Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = electrochromic (EC) materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 16910 KiB  
Article
A Simplified Model Validation for the Energy Assessment of Opaque Adaptive Façades with Variable Thermal Resistance
by Ismael Palacios Mackay, Laura Marín-Restrepo and Alexis Pérez-Fargallo
Energies 2025, 18(11), 2682; https://doi.org/10.3390/en18112682 - 22 May 2025
Viewed by 675
Abstract
Adaptive façades, also known as climate-adaptive building shells (CABSs), could make a significant contribution towards reducing the energy consumption of buildings and their environmental impacts. There is extensive research on glazed adaptive façades, mainly due to the available technology for glass materials. The [...] Read more.
Adaptive façades, also known as climate-adaptive building shells (CABSs), could make a significant contribution towards reducing the energy consumption of buildings and their environmental impacts. There is extensive research on glazed adaptive façades, mainly due to the available technology for glass materials. The technological development of opaque adaptive façades has focused on variable-thermal-resistance envelopes, and the simulation of this type of façade is a challenging task that has not been thoroughly studied. The aim of this study was to configure and validate a simplified office model that could be used for simulating an adaptive façade with variable thermal resistance via adaptive insulation thickness in its opaque part. Software-to-software model comparison based on the results of an EnergyPlus Building Energy Simulation Test 900 (BesTest 900)-validated model was used. Cooling and heating annual energy demand (kWh), peak cooling and heating (kW), and maximum, minimum, and average annual hourly zone temperature variables were compared for both the Adaptive and non-adaptive validated model. An Adaptive EnergyPlus model based on the BesTest 900 model, which uses the EnergyPlus SurfaceControl:MovableInsulation class list, was successfully validated and could be used for studying office buildings with a variable-thermal-resistance adaptive façade wall configuration, equivalent to a heavyweight mass wall construction with an External Insulation Finishing System (EIFS). An example of the Adaptive model in the Denver location is included in this paper. Annual savings of up to 26% in total energy demand (heating + cooling) was achieved and could reach up to 54% when electro-chromic (EC) glass commanded by a rule-based algorithm was added to the glazed part of the variable-thermal-resistance adaptive façade. Full article
(This article belongs to the Special Issue Advanced Building Materials for Energy Saving—2nd Edition)
Show Figures

Figure 1

16 pages, 3156 KiB  
Article
Imide Polymers with Bipolar-Type Redox-Active Centers for High-Performance Aqueous Zinc Ion Battery Cathodes and Electrochromic Materials
by Zixuan Liu, Yan Li, Binhua Mei, Jiaxue Liu, Haijun Niu and Yanjun Hou
Int. J. Mol. Sci. 2025, 26(8), 3838; https://doi.org/10.3390/ijms26083838 - 18 Apr 2025
Viewed by 434
Abstract
Aqueous zinc-ion batteries (AZIBs) have attracted interest for their low cost and environmental friendliness. Two bipolar organic materials with different degrees of conjugation, pPMQT and pNTQT, were rationally designed and synthesized as cathode candidates for AZIBs based on 4,4′-diaminotriphenylamine (TPA), 2,7-diaminoanthraquinone (AQ), and [...] Read more.
Aqueous zinc-ion batteries (AZIBs) have attracted interest for their low cost and environmental friendliness. Two bipolar organic materials with different degrees of conjugation, pPMQT and pNTQT, were rationally designed and synthesized as cathode candidates for AZIBs based on 4,4′-diaminotriphenylamine (TPA), 2,7-diaminoanthraquinone (AQ), and two anhydrides. This molecular design features an increased conjugation and electron cloud density, thereby improving charge transport kinetics, specific capacity, and cycling stability. In comparison with pPMQ and pNTQ (n-type), pPMQT and pNTQT demonstrate better electrochemical characteristics. In this work, pNTQT shows outstanding performance. It exhibits an initial capacity of 349.79 mAh g−1 at 0.1 A g−1 and retains a specific capacity of 190.25 mAh g−1 (87.6%) after 5000 cycles at 5 A g−1. In comparison, pNTQ demonstrates a specific capacity of only 207.55 mAh g−1 at 0.1 A g−1, and after 5000 cycles at 5 A g−1, its capacity retention rate is only 81.2%. At the same time, both pPMQT and pNTQT polymer films demonstrate attractive electrochromic (EC) properties, displaying reversible color transitions from yellow to dark blue in the UV–visible spectrum. This work lays the foundation for the further development of triphenylamine-based polyimide materials for application in AZIBs and electrochromism. Full article
(This article belongs to the Section Materials Science)
Show Figures

Graphical abstract

17 pages, 4174 KiB  
Article
Synergistic Titanium Intercalation in WO3 Architectures to Enhance Electrochromic Performance for Smart Windows
by Rutuja U. Amate, Pritam J. Morankar, Namita A. Ahir and Chan-Wook Jeon
Coatings 2025, 15(4), 422; https://doi.org/10.3390/coatings15040422 - 2 Apr 2025
Viewed by 582
Abstract
We report the successful synthesis of amorphous titanium-engineered tungsten oxide (WTi) films via a facile and cost-effective electrodeposition method. Unlike conventional high-temperature or vacuum-based techniques, our approach enables a scalable, all-solution process, ensuring efficiency and sustainability. X-ray diffraction (XRD) confirmed the amorphous nature [...] Read more.
We report the successful synthesis of amorphous titanium-engineered tungsten oxide (WTi) films via a facile and cost-effective electrodeposition method. Unlike conventional high-temperature or vacuum-based techniques, our approach enables a scalable, all-solution process, ensuring efficiency and sustainability. X-ray diffraction (XRD) confirmed the amorphous nature of all films, a key factor in enhancing ion diffusion for superior electrochromic (EC) performance. Field-emission scanning electron microscopy (FESEM) revealed that an optimized nanoparticle network facilitates rapid charge transport and ion intercalation, while uncontrolled nucleation and grain growth hinder EC efficiency. By precisely tuning the Ti concentration, the optimized 3 at% WTi-3 film achieved outstanding EC properties, including an impressive optical modulation of 85% at 600 nm, exceptional reversibility of 95.61%, and a high coloration efficiency of 51.55 cm2/C. This study underscores the pivotal role of amorphous engineering and dopant concentrations in advancing high-performance EC materials, paving the way for next-generation smart windows and energy-efficient displays. Our findings highlight a transformative strategy for low-cost, high-efficiency EC devices, demonstrating unprecedented performance through precision-engineered material design. Full article
Show Figures

Figure 1

18 pages, 3756 KiB  
Article
Advanced Electrochromic Functionality via Layered Cobalt Oxide Deposition on Tungsten Oxide Electrodes
by Pritam J. Morankar, Rutuja U. Amate, Mrunal K. Bhosale, Namita A. Ahir and Chan-Wook Jeon
Coatings 2025, 15(4), 403; https://doi.org/10.3390/coatings15040403 - 28 Mar 2025
Cited by 1 | Viewed by 416
Abstract
The integration of various transition metal oxides into tungsten oxide (WO3) has been widely investigated to enhance its electrochromic (EC) performance. This approach aims to address the inherent limitations of individual metal oxides, such as poor durability, inadequate color neutrality, and [...] Read more.
The integration of various transition metal oxides into tungsten oxide (WO3) has been widely investigated to enhance its electrochromic (EC) performance. This approach aims to address the inherent limitations of individual metal oxides, such as poor durability, inadequate color neutrality, and restricted coloring efficiency and optical properties. The use of mixed metal oxides has emerged as a promising strategy, enabling a synergistic effect that optimizes EC performance and expands the material’s functional capabilities. In this study, we compare single-layer WO3 films with bilayer WO3/cobalt oxide (CoO) (denoted as W@C) composite films, focusing on their structural, morphological, and electrochromic properties. Both films were fabricated using the electrodeposition technique, with a consistent number of deposition cycles. Field emission scanning electron microscopy (FESEM) analysis revealed that the WO3 film presented a tightly packed arrangement of nanogranules. In contrast, the bilayer W@C composite thin film exhibited a highly interconnected and porous granular structure, with morphology evolving into larger spherical aggregates. The optimized bilayer W@C composite demonstrated exceptional electrochromic performance, achieving an optical modulation of 85.0% at 600 nm and a significantly improved coloration efficiency of 96.07 cm2/C. Stability tests confirmed its remarkable durability, showing only a 1.05% decrease in optical contrast after 5000 s of operation. Additionally, a prototype electrochromic device based on the W@C film demonstrated an optical modulation of 52.13% and outstanding long-term stability, with minimal degradation in performance. Full article
(This article belongs to the Special Issue Thermoelectric Thin Films for Thermal Energy Harvesting)
Show Figures

Figure 1

22 pages, 6761 KiB  
Article
Interplay of Temperature-Induced Modification in Niobium Oxide Thin Films for Electrochromic Advancements
by Rutuja U. Amate, Pritam J. Morankar, Namita A. Ahir and Chan-Wook Jeon
Materials 2025, 18(6), 1264; https://doi.org/10.3390/ma18061264 - 13 Mar 2025
Viewed by 571
Abstract
Niobium oxide (Nb2O5) is a compelling preference for electrochromic (EC) applications due to its remarkable optical modulation, chemical resilience, and efficient charge accommodation. This study attentively explores the influence of reaction temperature on the structural, morphological, and EC characteristics [...] Read more.
Niobium oxide (Nb2O5) is a compelling preference for electrochromic (EC) applications due to its remarkable optical modulation, chemical resilience, and efficient charge accommodation. This study attentively explores the influence of reaction temperature on the structural, morphological, and EC characteristics of Nb2O5 thin films synthesized via a hydrothermal approach. Reaction temperatures spanning 140 °C to 200 °C were optimized to unravel their pivotal role in dictating material properties and device performance. Field-emission scanning electron microscopy elucidates significant morphological transformations, transitioning from agglomerated, cracked structures at lower temperatures to well-defined, porous architectures at optimal conditions, followed by a re-compaction of the surface at elevated temperatures. Electrochemical analysis established a strong correlation between thermal-induced structural refinements and enhanced EC performance metrics. The optimized N-180 thin films exhibit enhanced charge injection dynamics, improved coloration efficiency of 81.33 cm2/C, and superior optical modulation of 74.13% at 600 nm. The device fabricated with the most favorable film demonstrated significant optical contrast and long-term stability, reinforcing its practical viability for smart window and energy-efficient applications. This study pioneers a comprehensive understanding of the thermal modulation of Nb2O5 thin films, providing new insights into the interplay between reaction temperature and material functionality. Full article
Show Figures

Figure 1

53 pages, 6609 KiB  
Review
Research Progress in Ionic Liquid-Based Electrolytes for Electrochromic Devices
by Hao Zhang, Yixuan Liu, Xuehan Wang, Keying Feng, Qilin Wang, Zheng Chen and Zhenhua Jiang
Molecules 2025, 30(4), 973; https://doi.org/10.3390/molecules30040973 - 19 Feb 2025
Cited by 3 | Viewed by 2136
Abstract
Electrochromic (EC) technology has become one of the smart technologies with the most potential for development and application at this stage. Based on electrochromic devices (ECDs), this technology has shown extraordinary potential in the fields of smart windows, display devices, and sensing systems. [...] Read more.
Electrochromic (EC) technology has become one of the smart technologies with the most potential for development and application at this stage. Based on electrochromic devices (ECDs), this technology has shown extraordinary potential in the fields of smart windows, display devices, and sensing systems. With the optimization and iteration of various core components in ECDs, the electrolyte layer, a key component, evolved from its initial liquid state to a quasi-solid state and solid state. As driven by increasing application demands, the development trend indicates that all-solid-state, transparent electrolytes will likely become the future form of the electrolyte layer. Recently, the application of ionic liquid (IL)-based electrolytes in the field of electrochromism attracted a lot of attention due to their ability to bring outstanding EC cycling stability, thermal stability, and a wider operating voltage range to ECDs, and they are regarded as the new generation of electrolyte materials with the most potential for application. Although compared with conventional electrolytes, IL-based electrolytes have the characteristics of high price, high viscosity, and low conductivity, they are still considered the most promising electrolyte materials for applications. However, so far, there has been a lack of comprehensive analysis reports on “Research progress in ionic liquid-based electrolytes for electrochromic devices” within the EC field. In this article, the research progress of IL-based electrolytes in ECDs will be summarized from three perspectives: liquid, quasi-solid, and solid state. The future development directions of IL-based electrolytes for ECDs are discussed. Full article
Show Figures

Graphical abstract

30 pages, 11520 KiB  
Review
Progress in Tungsten Trioxide-Based Materials for Energy Storage and Smart Window Applications
by Khursheed Ahmad and Tae Hwan Oh
Crystals 2025, 15(1), 10; https://doi.org/10.3390/cryst15010010 - 25 Dec 2024
Cited by 1 | Viewed by 1109
Abstract
Previous years have witnessed a rapid surge in WO3-based experimental reports for the construction of energy storage devices (ESDs) and electrochromic devices (ECDs). WO3 is a highly electrochromic (EC) material with a wide band gap that has been extensively used [...] Read more.
Previous years have witnessed a rapid surge in WO3-based experimental reports for the construction of energy storage devices (ESDs) and electrochromic devices (ECDs). WO3 is a highly electrochromic (EC) material with a wide band gap that has been extensively used for the construction of working electrodes for supercapacitor (SC) and ECD applications. Previously, WO3-based hybrid composites were explored for SC and ECD applications. In this review report, we have compiled the WO3-based hybrid electrode materials for SC and ECD applications. It is believed that the present review would benefit the researchers working on the fabrication of electrode materials for SC and ECD applications. In this review article, challenges and future perspectives have been discussed for the development of WO3-based SCs and ECDs. Full article
Show Figures

Figure 1

16 pages, 5342 KiB  
Article
Effect of Annealing Temperature on Morphology and Electrochromic Performance of Electrodeposited WO₃ Thin Films
by Pritam J. Morankar, Rutuja U. Amate, Manesh A. Yewale and Chan-Wook Jeon
Crystals 2024, 14(12), 1038; https://doi.org/10.3390/cryst14121038 - 28 Nov 2024
Cited by 2 | Viewed by 1809
Abstract
The purpose of this study was to investigate the effect of annealing temperature on the structural, morphological, and electrochemical properties of tungsten trioxide (WO3) films, fabricated via electrodeposition and annealed at 50 °C, 250 °C, and 450 °C. Structural analysis using [...] Read more.
The purpose of this study was to investigate the effect of annealing temperature on the structural, morphological, and electrochemical properties of tungsten trioxide (WO3) films, fabricated via electrodeposition and annealed at 50 °C, 250 °C, and 450 °C. Structural analysis using X-ray diffraction (XRD) revealed temperature-induced modifications, transitioning from amorphous to crystalline phases. Morphological studies by field emission scanning electron microscopy (FESEM) demonstrated an increase in grain size with temperature (31 nm, 48 nm, and 53 nm) and the formation of cracks at higher annealing temperatures. Electrochemical characterization showed that the WO3 film annealed at 250 °C exhibited superior redox activity, enhanced ion diffusion, and excellent reversibility. Optical studies highlighted its exceptional performance, with 79.35% optical modulation, a coloration efficiency of 97.91 cm2/C, and rapid switching times (9.8 s for coloration and 7.5 s for bleaching). Furthermore, long-term cycling tests confirmed minimal degradation after 5000 cycles, demonstrating durability. This work provides a comprehensive understanding of the annealing temperature’s impact on WO3 films and underscores the novelty of achieving optimal electrochromic (EC) performance through temperature tuning, advancing the design of energy-efficient smart materials. Full article
(This article belongs to the Special Issue Research and Applications of Thin Films and Energy Materials)
Show Figures

Figure 1

14 pages, 7374 KiB  
Article
Revealing Enhanced Optical Modulation and Coloration Efficiency in Nanogranular WO3 Thin Films Through Precursor Concentration Modifications
by Pritam J. Morankar, Rutuja U. Amate, Namita A. Ahir and Chan-Wook Jeon
Crystals 2024, 14(11), 915; https://doi.org/10.3390/cryst14110915 - 23 Oct 2024
Cited by 2 | Viewed by 1282
Abstract
Electrochromic (EC) materials allow for dynamic tuning of optical properties via an applied electric field, presenting great potential in energy-efficient technologies, such as smart windows for effective light and temperature regulation. The precise control of precursor concentration has proven to be a powerful [...] Read more.
Electrochromic (EC) materials allow for dynamic tuning of optical properties via an applied electric field, presenting great potential in energy-efficient technologies, such as smart windows for effective light and temperature regulation. The precise control of precursor concentration has proven to be a powerful approach in tailoring the physicochemical properties of semiconducting metal oxides. In this study, we employed a one-step electrodeposition technique to fabricate tungsten oxide (WO3) thin films, systematically exploring how varying precursor concentrations influence the material’s characteristics. X-ray diffraction analysis revealed significant changes in diffraction patterns, reflecting subtle structural modifications due to concentration variations. Additionally, scanning electron microscopy revealed significant changes in the microstructure, showing a progression from small nanogranules to larger agglomerations within the film matrix. The W-25 mM thin film delivered exceptional EC performance, efficiently accommodating lithium ions while showcasing superior EC properties. The optimized electrode, denoted as W-25 mM, showcased exceptional EC metrics, featuring the highest optical modulation at 82.66%, outstanding reversibility at 99%, and a notably high coloring efficiency of 83.01 cm2/C. These findings emphasize the importance of precursor concentration optimization in enhancing the EC properties of WO3 thin films, contributing to the advancement of high-performance, energy-efficient materials. Full article
(This article belongs to the Special Issue Organic Photonics: Organic Optical Functional Materials and Devices)
Show Figures

Figure 1

16 pages, 4152 KiB  
Article
Electrofluorochromic Switching of Heat-Induced Cross-Linkable Multi-Styryl-Terminated Triphenylamine and Tetraphenylethylene Derivatives
by Kang Le Osmund Chin, Pin Jin Ong, Qiang Zhu, Jianwei Xu and Ming Hui Chua
Molecules 2024, 29(10), 2340; https://doi.org/10.3390/molecules29102340 - 16 May 2024
Cited by 4 | Viewed by 1411
Abstract
High-performance electrochromic (EC) and electrofluorochromic (EFC) materials have garnered considerable interest due to their diverse applications in smart windows, optoelectronics, optical displays, military camouflage, etc. While many different EC and EFC polymers have been reported, their preparation often requires multiple steps, and their [...] Read more.
High-performance electrochromic (EC) and electrofluorochromic (EFC) materials have garnered considerable interest due to their diverse applications in smart windows, optoelectronics, optical displays, military camouflage, etc. While many different EC and EFC polymers have been reported, their preparation often requires multiple steps, and their polymer molecular weights are subjected to batch variation. In this work, we prepared two triphenylamine (TPA)-based and two tetraphenylethylene (TPE)-based derivatives functionalized with terminal styryl groups via direct Suzuki coupling with (4-vinylphenyl)boronic acid and vinylboronic acid pinacol ester. The two novel TPE derivatives exhibited green–yellow aggregation-induced emission (AIE). The EC and EFC properties of pre- and post-thermally treated derivatives spin-coated onto ITO–glass substrates were studied. While all four derivatives showed modest absorption changes with applied voltages up to +2.4 V, retaining a high degree of optical transparency, they exhibited obvious EFC properties with the quenching of blue to yellow fluorescence with IOFF/ON contrast ratios of up to 7.0. The findings therefore demonstrate an elegant approach to preparing optically transparent, heat-induced, cross-linkable styryl-functionalized EFC systems. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry and Photocatalysis)
Show Figures

Figure 1

13 pages, 5067 KiB  
Article
Compositional Optimization of Sputtered WO3/MoO3 Films for High Coloration Efficiency
by Zoltán Lábadi, Dániel Takács, Zsolt Zolnai, Péter Petrik and Miklós Fried
Materials 2024, 17(5), 1000; https://doi.org/10.3390/ma17051000 - 22 Feb 2024
Cited by 3 | Viewed by 1782
Abstract
Thin films of mixed MoO3 and WO3 were obtained using reactive magnetron sputtering onto ITO-covered glass, and the optimal composition was determined for the best electrochromic (EC) properties. A combinatorial material synthesis approach was applied throughout the deposition experiments, and the [...] Read more.
Thin films of mixed MoO3 and WO3 were obtained using reactive magnetron sputtering onto ITO-covered glass, and the optimal composition was determined for the best electrochromic (EC) properties. A combinatorial material synthesis approach was applied throughout the deposition experiments, and the samples represented the full composition range of the binary MoO3/WO3 system. The electrochromic characteristics of the mixed oxide films were determined with simultaneous measurement of layer transmittance and applied electric current through the using organic propylene carbonate electrolyte cells in a conventional three-electrode configuration. Coloration efficiency data evaluated from the primary data plotted against the composition displayed a characteristic maximum at around 60% MoO3. Our combinatorial approach allows the localization of the maximum at 5% accuracy. Full article
(This article belongs to the Special Issue Recent Advances in Photoelectric Functional Materials and Devices)
Show Figures

Figure 1

10 pages, 3280 KiB  
Article
Electrochromic Polymers: From Electrodeposition to Hybrid Solid Devices
by Hadarou Sare and Dongmei Dong
Energies 2024, 17(1), 232; https://doi.org/10.3390/en17010232 - 1 Jan 2024
Cited by 4 | Viewed by 2085
Abstract
This paper reports on the linear colorimetric and electrochromic (EC) characteristics of electrodeposited polyaniline (PANI) films. This paper also investigates the infrared EC properties of acid-doped PANI films. The electrochemical polymerization method was employed to create a porous and thin PANI film layer [...] Read more.
This paper reports on the linear colorimetric and electrochromic (EC) characteristics of electrodeposited polyaniline (PANI) films. This paper also investigates the infrared EC properties of acid-doped PANI films. The electrochemical polymerization method was employed to create a porous and thin PANI film layer onto PET-ITO substrates. This layer was capped with WO3 film to create a gel electrolyte sandwich structure that demonstrates the compatibility of PANI films with cathodic WO3 films in full devices. The electrodeposition of the film was fabricated by applying different voltages and time, with the optimal film quality achieved with the 1.7 V voltage and a 20 min deposition period. The surface morphology, optical performance, electrochemical behavior, and molecular structure evolution are comprehensively studied in this work. The linear colorimetric behaviors and the corresponding significant changes in the structure in Raman spectra build direct strong quantitative relations in EC polymers. The well-defined oxidation and reduction peaks observed in the cyclic voltammetry indicate the ion-diffusion dominant process in the electrochromism of PANI. Significant transitions between the benzene and quinone phases in the Raman spectra are found in the bleached and colored states of polymers. This study enhances the understanding of PANI film structure and electrochemical and associated optical properties, providing more insights into the dual-function EC charge storage polymers and other energy-related functional materials. Full article
(This article belongs to the Special Issue Thin Films for Renewable Energy Production, Storage and Conversion)
Show Figures

Figure 1

14 pages, 4051 KiB  
Article
Enhanced Electrochromic Properties of Nanocrystalline Molybdenum Oxide Films Modified by Dopamine
by Dan Zhou and Liping Yang
Coatings 2023, 13(7), 1292; https://doi.org/10.3390/coatings13071292 - 24 Jul 2023
Cited by 4 | Viewed by 1900
Abstract
Molybdenum oxide (MoO3) electrochromic (EC) materials have not been widely used at present due to relatively poor performance and inadequate research. In order to enhance the EC properties of the MoO3 to achieve the purpose of practical use, the modified [...] Read more.
Molybdenum oxide (MoO3) electrochromic (EC) materials have not been widely used at present due to relatively poor performance and inadequate research. In order to enhance the EC properties of the MoO3 to achieve the purpose of practical use, the modified nanocrystalline MoO3 films were fabricated by a cheap and simple complexation-assisted sol–gel method followed by annealing at 300 °C. In this method, dopamine (DA) is used as a structure-directing agent and the added amount of DA has a great influence on the structure and morphology and, thus, electrochemical and EC properties of the MoO3 films. Different from the pure MoO3 polycrystalline film, the film modified with a suitable amount of DA possesses a distinctive nanocrystal-embedded amorphous structure, and, thus, can achieve synergy effects of EC properties through combining the advantages of both amorphous phases and nanocrystalline. Therefore, compared with the pure MoO3 film, the modified MoO3 film shows much higher EC properties in terms of optical contrast, coloration efficiency, switching speed, and cycling stability. Moreover, a complementary type EC device with dual active layers (the modified MoO3 film and polyaniline) was fabricated and tested, and the results demonstrate the potential application of the modified MoO3 film. Full article
(This article belongs to the Special Issue Recent Advances in Metallic and Metal Oxide Thin Films)
Show Figures

Figure 1

13 pages, 1663 KiB  
Article
Poly (Aryl Amino Ketone/Sulfones) with Obvious Electrochromic Effect Prepared by One-Step Low-Cost and Facile Synthesis
by Songrui Jia, Zhen Xing, Qilin Wang, Shiwei Wang and Zheng Chen
Molecules 2023, 28(14), 5297; https://doi.org/10.3390/molecules28145297 - 9 Jul 2023
Cited by 1 | Viewed by 1951
Abstract
High-performance donor-acceptor (D-A) polymers, as an important class of electrochromic (EC) materials, have attracted extensive attention. In this paper, a series of novel poly (aryl amino ketone) (PAAK) and poly (aryl amino sulfone) (PAAS) type high-performance polymers (HPP) with electrochromism were prepared by [...] Read more.
High-performance donor-acceptor (D-A) polymers, as an important class of electrochromic (EC) materials, have attracted extensive attention. In this paper, a series of novel poly (aryl amino ketone) (PAAK) and poly (aryl amino sulfone) (PAAS) type high-performance polymers (HPP) with electrochromism were prepared by a simple C-N coupling reaction and were coated on an indium tin oxide (ITO) substrate as EC films. All four polymers were prepared by a nucleophilic substitution reaction using commercially purchased amine monomers with difluoride sulfone/ketone using potassium carbonate as a catalyst. A series of tests were performed to compare and analyze the effects of the different electron-withdrawing abilities of sulfone and carbonyl groups, and the different conjugation lengths of these two TPA structures were connected to the EC properties of the polymer. The different phenyl or biphenyl of the two TPA structures mainly affected the oxidation potential of the polymer, while the sulfone group and the carbonyl group, with a different electron absorption ability, had a greater influence on the energy band and cyclic stability. The optical contrast of PAAS−BT at 850 nm was up to 58% and maintained 450 cycles, indicating that this series of materials had a broad application prospect waiting for further research. In addition to the performance, the raw materials used in this work could be directly and commercially purchased for a low price; the two aniline monomers were priced at about $0.43 /g and $0.15 /g, respectively. This method significantly reduces the cost and provides a new idea for subsequent large-scale production and practical applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

10 pages, 2581 KiB  
Article
Multicolor Tunable Electrochromic Materials Based on the Burstein–Moss Effect
by Xia Zhou, Enhui Huang, Rui Zhang, Hui Xiang, Wenying Zhong and Bo Xu
Nanomaterials 2023, 13(10), 1580; https://doi.org/10.3390/nano13101580 - 9 May 2023
Cited by 7 | Viewed by 2548
Abstract
Inorganic electrochromic (EC) materials, which can reversibly switch their optical properties by current or potential, are at the forefront of commercialization of displays and smart windows. However, most inorganic EC materials have challenges in achieving multicolor tunability. Here, we propose that the Burstein–Moss [...] Read more.
Inorganic electrochromic (EC) materials, which can reversibly switch their optical properties by current or potential, are at the forefront of commercialization of displays and smart windows. However, most inorganic EC materials have challenges in achieving multicolor tunability. Here, we propose that the Burstein–Moss (BM) effect, which could widen the optical gap by carrier density, could be a potential mechanism to realize the multicolor tunable EC phenomenon. Degenerated semiconductors with suitable fundament band gaps and effective carrier masses could be potential candidates for multicolor tunable EC materials based on the BM effect. We select bulk Y2CF2 as an example to illustrate multicolor tunability based on the BM effect. In addition to multicolor tunability, the BM effect also could endow EC devices with the ability to selectively modulate the absorption for near infrared and visible light, but with a simpler device structure. Thus, we believe that this mechanism could be applied to design novel EC smart windows with unprecedented functions. Full article
(This article belongs to the Special Issue First-Principle Calculation Study of Nanomaterials)
Show Figures

Figure 1

Back to TopTop