Revealing Enhanced Optical Modulation and Coloration Efficiency in Nanogranular WO3 Thin Films Through Precursor Concentration Modifications
Abstract
1. Introduction
2. Experimental Section
2.1. Reagents and Materials
2.2. Synthesis of WO3 Thin Films
3. Material Characterization
4. Results and Discussion
4.1. X-Ray Diffraction (XRD) Elucidation
4.2. Raman Spectroscopy Analysis
4.3. Morphological Study
4.4. X-Ray Photoelectron Spectroscopy (XPS) Analysis
5. Electrochromic Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Granqvist, C.G. Oxide electrochromics: An introduction to devices and materials. Sol. Energy Mater. Sol. Cells 2012, 99, 1–13. [Google Scholar] [CrossRef]
- Thakur, V.K.; Ding, G.; Ma, J.; Lee, P.S.; Lu, X. Hybrid materials and polymer electrolytes for electrochromic device applications. Adv. Mater. 2012, 24, 4071–4096. [Google Scholar] [CrossRef] [PubMed]
- Wen, R.T.; Arvizu, M.A.; Niklasson, G.A.; Granqvist, C.G. Electrochromics for energy efficient buildings: Towards long-term durability and materials rejuvenation. Surf. Coat. Technol. 2016, 290, 135–139. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, J.; Zhou, Z.; Shen, G.; Tang, T.; Sagar, R.U.R.; Qi, X. Growth of a high-performance WO3 nanofilm directly on a polydopamine-modified ITO electrode for electrochromism and power storage applications. Appl. Surf. Sci. 2022, 573, 151603. [Google Scholar] [CrossRef]
- Ghosh, T.; Rani, C.; Kandpal, S.; Tanwar, M.; Bansal, L.; Kumar, R. Chronoamperometric deposition of transparent WO3 film for application as power efficient electrochromic auxiliary electrode. J. Phys. D Appl. Phys. 2022, 55, 365103. [Google Scholar] [CrossRef]
- Pullar, R.C.; Giannuzzi, R.; Prontera, T.; Tobaldi, D.M.; Pugliese, M.; De Marco, L.; Maiorano, V. High colouring efficiency, optical density and inserted charge in sol–gel derived electrochromic titania nanostructures. Energy Adv. 2022, 1, 321–330. [Google Scholar] [CrossRef]
- Tong, Z.; Liu, S.; Li, X.; Zhao, J.; Li, Y. Self-supported one-dimensional materials for enhanced electrochromism. Nanoscale Horiz. 2018, 3, 261–292. [Google Scholar] [CrossRef]
- Vernardou, D.; Drosos, H.; Spanakis, E.; Koudoumas, E.; Katsarakis, N.; Pemble, M.E. Electrochemical properties of amorphous WO3 coatings grown on polycarbonate by aerosol-assisted CVD. Electrochim. Acta 2012, 65, 185–189. [Google Scholar] [CrossRef]
- Bignozzi, C.A.; Caramori, S.; Cristino, V.; Argazzi, R.; Meda, L.; Tacca, A. Nanostructured photoelectrodes based on WO3: Applications to photooxidation of aqueous electrolytes. Chem. Soc. Rev. 2013, 42, 2228–2246. [Google Scholar] [CrossRef]
- Park, Y.T.; Lee, S.H.; Lee, K.T. Electrochromic properties of silver nanowire-embedded tungsten trioxide thin films fabricated by electrodeposition. Ceram. Int. 2020, 46, 29052–29059. [Google Scholar] [CrossRef]
- Granqvist, C.G. Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films 2014, 564, 1–38. [Google Scholar] [CrossRef]
- Jayatissa, A.H.; Cheng, S.T.; Gupta, T. Annealing effect on the formation of nanocrystals in thermally evaporated tungsten oxide thin films. Mater. Sci. Eng. B 2004, 109, 269–275. [Google Scholar] [CrossRef]
- Rizzuto, C.; Barberi, R.C.; Castriota, M. Tungsten and titanium oxide thin films obtained by the sol-gel process as electrodes in electrochromic devices. Front. Mater. 2022, 9, 912013. [Google Scholar] [CrossRef]
- Bathe, S.R.; Patil, P.S. Titanium doping effects in electrochromic pulsed spray pyrolysed WO3 thin films. Solid State Ion. 2008, 179, 314–323. [Google Scholar] [CrossRef]
- Subrahmanyam, A.; Karuppasamy, A. Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films. Sol. Energy Mater. Sol. Cells 2007, 91, 266–274. [Google Scholar] [CrossRef]
- Morankar, P.J.; Amate, R.U.; Chavan, G.T.; Teli, A.M.; Dalavi, D.S.; Jeon, C.W. Improved electrochromic performance of potentiostatically electrodeposited nanogranular WO3 thin films. J. Alloy. Compd. 2023, 945, 169363. [Google Scholar] [CrossRef]
- Chithambararaj, A.; Nandigana, P.; Kumar, M.K.; Prakash, A.S.; Panda, S.K. Enhanced electrochromism from non-stoichiometric electrodeposited tungsten oxide thin films. Appl. Surf. Sci. 2022, 582, 152424. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Deepa, M.; Singh, S.; Kishore, R.; Agnihotry, S.A. Microstructural and electrochromic characteristics of electrodeposited and annealed WO3 films. Solid State Ion. 2005, 176, 1161–1168. [Google Scholar] [CrossRef]
- Zhang, J.; Tu, J.P.; Cai, G.F.; Du, G.H.; Wang, X.L.; Liu, P.C. Enhanced electrochromic performance of highly ordered, macroporous WO3 arrays electrodeposited using polystyrene colloidal crystals as template. Electrochim. Acta 2013, 99, 1–8. [Google Scholar] [CrossRef]
- Yamanaka, K.; Oakamoto, H.; Kidou, H.; Kudo, T. Peroxotungstic acid coated films for electrochromic display devices. Jpn. J. Appl. Phys. 1986, 25, 1420. [Google Scholar] [CrossRef]
- Deepa, M.; Srivastava, A.K.; Sood, K.N.; Agnihotry, S.A. Nanostructured mesoporous tungsten oxide films with fast kinetics for electrochromic smart windows. Nanotechnology 2006, 17, 2625. [Google Scholar] [CrossRef] [PubMed]
- Morankar, P.J.; Amate, R.U.; Teli, A.M.; Beknalkar, S.A.; Chavan, G.T.; Ahir, N.A.; Jeon, C.W. Nanogranular advancements in molybdenum-doped tungsten oxide for superior electrochromic energy storage. J. Energy Storage 2024, 84, 110978. [Google Scholar] [CrossRef]
- Li, W.; Zhang, J.; Zheng, Y.; Cui, Y. High performance electrochromic energy storage devices based on Mo-doped crystalline/amorphous WO3 core-shell structures. Sol. Energy Mater. Sol. Cells 2022, 235, 111488. [Google Scholar] [CrossRef]
- Usha, K.S.; Lee, S.Y. Rapid thermal annealing treatment on WO3 thin films for energy efficient smart windows. Ceram. Int. 2024, 50, 23244–23255. [Google Scholar] [CrossRef]
- Usha, K.S.; Lee, S.Y. Fast-switching electrochromic smart windows based on WO3 doped NiO thin films. J. Alloy. Compd. 2024, 1009, 176774. [Google Scholar] [CrossRef]
- Amate, R.U.; Morankar, P.J.; Chavan, G.T.; Teli, A.M.; Desai, R.S.; Dalavi, D.S.; Jeon, C.W. Bi-functional electrochromic supercapacitor based on hydrothermal-grown 3D Nb2O5 nanospheres. Electrochim. Acta 2023, 459, 142522. [Google Scholar] [CrossRef]
- More, A.J.; Patil, R.S.; Dalavi, D.S.; Suryawanshi, M.P.; Burungale, V.V.; Kim, J.H.; Patil, P.S. Synthesis and characterization of potentiostatically electrodeposited tungsten oxide thin films for smart window application. J. Electron. Mater. 2017, 46, 974–981. [Google Scholar] [CrossRef]
- Dalavi, D.S.; Desai, R.S.; Patil, P.S. Nanostructured materials for electrochromic energy storage systems. J. Mater. Chem. A 2022, 10, 1179–1226. [Google Scholar] [CrossRef]
- More, A.J.; Patil, R.S.; Dalavi, D.S.; Mali, S.S.; Hong, C.K.; Gang, M.G.; Patil, P.S. Electrodeposition of nano-granular tungsten oxide thin films for smart window application. Mater. Lett. 2014, 134, 298–301. [Google Scholar] [CrossRef]
- Dalavi, D.S.; Devan, R.S.; Patil, R.A.; Patil, R.S.; Ma, Y.R.; Sadale, S.B.; Patil, P.S. Efficient electrochromic performance of nanoparticulate WO3 thin films. J. Mater. Chem. C 2013, 1, 3722–3728. [Google Scholar] [CrossRef]
- Amate, R.U.; Morankar, P.J.; Teli, A.M.; Beknalkar, S.A.; Jeon, C.-W. Synergistic design of processable Nb2O5-TiO2 bilayer nanoarchitectonics: Enabling high coloration efficiency and superior stability in dual-band electrochromic energy storage. J. Colloid Interface Sci. 2024, 678, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Morankar, P.J.; Amate, R.U.; Teli, A.M.; Chavan, G.T.; Beknalkar, S.A.; Dalavi, D.S.; Jeon, C.W. Surfactant integrated nanoarchitectonics for controlled morphology and enhanced functionality of tungsten oxide thin films in electrochromic supercapacitors. J. Energy Storage 2023, 73, 109095. [Google Scholar] [CrossRef]
- Lemos, R.M.; Balboni, R.D.; Cholant, C.M.; Azevedo, C.F.; Pawlicka, A.; Gündel, A.; Avellaneda, C.O. Molybdenum doping effect on sol-gel Nb2O5: Li+ thin films: Investigation of structural, optical and electrochromic properties. Mater. Sci. Semicond. Process. 2021, 134, 105995. [Google Scholar] [CrossRef]
- Cai, G.; Cui, M.; Kumar, V.; Darmawan, P.; Wang, J.; Wang, X.; Lee, P.S. Ultra-large optical modulation of electrochromic porous WO3 film and the local monitoring of redox activity. Chem. Sci. 2016, 7, 1373–1382. [Google Scholar] [CrossRef]
- Koo, B.R.; Jo, M.H.; Kim, K.H.; Ahn, H.J. Amorphous-quantized WO3·H2O films as novel flexible electrode for advanced electrochromic energy storage devices. Chem. Eng. J. 2021, 424, 130383. [Google Scholar] [CrossRef]
Sample Code | Diffusion Coefficient (cm2/s × 10−10) | (C/cm2) | (C/cm2) | Reversibility | tc (s) | tb (s) | Tb (%) | Tc (%) | ΔT600nm (%) | ΔOD | Coloration Efficiency (cm2/C) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction | Oxidation | |||||||||||
W-20 mM | 14.37 | 14.3 | 0.054 | 0.053 | 98.01% | 14.79 | 10.51 | 90.30 | 12.03 | 78.27 | 2.01 | 74.44 |
W-25 mM | 18.93 | 7.63 | 0.053 | 0.052 | 99.00% | 11.90 | 5.42 | 92.96 | 10.30 | 82.66 | 2.20 | 83.01 |
W-30 mM | 8.4 | 6.66 | 0.060 | 0.059 | 97.33% | 14.52 | 10.83 | 86.29 | 35.09 | 51.20 | 0.89 | 29.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morankar, P.J.; Amate, R.U.; Ahir, N.A.; Jeon, C.-W. Revealing Enhanced Optical Modulation and Coloration Efficiency in Nanogranular WO3 Thin Films Through Precursor Concentration Modifications. Crystals 2024, 14, 915. https://doi.org/10.3390/cryst14110915
Morankar PJ, Amate RU, Ahir NA, Jeon C-W. Revealing Enhanced Optical Modulation and Coloration Efficiency in Nanogranular WO3 Thin Films Through Precursor Concentration Modifications. Crystals. 2024; 14(11):915. https://doi.org/10.3390/cryst14110915
Chicago/Turabian StyleMorankar, Pritam J., Rutuja U. Amate, Namita A. Ahir, and Chan-Wook Jeon. 2024. "Revealing Enhanced Optical Modulation and Coloration Efficiency in Nanogranular WO3 Thin Films Through Precursor Concentration Modifications" Crystals 14, no. 11: 915. https://doi.org/10.3390/cryst14110915
APA StyleMorankar, P. J., Amate, R. U., Ahir, N. A., & Jeon, C.-W. (2024). Revealing Enhanced Optical Modulation and Coloration Efficiency in Nanogranular WO3 Thin Films Through Precursor Concentration Modifications. Crystals, 14(11), 915. https://doi.org/10.3390/cryst14110915