M.; Liu, X.; Chao, D. Oligoaniline-functionalized polysiloxane/Prussian blue composite towards bifunctional electrochromic supercapacitors. New J. Chem. 2020, 44, 8138–8147. [Google Scholar] [CrossRef]
- Li, J.; Levitt, A.; Kurra, N.; Juan, K.; Noriega, N.; Xiao, X.; Wang, X.; Wang, H.; Alshareef, H.N.; Gogotsi, Y. MXene-conducting polymer electrochromic microsupercapacitors. Energy Storage Mater. 2019, 20, 455–461. [Google Scholar] [CrossRef]
- Ye, T.; Sun, Y.; Zhao, X.; Lin, B.; Yang, H.; Zhang, X.; Guo, L. Long-term-stable, solution-processable, electrochromic carbon nanotubes/polymer composite for smart supercapacitor with wide working potential window. J. Mater. Chem. A 2018, 6, 18994–19003. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Sun, C.; Li, Y.; Li, K.; Tai, X. Recent Advances of Electrode Materials Applied in an Electrochromic Supercapacitor Device. Molecules 2025, 30, 182. https://doi.org/10.3390/molecules30010182
Guo Q, Sun C, Li Y, Li K, Tai X. Recent Advances of Electrode Materials Applied in an Electrochromic Supercapacitor Device. Molecules. 2025; 30(1):182. https://doi.org/10.3390/molecules30010182
Chicago/Turabian StyleGuo, Qingfu, Chao Sun, Yiran Li, Kaoxue Li, and Xishi Tai. 2025. "Recent Advances of Electrode Materials Applied in an Electrochromic Supercapacitor Device" Molecules 30, no. 1: 182. https://doi.org/10.3390/molecules30010182
APA StyleGuo, Q., Sun, C., Li, Y., Li, K., & Tai, X. (2025). Recent Advances of Electrode Materials Applied in an Electrochromic Supercapacitor Device. Molecules, 30(1), 182. https://doi.org/10.3390/molecules30010182