materials-logo

Journal Browser

Journal Browser

Recent Advances in Photoelectric Functional Materials and Devices

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Energy Materials".

Deadline for manuscript submissions: closed (20 August 2024) | Viewed by 2097

Special Issue Editor


E-Mail Website
Guest Editor
School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China
Interests: energy storage; functional nanomaterials; supercapacitors; lithium and sodium batteries

Special Issue Information

Dear Colleagues,

In recent decades, the need for the development of alternative energy conversion and storage systems has increased dramatically due to rapid global economic growth, environmental issues, and the depletion of fossil fuels. Light and electricity are two types of pollution-free clean energy that are being increasingly studied by scholars.

The latest trends in photoelectric functional materials and device research include photoelectrocatalysis materials, solar cells, solar photocatalytic degradation, energy storage devices (batteries and electrochemical supercapacitors), and the study of these materials’ synthesis, properties, and applications.

For this Special Issue, we invite authors to submit research articles or reviews on the broad range of topics listed above.

Dr. Linyu Yang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • photoelectric functional materials and devices
  • photoelectrocatalysis materials
  • energy storage
  • solar cells

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 3189 KiB  
Article
Air-Stable and Eco-Friendly Symmetrical Imine with Thiadiazole Moieties in Neutral and Protonated form for Perovskite Photovoltaics
by Krzysztof Artur Bogdanowicz, Agnieszka Iwan, Karolina Dysz, Wojciech Przybyl, Monika Marzec, Kacper Cichy and Konrad Świerczek
Materials 2024, 17(8), 1909; https://doi.org/10.3390/ma17081909 - 20 Apr 2024
Viewed by 690
Abstract
This paper proposes molecular and supramolecular concepts for potential application in perovskite solar cells. New air-stable symmetrical imine, with thiadiazole moieties PPL2: (5E,6E)-N2,N5-bis(4-(diphenylamino)benzylidene)-1,3,4-thiadiazole-2,5-diamine), as a hole-transporting material was synthesised in a single-step reaction, starting with commercially available and relatively inexpensive reagents, resulting in [...] Read more.
This paper proposes molecular and supramolecular concepts for potential application in perovskite solar cells. New air-stable symmetrical imine, with thiadiazole moieties PPL2: (5E,6E)-N2,N5-bis(4-(diphenylamino)benzylidene)-1,3,4-thiadiazole-2,5-diamine), as a hole-transporting material was synthesised in a single-step reaction, starting with commercially available and relatively inexpensive reagents, resulting in a reduction in the cost of the final product compared to Spiro-OMeTAD. Moreover, camphorsulfonic acid (CSA) in both enantiomeric forms was used to change the HOMO-LUMO levels and electric properties of the investigated imine-forming complexes. Electric, optical, thermal, and structural studies of the imine and its complexes with CSA were carried out to characterise the new material. Imine and imine/CSA complexes were also characterised in depth by the proton Nuclear Magnetic Resonance 1H NMR method. The position of nitrogen in the thidiazole ring influences the basicity of donor centres, which results in protonation in the imine bond. Simple devices of ITO/imine (with or without CSA(−) or CSA(+))/Ag/ITO architecture were constructed, and a thermographic camera was used to find the defects in the created devices. Electric behaviour was also studied to demonstrate conductivity properties under the forward current. Finally, the electrical properties of imine and its protonated form with CSA were compared with Spiro-OMeTAD. In general, the analysis of thermal images showed a very similar response of the samples to the applied potential in terms of the homogeneity of the formed organic layer. The TGA analysis showed that the investigated imine exhibits good thermal stability in air and argon atmospheres. Full article
(This article belongs to the Special Issue Recent Advances in Photoelectric Functional Materials and Devices)
Show Figures

Figure 1

13 pages, 5067 KiB  
Article
Compositional Optimization of Sputtered WO3/MoO3 Films for High Coloration Efficiency
by Zoltán Lábadi, Dániel Takács, Zsolt Zolnai, Péter Petrik and Miklós Fried
Materials 2024, 17(5), 1000; https://doi.org/10.3390/ma17051000 - 22 Feb 2024
Viewed by 932
Abstract
Thin films of mixed MoO3 and WO3 were obtained using reactive magnetron sputtering onto ITO-covered glass, and the optimal composition was determined for the best electrochromic (EC) properties. A combinatorial material synthesis approach was applied throughout the deposition experiments, and the [...] Read more.
Thin films of mixed MoO3 and WO3 were obtained using reactive magnetron sputtering onto ITO-covered glass, and the optimal composition was determined for the best electrochromic (EC) properties. A combinatorial material synthesis approach was applied throughout the deposition experiments, and the samples represented the full composition range of the binary MoO3/WO3 system. The electrochromic characteristics of the mixed oxide films were determined with simultaneous measurement of layer transmittance and applied electric current through the using organic propylene carbonate electrolyte cells in a conventional three-electrode configuration. Coloration efficiency data evaluated from the primary data plotted against the composition displayed a characteristic maximum at around 60% MoO3. Our combinatorial approach allows the localization of the maximum at 5% accuracy. Full article
(This article belongs to the Special Issue Recent Advances in Photoelectric Functional Materials and Devices)
Show Figures

Figure 1

Review

Jump to: Research

44 pages, 5362 KiB  
Review
Performance of Low-Dimensional Solid Room-Temperature Photodetectors—Critical View
by Antoni Rogalski, Weida Hu, Fang Wang and Piotr Martyniuk
Materials 2024, 17(18), 4522; https://doi.org/10.3390/ma17184522 (registering DOI) - 14 Sep 2024
Abstract
In the last twenty years, nanofabrication progress has allowed for the emergence of a new photodetector family, generally called low-dimensional solids (LDSs), among which the most important are two-dimensional (2D) materials, perovskites, and nanowires/quantum dots. They operate in a wide wavelength range from [...] Read more.
In the last twenty years, nanofabrication progress has allowed for the emergence of a new photodetector family, generally called low-dimensional solids (LDSs), among which the most important are two-dimensional (2D) materials, perovskites, and nanowires/quantum dots. They operate in a wide wavelength range from ultraviolet to far-infrared. Current research indicates remarkable advances in increasing the performance of this new generation of photodetectors. The published performance at room temperature is even better than reported for typical photodetectors. Several articles demonstrate detectivity outperforming physical boundaries driven by background radiation and signal fluctuations. This study attempts to explain these peculiarities. In order to achieve this goal, we first clarify the fundamental differences in the photoelectric effects of the new generation of photodetectors compared to the standard designs dominating the commercial market. Photodetectors made of 2D transition metal dichalcogenides (TMDs), quantum dots, topological insulators, and perovskites are mainly considered. Their performance is compared with the fundamental limits estimated by the signal fluctuation limit (in the ultraviolet region) and the background radiation limit (in the infrared region). In the latter case, Law 19 dedicated to HgCdTe photodiodes is used as a standard reference benchmark. The causes for the performance overestimate of the different types of LDS detectors are also explained. Finally, an attempt is made to determine their place in the global market in the long term. Full article
(This article belongs to the Special Issue Recent Advances in Photoelectric Functional Materials and Devices)
Back to TopTop