Compositional Optimization of Sputtered WO3/MoO3 Films for High Coloration Efficiency
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Sputtering Facility
2.2. Combinatorial Deposition
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Characterization of the WO3/MoO3 Samples Using SE and RBS
3.2. Coloration Efficiency Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Granqvist, C.G. Handbook of Inorganic Electrochromic Materials; Elsevier: Amsterdam, The Netherlands, 1995. [Google Scholar]
- González-Borrero, P.P.; Sato, F.; Medina, A.N.; Baesso, M.L.; Bento, A.C.; Baldissera, G.; Persson, C.; Niklasson, G.A.; Granqvist, C.G.A. Ferreira da Silva, Optical band-gap determination of nanostructured WO3 film. Appl. Phys. Lett. 2010, 96, 061909. [Google Scholar] [CrossRef]
- Novinrooz, A.; Sharbatdaran, M.; Noorkojouri, H. Structural and optical properties of WO3 electrochromic layers prepared by the sol-gel method. Centr. Eur. J. Phys. 2005, 3, 456–466. [Google Scholar] [CrossRef]
- Hsu, C.-S.; Chan, C.-C.; Huang, H.-T.; Peng, C.-H.; Hsu, W.-C. Electrochromic properties of nanocrystalline MoO3 thin films. Thin. Solid. Films. 2008, 516, 4839–4844. [Google Scholar] [CrossRef]
- Chaichana, S.; Sikong, L.; Kooptarnond, K.; Chetpattananondh, K. The electrochromic property of MoO3/WO3 nanocomposite films. IOP Conf. Ser. Mater. Sci. Eng. 2018, 378, 012002. [Google Scholar] [CrossRef]
- Livage, J.; Ganguli, D. Sol–gel electrochromic coatings and devices: A review. Sol. Energy Mater. Sol. Cells 2001, 68, 365–381. [Google Scholar] [CrossRef]
- Hamelmann, F.; Gesheva, K.; Ivanova, T.; Szekeres, A.; Abrashev, M.; Heinzmann, U. Optical and electrochromic characterization of multilayered mixed metal oxide thin films. J. Optoelectron. Adv. Mater. 2005, 7, 393. [Google Scholar]
- MArvizu, A.; Granqvist, C.G.; Niklasson, G.A. Electrochromism in sputter deposited W1-y MoyO3 thin films. J. Phys. Conf. Ser. 2016, 682, 012005. [Google Scholar] [CrossRef]
- Prameela, C.; Srinivasarao, K. Characterization of (MoO3)x − (Wo3)1 − x composites. Int. J. Appl. Eng. Res. 2015, 10, 9865–9875. [Google Scholar]
- Faughnan, B.W.; Crandall, R.S. Optical properties of mixed-oxide WO3/MoO3 electrochromic films. Appl. Phys. Lett. 1977, 31, 834–836. [Google Scholar] [CrossRef]
- Madhavi, V.; Kondaiah, P.; Hussain, O.M.; Uthanna, S. Structural, Optical, and Electrochromic Properties of Pure and Mo-Doped WO3 Films by RF Magnetron Sputtering. Conf. Pap. Sci. 2013, 2013, 104047. [Google Scholar] [CrossRef]
- Ivanova, T.; Gesheva, K.A.; Popkirov, G.; Ganchev, M.; Tzvetkova, E. Electrochromic properties of atmospheric CVD MoO3 and MoO3–WO3 films and their application in electrochromic devices. Mater. Sci. Eng. B 2005, 119, 232–239. [Google Scholar] [CrossRef]
- Dong, W.; Lv, Y.; Xiao, L.; Fan, Y.; Zhang, N.; Liu, X. Bifunctional MoO3–WO3/Ag/MoO3–WO3 Films for Efficient ITO–Free Electrochromic Devices. ACS Appl. Mater. Interfaces 2016, 8, 33842–33847. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Shi, F.; Xie, D.; Wang, D.H.; Xia, X.H.; Wang, X.L.; Gu, C.D.; Tu, J.P. Bi-functional Mo-doped WO3 nanowire array electrochromism-plus electrochemical energy storage. J. Colloid Interface Sci. 2016, 465, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Jittiarporn, P.; Sikong, L.; Kooptarnond, K.; Taweepreda, W.; Stoenescu, S.; Badilescu, S.; Truong, V.-V. Electrochromic properties of MoO3-WO3 thin films prepared by a sol-gel method, in the presence of a triblock copolymer template. Surf. Coat. Technol. 2017, 327, 66–74. [Google Scholar] [CrossRef]
- Wu, W.; Fang, H.; Ma, H.; Wu, L.; Wang, Q.; Wang, H. Self-Powered Rewritable Electrochromic Display based on WO3-x Film with Mechanochemically Synthesized MoO3–y Nanosheets. ACS Appl. Mater. Interfaces 2021, 13, 20326–20335. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.-C.; Chao, S.-H.; Wu, N.-J.; Huang, J.-H.; Kang, J.-L.; Weng, H.C.; Liu, T.-Y. Facile synthesis of hybrid WO3/MoOx electrochromic films for application in complementary electrochromic devices. J. Alloys Compd. 2023, 945, 169256. [Google Scholar] [CrossRef]
- Fried, M.; Bogar, R.; Lábadi, Z.; Hovath, Z.E.; Zolnai, Z. Investigation of Combinatorial WO3-MoO3 Mixed Layers by Spectroscopic Ellipsometry using Different Optical Models. Nanomaterials 2022, 12, 2421. [Google Scholar] [CrossRef] [PubMed]
- Kótai, E. Computer Methods for Analysis and Simulation of RBS and ERDA spectra. Nucl. Instr. Meth. B 1994, 85, 588–596. [Google Scholar] [CrossRef]
- Akbar, I.; Inamdar, Y.S.; Kim, B.U.; Jang, H.I.; Jung, W.; Kim, D.-Y.; Kim, H. Effects of oxygen stoichiometry on electrochromic properties in amorphous tungsten oxide films. Thin. Solid. Film. 2012, 520, 5367–5371. [Google Scholar] [CrossRef]
Deposition Parameter | Typical Value |
---|---|
Working distance (mm) | 60 |
Substrate preheating | Optional, up to 300 °C |
End vacuum (mbar) | 1–5 × 10−6 |
Target power (W) | 500–4000 |
Target voltage (V) | 280–380 |
Pulse duty factor (µs) | 0.5 |
Pulse cycle time (µs) | 10 |
Position (cm) | Thickness (nm) | Mo % from SE | Mo % from RBS |
---|---|---|---|
0 | 499.5 | 0 | - |
0.5 | 496.4 | 0 | - |
1 | 463.3 | 0 | - |
1.5 | 446.1 | 0 | - |
2 | 424.5 | 0 | 0 |
2.5 | 406.1 | 0 | - |
3 | 388.8 | 0 | - |
3.5 | 367.7 | 0.5 | - |
4 | 351.7 | 1 | 0 |
4.5 | 332.1 | 1.5 | - |
5 | 316.1 | 2 | - |
5.5 | 295.0 | 3 | - |
6 | 278.4 | 4 | - |
6.5 | 262.3 | 5 | - |
7 | 247.0 | 6 | 6 |
7.5 | 232.9 | 7 | - |
8 | 220.8 | 8 | - |
8.5 | 210.7 | 10 | - |
9 | 206.2 | 12 | - |
9.5 | 198.9 | 15 | - |
10 | 194.3 | 19 | 17 |
10.5 | 192.0 | 23 | - |
11 | 192.5 | 27 | - |
11.5 | 195.9 | 31 | 23 |
12 | 201.6 | 35 | - |
12.5 | 210.0 | 39 | 38 |
13 | 221.2 | 43 | - |
13.5 | 235.2 | 47.5 | 47 |
14 | 251.4 | 51. | - |
14.5 | 270.0 | 56 | - |
15 | 290.6 | 60 | - |
15.5 | 313.0 | 64 | 68 |
16 | 337.2 | 68 | - |
16.5 | 362.8 | 72 | 76 |
17 | 389.2 | 76 | - |
17.5 | 416.6 | 81 | - |
18 | 467.4 | 85 | 83 |
18.5 | 495.4 | 90 | - |
19 | 526.8 | 92 | 86 |
19.5 | 556.8 | 93.5 | - |
20 | 586.9 | 95.5 | 91 |
20.5 | 617.5 | 98 | - |
21 | 647.1 | 98.5 | 93 |
21.5 | 676.9 | 98.5 | - |
22 | 707.4 | 99 | 96 |
22.5 | 734.6 | 100 | 98 |
23 | 760.7 | 100 | - |
23.5 | 786.0 | 100 | - |
24 | 808.8 | 100 | - |
24.5 | 831.2 | 100 | - |
25 | 852.1 | 100 | - |
25.5 | 873.2 | 100 | 100 |
26 | 889.2 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lábadi, Z.; Takács, D.; Zolnai, Z.; Petrik, P.; Fried, M. Compositional Optimization of Sputtered WO3/MoO3 Films for High Coloration Efficiency. Materials 2024, 17, 1000. https://doi.org/10.3390/ma17051000
Lábadi Z, Takács D, Zolnai Z, Petrik P, Fried M. Compositional Optimization of Sputtered WO3/MoO3 Films for High Coloration Efficiency. Materials. 2024; 17(5):1000. https://doi.org/10.3390/ma17051000
Chicago/Turabian StyleLábadi, Zoltán, Dániel Takács, Zsolt Zolnai, Péter Petrik, and Miklós Fried. 2024. "Compositional Optimization of Sputtered WO3/MoO3 Films for High Coloration Efficiency" Materials 17, no. 5: 1000. https://doi.org/10.3390/ma17051000
APA StyleLábadi, Z., Takács, D., Zolnai, Z., Petrik, P., & Fried, M. (2024). Compositional Optimization of Sputtered WO3/MoO3 Films for High Coloration Efficiency. Materials, 17(5), 1000. https://doi.org/10.3390/ma17051000