Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (370)

Search Parameters:
Keywords = electrochemical water treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1505 KiB  
Review
Application of Electrochemical Oxidation for Urea Removal: A Review
by Juwon Lee, Jeongbeen Park, Intae Shim, Jae-Wuk Koo, Sook-Hyun Nam, Eunju Kim, Seung-Min Park and Tae-Mun Hwang
Processes 2025, 13(8), 2660; https://doi.org/10.3390/pr13082660 - 21 Aug 2025
Abstract
The consistent quality control of ultrapure water (UPW) in semiconductor manufacturing depends on removing trace organonitrogen compounds such as urea. Due to its high solubility, chemical stability, and neutral polarity, urea is inadequately removed by conventional processes. Even at low concentrations, it elevates [...] Read more.
The consistent quality control of ultrapure water (UPW) in semiconductor manufacturing depends on removing trace organonitrogen compounds such as urea. Due to its high solubility, chemical stability, and neutral polarity, urea is inadequately removed by conventional processes. Even at low concentrations, it elevates total organic carbon (TOC) and reduces electrical resistivity. The use of reclaimed water as a sustainable feed stream amplifies this challenge because its nitrogen content is variable and persistent. Conventional methods such as reverse osmosis, ultraviolet oxidation, and ion exchange remain limited in treating urea due to its uncharged, low-molecular-weight nature. This review examines the performance and limitations of these processes and explores electrochemical oxidation (EO) as an alternative. Advances in EO are analyzed with attention to degradation pathways, electrode design, reaction selectivity, and operational parameters. Integrated systems combining EO with membrane filtration, adsorption, or chemical oxidation are also reviewed. Although EO shows promise for selectively degrading urea, its application in UPW production is still in its early stages. Challenges such as low conductivity, byproduct formation, and energy efficiency must be addressed. The paper first discusses urea in reclaimed water and associated removal challenges, then examines both conventional and emerging treatment technologies. Subsequent sections delve into the mechanisms and optimization of EO, including electrode materials and operational parameters. The review concludes with a summary of main findings and a discussion of future research directions, aiming to provide a comprehensive foundation for validating EO as a viable technology for producing UPW from reclaimed water. Full article
(This article belongs to the Special Issue Addressing Environmental Issues with Advanced Oxidation Technologies)
Show Figures

Figure 1

38 pages, 3980 KiB  
Review
Current State of Research on the Three-Dimensional Particle Electrode System for Treating Organic Pollutants from Wastewater Streams: Particle Electrode, Degradation Mechanism, and Synergy Effects
by Guene L. Razack, Jiayi Wang, Xian Zhao, Worou Chabi Noel, Hanjun Sun, Jiwei Pang, Jie Ding, Wenshuo Wang, Xiaoyin Yang, Chenhao Cui, Yani Zang, Yuqian Wang, Geng Luo, Nanqi Ren and Shanshan Yang
Water 2025, 17(16), 2490; https://doi.org/10.3390/w17162490 - 21 Aug 2025
Abstract
As the demand for effective wastewater treatment continues to rise, the application of three-dimensional (3D) electrochemical particle electrodes for the removal of organic compounds from industrial wastewater has emerged as a promising solution. This approach offers significant advantages, including high treatment efficiency, operational [...] Read more.
As the demand for effective wastewater treatment continues to rise, the application of three-dimensional (3D) electrochemical particle electrodes for the removal of organic compounds from industrial wastewater has emerged as a promising solution. This approach offers significant advantages, including high treatment efficiency, operational flexibility, high current efficiency, low energy consumption, and the ability to degrade non-biodegradable organic pollutants, ultimately mineralizing them. This review provides a comprehensive and systematic exploration of the research and development of particle electrodes for use in 3D electrochemical reactors in wastewater treatment. The pivotal role of particle electrodes in removing organic contaminants from wastewater was highlighted, with most materials used as particle electrodes characterized by a specific surface area and well-defined porous structure, both of which were thoroughly discussed. Through the synergistic mechanism of adsorption, the particle electrode aids in the breakdown of organic contaminants, demonstrating the 3D particle electrode’s effectiveness in facilitating multiple oxidation mechanisms for organic wastewater treatment. Furthermore, this review categorized various particle electrode types used in 3D electrochemical wastewater treatment based on their primary components or carriers and the presence or absence of catalysts. Finally, the current status and prospects for the development and enhancement of 3D electrode particles were presented. This review offers valuable insights into the application of the 3D electrode process for environmental water treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

25 pages, 3791 KiB  
Review
A Review of Modification of Carbon-Based Materials Based on Defect Engineering in Capacitive Deionization
by Yubo Zhao, Rupeng Liu, Jinfeng Fang, Feiyong Chen and Silu Huo
Water 2025, 17(16), 2478; https://doi.org/10.3390/w17162478 - 20 Aug 2025
Viewed by 98
Abstract
Capacitive deionization (CDI) is a novel water treatment technology based on the principle of double-electric-layer adsorption, which stores ions in the solution on the surface of electrodes by applying a low potential difference to achieve desalination. CDI has the advantages of low operating [...] Read more.
Capacitive deionization (CDI) is a novel water treatment technology based on the principle of double-electric-layer adsorption, which stores ions in the solution on the surface of electrodes by applying a low potential difference to achieve desalination. CDI has the advantages of low operating voltage (<1.2 V), small equipment footprint, low energy consumption, low cost and environmental friendliness. The performance of CDI is heavily dependent on the electrode materials. Carbon-based materials are widely used in CDI systems because of the large specific surface areas, lower price, and remarkable stability. To improve the CDI performance, extensive research efforts have been made for the modification of carbon-based materials. Defects in carbon-based materials play an important role in electrochemical processes and the introduction of defects is an important method to modify carbon-based materials. However, there is a lack of systematic summary of modification of carbon-based materials through introducing defects in CDI system. Therefore, this study makes the first attempt to review the modification of carbon-based materials of CDI based on defect engineering. The mechanism of enhancing CDI performance of carbon-based materials with the induction of different defects is analyzed and the future research prospects are proposed. Full article
Show Figures

Figure 1

31 pages, 1950 KiB  
Review
Evaluation of Polypyrrole as a Functional Sorbent for Water Treatment Technologies
by Sylwia Golba and Justyna Jurek-Suliga
Appl. Sci. 2025, 15(16), 9153; https://doi.org/10.3390/app15169153 - 20 Aug 2025
Viewed by 71
Abstract
Polypyrrole, which belongs to the conducting polymer family, has demonstrated profound potential in advanced water purification applications due to its inherent electrical conductivity, environmental stability, and tunable surface chemistry. As a sorbent, PPy exhibits high sorption capacity for aquatic contaminants, including heavy metals, [...] Read more.
Polypyrrole, which belongs to the conducting polymer family, has demonstrated profound potential in advanced water purification applications due to its inherent electrical conductivity, environmental stability, and tunable surface chemistry. As a sorbent, PPy exhibits high sorption capacity for aquatic contaminants, including heavy metals, pharmaceutical compounds, and their metabolites, as well as synthetic dyes. The removal efficiency is correlated to a complex interaction mechanism involving electrostatic attractions, redox activity, and π–π stacking. Recent advances have expanded the utility by further developing nanostructured PPy-based (nano)composites, which elevate sorption performance by increasing surface area, mechanical integrity, and selective affinity. In addition, its integration into membrane technologies has enabled the design of an effective filtration system with improved selectivity and regeneration capabilities. Moreover, PPy is effective in electrochemical processes of water treatment, including capacitive deionization and electrochemically assisted sorption, opening novel paths towards energy-efficient pollutant removal. The multifunctionality of PPy as a sorbent material highlights its value as an important material for water treatment, with the capability of extended modification tailored for emerging environmental needs revised in this work. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

23 pages, 1971 KiB  
Article
Characterization of Perfluoro Sulfonic Acid Membranes for Potential Electrolytic Hydrogen Production and Fuel Cell Applications for Local and Global Green Hydrogen Economy
by Lihle Mdleleni, Sithenkosi Mlala, Tobeka Naki, Edson L. Meyer, Mojeed A. Agoro and Nicholas Rono
Fuels 2025, 6(3), 63; https://doi.org/10.3390/fuels6030063 - 20 Aug 2025
Viewed by 258
Abstract
Fuel cells have become a fundamental technology in the development of clean energy systems, playing a vital role in the global shift toward a low-carbon future. With the growing need for sustainable hydrogen production, perfluoro sulfonic acid (PFSA) ionomer membranes play a critical [...] Read more.
Fuel cells have become a fundamental technology in the development of clean energy systems, playing a vital role in the global shift toward a low-carbon future. With the growing need for sustainable hydrogen production, perfluoro sulfonic acid (PFSA) ionomer membranes play a critical role in optimizing green hydrogen technologies and fuel cells. This study aims to investigate the effects of different environmental and solvent treatments on the chemical and physical properties of Nafion N−115 membranes to evaluate their suitability for both hydrogen production in proton exchange membrane (PEM) electrolyzers and hydrogen utilization in fuel cells, supporting integrated applications in the local and global green hydrogen economy. To achieve this, Nafion N−115 membranes were partially dissolved in various solvent mixtures, including ethanol/isopropanol (EI), isopropanol/water (IW), dimethylformamide/N-methyl-2-pyrrolidone (DN), and ethanol/methanol/isopropanol (EMI), evaluated under water immersion and thermal stress, and characterized for chemical stability, mechanical strength, water uptake, and proton conductivity using advanced electrochemical and spectroscopic techniques. The results demonstrated that the EMI-treated membrane showed the highest proton conductivity and maintained its structural integrity, making it the most promising for hydrogen electrolysis applications. Conversely, the DN-treated membrane exhibited reduced stability and lower conductivity due to solvent-induced degradation. This study highlights the potential of EMI as an optimal solvent mixture for enhancing PFSA membranes performance in green hydrogen production, contributing to the advancement of sustainable energy solutions. Full article
Show Figures

Figure 1

16 pages, 277 KiB  
Review
Manganese Nanoparticles for Heavy Metal Detection vs. Noble and Base Metal Nanoparticles; Prospects, Limitations, and Applications in Electroanalysis
by Vasiliki Keramari and Stella Girousi
Chemosensors 2025, 13(8), 313; https://doi.org/10.3390/chemosensors13080313 - 17 Aug 2025
Viewed by 337
Abstract
This review examines the emerging role of manganese-based nanoparticles (Mn-NPs) in detecting heavy metal pollutants in environmental matrices. Heavy metals such as cadmium, lead, zinc, and copper pose serious environmental and health concerns due to their tendency to persist in ecosystems and accumulate [...] Read more.
This review examines the emerging role of manganese-based nanoparticles (Mn-NPs) in detecting heavy metal pollutants in environmental matrices. Heavy metals such as cadmium, lead, zinc, and copper pose serious environmental and health concerns due to their tendency to persist in ecosystems and accumulate in living organisms. As a result, there is a growing need for reliable methods to detect and remove these pollutants. Manganese nanoparticles offer unique advantages that scientists could consider as replacing other metal nanoparticles, which may be more expensive or more toxic. The physicochemical properties of Mn-NPs—including their multiple oxidation states, magnetic susceptibility, catalytic capabilities, and semiconductor conductivity—enable the development of multi-modal sensing platforms with exceptional sensitivity and selectivity. While Mn-NPs exhibit inherently low electrical conductivity, strategies such as transition metal doping and the formation of composites with conductive materials have successfully addressed this limitation. Compared to noble metal nanoparticles (Au, Ag, Pd) and other base metal nanoparticles (Bi, Fe3O4), Mn-NPs demonstrate competitive performance without the drawbacks of high cost, complex synthesis, poor distribution control, or significant aggregation. Preliminary studies retrieved from the Scopus database highlight promising applications of manganese-based nanomaterials in electrochemical sensing of heavy metals, with recent developments showing detection limits in the sub-ppb range. Future research directions should focus on addressing challenges related to scalability, cost-effectiveness, and integration with existing water treatment infrastructure to accelerate the transition from laboratory findings to practical environmental applications. Full article
20 pages, 9625 KiB  
Article
Ferric Tannate-Enhanced Electrochemical Conditioning Process for Improving Sludge Dewaterability
by Yalin Yu, Junkun Feng, Nanwen Zhu and Dongdong Ge
Water 2025, 17(16), 2424; https://doi.org/10.3390/w17162424 - 16 Aug 2025
Viewed by 309
Abstract
Sludge dewatering is a key step in the overall process of sludge treatment and disposal. In this study, ferric tannate was synthesized by chemically complexing tannic acid with Fe2(SO4)3 under various conditions and then was innovatively employed to [...] Read more.
Sludge dewatering is a key step in the overall process of sludge treatment and disposal. In this study, ferric tannate was synthesized by chemically complexing tannic acid with Fe2(SO4)3 under various conditions and then was innovatively employed to enhance electrochemical conditioning (ECC) for municipal sludge dewatering. The optimal preparation conditions of ferric tannate were determined as a tannic acid to iron ion molar ratio of 0.8:10, pH of 10, and reaction time of 2 h. Subsequently, ferric tannate-enhanced ECC was investigated under different dosages and operating parameters. The optimal conditions were identified as ferric tannate dosage of 20% total solid, voltage of 50 V, and reaction time of 30 min, under which capillary suction time, specific resistance to filtration, and water content of dewatered sludge cake decreased by 84.3%, 84.2%, and 17.6%, respectively. Results of the mechanism analysis indicated that ferric tannate effectively reduced sludge viscosity, increased zeta potential, and neutralized the negative surface charges via charge neutralization, hydrophobic interactions, and hydrogen bonding. Meanwhile, adsorption bridging promoted floc aggregation and particle growth. Compared with the ECC process alone, the addition of ferric tannate in the ferric tannate-enhanced ECC process generated more OH, promoting the extracellular polymeric substance degradation and protein removal, thereby improving sludge hydrophobicity. Furthermore, the floc structure was reconstructed into a more compact and smooth morphology, facilitating the release of bound water during filtration. These findings provide new technical and theoretical support for the development of eco-friendly and efficient sludge conditioning and dewatering processes. Full article
Show Figures

Figure 1

43 pages, 2221 KiB  
Review
Recent Progress in Catalytically Driven Advanced Oxidation Processes for Wastewater Treatment
by Tian-Hua Zheng, Zhen-Zhong Zhang, Yue Liu and Liang-Hua Zou
Catalysts 2025, 15(8), 761; https://doi.org/10.3390/catal15080761 - 8 Aug 2025
Viewed by 477
Abstract
With the increasing severity of global water pollution, traditional wastewater treatment methods have gradually revealed limitations in dealing with complex and refractory pollutants. Advanced oxidation processes (AOPs) have emerged as a promising alternative due to their ability to generate highly reactive radicals (such [...] Read more.
With the increasing severity of global water pollution, traditional wastewater treatment methods have gradually revealed limitations in dealing with complex and refractory pollutants. Advanced oxidation processes (AOPs) have emerged as a promising alternative due to their ability to generate highly reactive radicals (such as hydroxyl and sulfate radicals) that can effectively degrade a wide range of pollutants. This review provides a detailed overview of various AOP technologies, including Fenton processes, ozone-based AOPs, persulfate-based AOPs, photocatalytic AOPs, electrochemical AOPs, and sonochemical AOPs, focusing on their fundamental principles, reaction mechanisms, catalyst design, and application performance in treating different types of wastewater. The research results show that the improved Fenton process can achieve a chemical oxygen demand (COD) removal rate of up to 85% when treating pharmaceutical wastewater. Photocatalytic AOP technology demonstrates higher degradation efficiency when treating industrial wastewater containing refractory pollutants. In addition to effectively degrading refractory pollutants and reducing dependence on traditional biological treatment methods, these advanced oxidation processes can also significantly reduce secondary pollution generated during the treatment process. Moreover, by optimizing AOP technologies, the deep mineralization of harmful substances in wastewater can be achieved, reducing the potential pollution risks to groundwater and soil while also lowering energy consumption during the treatment process. Additionally, this review discusses the challenges faced by AOPs in practical applications, such as high energy consumption, insufficient catalyst stability, and secondary pollution. This review summarizes the research progress and application trends of catalytically driven AOPs in the field of wastewater treatment over the past five years. It aims to provide a comprehensive reference for researchers and engineering professionals on the application of AOPs in wastewater treatment, promoting the further development and practical implementation of these technologies. Full article
(This article belongs to the Collection Catalysis in Advanced Oxidation Processes for Pollution Control)
Show Figures

Graphical abstract

15 pages, 1507 KiB  
Article
Effective Endotoxin Reduction in Hospital Reverse Osmosis Water Using eBooster™ Electrochemical Technology
by José Eudes Lima Santos, Letícia Gracyelle Alexandre Costa, Carlos Alberto Martínez-Huitle and Sergio Ferro
Water 2025, 17(15), 2353; https://doi.org/10.3390/w17152353 - 7 Aug 2025
Viewed by 469
Abstract
Endotoxins, lipopolysaccharides released from the outer membrane of Gram-negative bacteria, pose a significant risk in healthcare environments, particularly in Central Sterile Supply Departments (CSSDs), where the delivery of sterile pyrogen-free medical devices is critical for patient safety. Traditional methods for controlling endotoxins in [...] Read more.
Endotoxins, lipopolysaccharides released from the outer membrane of Gram-negative bacteria, pose a significant risk in healthcare environments, particularly in Central Sterile Supply Departments (CSSDs), where the delivery of sterile pyrogen-free medical devices is critical for patient safety. Traditional methods for controlling endotoxins in water systems, such as ultraviolet (UV) disinfection, have proven ineffective at reducing endotoxin concentrations to comply with regulatory standards (<0.25 EU/mL). This limitation presents a significant challenge, especially in the context of reverse osmosis (RO) permeate used in CSSDs, where water typically has very low conductivity. Despite the established importance of endotoxin removal, a gap in the literature exists regarding effective chemical-free methods that can meet the stringent endotoxin limits in such low-conductivity environments. This study addresses this gap by evaluating the effectiveness of the eBooster™ electrochemical technology—featuring proprietary electrode materials and a reactor design optimized for potable water—for endotoxin removal from water, specifically under the low-conductivity conditions typical of RO permeate. Laboratory experiments using the B250 reactor achieved >90% endotoxin reduction (from 1.2 EU/mL to <0.1 EU/mL) at flow rates ≤5 L/min and current densities of 0.45–2.7 mA/cm2. Additional real-world testing at three hospitals showed that the eBooster™ unit, when installed in the RO tank recirculation loop, consistently reduced endotoxin levels from 0.76 EU/mL (with UV) to <0.05 EU/mL over 24 months of operation, while heterotrophic plate counts dropped from 190 to <1 CFU/100 mL. Statistical analysis confirmed the reproducibility and flow-rate dependence of the removal efficiency. Limitations observed included reduced efficacy at higher flow rates, the need for sufficient residence time, and a temporary performance decline after two years due to a power fault, which was promptly corrected. Compared to earlier approaches, eBooster™ demonstrated superior performance in low-conductivity environments without added chemicals or significant maintenance. These findings highlight the strength and novelty of eBooster™ as a reliable, chemical-free, and maintenance-friendly alternative to traditional UV disinfection systems, offering a promising solution for critical water treatment applications in healthcare environments. Full article
Show Figures

Figure 1

26 pages, 5007 KiB  
Article
Copper-Enhanced NiMo/TiO2 Catalysts for Bifunctional Green Hydrogen Production and Pharmaceutical Pollutant Removal
by Nicolás Alejandro Sacco, Fernanda Albana Marchesini, Ilaria Gamba and Gonzalo García
Catalysts 2025, 15(8), 737; https://doi.org/10.3390/catal15080737 - 1 Aug 2025
Viewed by 401
Abstract
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at [...] Read more.
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at 400 °C and 900 °C to investigate structural transformations and catalytic performance. Comprehensive characterization (XRD, BET, SEM, XPS) revealed phase transitions, enhanced crystallinity, and redistribution of redox states upon Cu incorporation, particularly the formation of NiTiO3 and an increase in oxygen vacancies. Crystallite sizes for anatase, rutile, and brookite ranged from 21 to 47 nm at NiMoCu400, while NiMoCu900 exhibited only the rutile phase with 55 nm crystallites. BET analysis showed a surface area of 44.4 m2·g−1 for NiMoCu400, and electrochemical measurements confirmed its higher electrochemically active surface area (ECSA, 2.4 cm2), indicating enhanced surface accessibility. In contrast, NiMoCu900 exhibited a much lower BET surface area (1.4 m2·g−1) and ECSA (1.4 cm2), consistent with its inferior photoelectrocatalytic performance. Compared to previously reported binary NiMo/TiO2 systems, the ternary NiMoCu/TiO2 catalysts demonstrated significantly improved hydrogen production activity and more efficient photoelectrochemical degradation of paracetamol. Specifically, NiMoCu400 showed an anodic peak current of 0.24 mA·cm−2 for paracetamol oxidation, representing a 60% increase over NiMo400 and a cathodic current of −0.46 mA·cm−2 at −0.1 V vs. RHE under illumination, nearly six times higher than the undoped counterpart (–0.08 mA·cm−2). Mott–Schottky analysis further revealed that NiMoCu400 retained n-type behavior, while NiMoCu900 exhibited an unusual inversion to p-type, likely due to Cu migration and rutile-phase-induced realignment of donor states. Despite its higher photosensitivity, NiMoCu900 showed negligible photocurrent, confirming that structural preservation and surface redox activity are critical for photoelectrochemical performance. This work provides mechanistic insight into Cu-mediated photoelectrocatalysis and identifies NiMoCu/TiO2 as a promising bifunctional platform for integrated solar-driven water treatment and sustainable hydrogen production. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

14 pages, 2052 KiB  
Article
Study on the Shear Strength and Durability of Ionic Soil Stabilizer-Modified Soft Soil in Acid Alkali Environments
by Zhifeng Ren, Shijie Lin, Siyu Liu, Bo Li, Jiankun Liu, Liang Chen, Lideng Fan, Ziling Xie and Lingjie Wu
Eng 2025, 6(8), 178; https://doi.org/10.3390/eng6080178 - 1 Aug 2025
Viewed by 329
Abstract
Soft soils, characterized by high compressibility, low shear strength, and high water sensitivity, pose serious challenges to geotechnical engineering in infrastructure projects. Traditional stabilization methods such as lime and cement face limitations, including environmental concerns and poor durability under chemical or cyclic loading. [...] Read more.
Soft soils, characterized by high compressibility, low shear strength, and high water sensitivity, pose serious challenges to geotechnical engineering in infrastructure projects. Traditional stabilization methods such as lime and cement face limitations, including environmental concerns and poor durability under chemical or cyclic loading. Ionic soil stabilizers (ISSs), which operate through electrochemical mechanisms, offer a promising alternative. However, their long-term performance—particularly under environmental stressors such as acid/alkali exposure and cyclic wetting–drying—remains insufficiently explored. This study evaluates the strength and durability of ISS-modified soil through a comprehensive experimental program, including direct shear tests, permeability tests, and cyclic wetting–drying experiments under neutral, acidic (pH = 4), and alkaline (pH = 10) environments. The results demonstrate that ISS treatment increases soil cohesion by up to 75.24% and internal friction angle by 9.50%, particularly under lower moisture conditions (24%). Permeability decreased by 88.4% following stabilization, resulting in only a 10–15% strength loss after water infiltration, compared to 40–50% in untreated soils. Under three cycles of wetting–drying, ISS-treated soils retained high shear strength, especially under acidic conditions, where degradation was minimal. In contrast, alkaline conditions caused a cohesion reduction of approximately 26.53%. These findings confirm the efficacy of ISSs in significantly improving both the mechanical performance and environmental durability of soft soils, offering a sustainable and effective solution for soil stabilization in chemically aggressive environments. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

15 pages, 1619 KiB  
Article
Reducing Energy Penalty in Wastewater Treatment: Fe-Cu-Modified MWCNT Electrodes for Low-Voltage Electrofiltration of OMC
by Lu Yu, Jun Zeng, Xiu Fan, Fengxiang Li and Tao Hua
Energies 2025, 18(15), 4077; https://doi.org/10.3390/en18154077 - 1 Aug 2025
Viewed by 274
Abstract
Pseudo-persistent organic pollutants, such as pharmaceuticals, personal care products (PPCPs), and organic dyes, are a major issue in current environmental engineering. Considering the limitations of traditional wastewater treatment plant methods and degradation technologies for organic pollutants, the search for new technologies more suitable [...] Read more.
Pseudo-persistent organic pollutants, such as pharmaceuticals, personal care products (PPCPs), and organic dyes, are a major issue in current environmental engineering. Considering the limitations of traditional wastewater treatment plant methods and degradation technologies for organic pollutants, the search for new technologies more suitable for treating these new types of pollutants has become a research hotspot in recent years. Membrane filtration, adsorption, advanced oxidation, and electrochemical advanced oxidation technologies can effectively treat new organic pollutants. The electro-advanced oxidation process based on sulfate radicals is renowned for its non-selectivity, high efficiency, and environmental friendliness, and it can improve the dewatering performance of sludge after wastewater treatment. Therefore, in this study, octyl methoxycinnamate (OMC) was selected as the target pollutant. A new type of electrochemical filtration device based on the advanced oxidation process of sulfate radicals was designed, and a new type of modified carbon nanotube material electrode was synthesized to enhance its degradation effect. In a mixed system of water and acetonitrile, the efficiency of the electrochemical filtration device loaded with the modified electrode for degrading OMC is 1.54 times that at room temperature. The experimental results confirmed the superiority and application prospects of the self-designed treatment scheme for organic pollutants, providing experience and a reference for the future treatment of PPCP pollution. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

13 pages, 3341 KiB  
Article
Regulation of Electrochemical Activity via Controlled Integration of NiS2 over Co3O4 Nanomaterials for Hydrogen Evolution Reaction
by Mrunal Bhosale, Rutuja U. Amate, Pritam J. Morankar and Chan-Wook Jeon
Coatings 2025, 15(8), 887; https://doi.org/10.3390/coatings15080887 - 30 Jul 2025
Viewed by 308
Abstract
Electrochemical water splitting represents a sustainable approach for hydrogen production, yet efficient hydrogen evolution reaction (HER) catalysts operating in alkaline environments remain critically needed. Herein, we report the fabrication of Co3O4–NiS2 nanocomposites synthesized through a facile coprecipitation and [...] Read more.
Electrochemical water splitting represents a sustainable approach for hydrogen production, yet efficient hydrogen evolution reaction (HER) catalysts operating in alkaline environments remain critically needed. Herein, we report the fabrication of Co3O4–NiS2 nanocomposites synthesized through a facile coprecipitation and subsequent thermal treatment method. Detailed characterization via physicochemical techniques confirmed the successful formation of a hybrid Co3O4–NiS2 heterostructure with tunable compositional and morphological characteristics. Among the synthesized catalysts (Co–Ni–1, Co–Ni–2, and Co–Ni–3), the Co–Ni–2 sample demonstrated optimal structural integration, displaying interconnected nanosheet morphologies and balanced elemental distribution. Remarkably, Co–Ni–2 achieved exceptional HER performance in 1 M KOH electrolyte, requiring an ultralow overpotential of only 84 mV at 10 mA cm−2 and exhibiting a favorable Tafel slope of 67.5 mV dec−1. Electrochemical impedance spectroscopy and electrochemical surface area measurements further substantiated the superior electrocatalytic kinetics, rapid charge transport, and abundant active site accessibility in the optimized Co–Ni–2 composite. Additionally, Co–Ni–2 demonstrated outstanding durability with negligible activity decay over 5000 cycles. This study not only highlights the strategic synthesis of Co3O4–NiS2 nanostructures but also provides valuable insights for designing advanced, stable, and efficient non-noble electrocatalysts for sustainable hydrogen generation. Full article
Show Figures

Graphical abstract

34 pages, 2268 KiB  
Review
Recent Progress in Selenium Remediation from Aqueous Systems: State-of-the-Art Technologies, Challenges, and Prospects
by Muhammad Ali Inam, Muhammad Usman, Rashid Iftikhar, Svetlozar Velizarov and Mathias Ernst
Water 2025, 17(15), 2241; https://doi.org/10.3390/w17152241 - 28 Jul 2025
Viewed by 825
Abstract
The contamination of drinking water sources with selenium (Se) oxyanions, including selenite (Se(IV)) and selenate (Se(VI)), contains serious health hazards with an oral intake exceeding 400 µg/day and therefore requires urgent attention. Various natural and anthropogenic sources are responsible for high Se concentrations [...] Read more.
The contamination of drinking water sources with selenium (Se) oxyanions, including selenite (Se(IV)) and selenate (Se(VI)), contains serious health hazards with an oral intake exceeding 400 µg/day and therefore requires urgent attention. Various natural and anthropogenic sources are responsible for high Se concentrations in aquatic environments. In addition, the chemical behavior and speciation of selenium can vary noticeably depending on the origin of the source water. The Se(VI) oxyanion is more soluble and therefore more abundant in surface water. Se levels in contaminated waters often exceed 50 µg/L and may reach several hundred µg/L, well above drinking water limits set by the World Health Organization (40 µg/L) and Germany (10 µg/L), as well as typical industrial discharge limits (5–10 µg/L). Overall, Se is difficult to remove using conventionally available physical, chemical, and biological treatment technologies. The recent literature has therefore highlighted promising advancements in Se removal using emerging technologies. These include advanced physical separation methods such as membrane-based treatment systems and engineered nanomaterials for selective Se decontamination. Additionally, other integrated approaches incorporating photocatalysis coupled adsorption processes, and bio-electrochemical systems have also demonstrated high efficiency in redox transformation and capturing of Se from contaminated water bodies. These innovative strategies may offer enhanced selectivity, removal, and recovery potential for Se-containing species. Here, a current review outlines the sources, distribution, and chemical behavior of Se in natural waters, along with its toxicity and associated health risks. It also provides a broad and multi-perspective assessment of conventional as well as emerging physical, chemical, and biological approaches for Se removal and/or recovery with further prospects for integrated and sustainable strategies. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Graphical abstract

13 pages, 537 KiB  
Review
An Overview of Electrochemical Advanced Oxidation Processes for Pesticide Removal
by Maiara A. P. Frigulio, Alexandre S. Valério and Juliane C. Forti
Processes 2025, 13(7), 2227; https://doi.org/10.3390/pr13072227 - 11 Jul 2025
Cited by 1 | Viewed by 511
Abstract
This article provides an overview of the use of electrochemical advanced oxidation processes (EAOPs) applied to the treatment of water contaminated by pesticides. Given the global increase in the use of pesticides and the ineffectiveness of conventional treatment methods, EAOPs emerge as promising [...] Read more.
This article provides an overview of the use of electrochemical advanced oxidation processes (EAOPs) applied to the treatment of water contaminated by pesticides. Given the global increase in the use of pesticides and the ineffectiveness of conventional treatment methods, EAOPs emerge as promising alternatives. They stand out for their efficiency in the degradation of organic compounds, minimal reliance on additional chemical reagents, and minimal generation of waste. The main methods addressed include anodic oxidation, photoelectro-oxidation, electro-Fenton and photoelectro-Fenton, which use hydroxyl radicals, a potent non-selective oxidant, to mineralize pollutants. A total of 165 studies were reviewed, with emphasis on the contributions of countries such as China, Spain, Brazil, and India. Factors such as electrode type, presence of catalysts, pH, and current density influence the effectiveness of treatments. Combined processes, especially those integrating UV light and renewable sources, have proven to be more efficient. Despite challenges related to electrode cost and durability, recent advances highlight the sustainability and scalability of EAOPs for the treatment of agricultural and industrial effluents contaminated with pesticides. Full article
(This article belongs to the Special Issue Green Separation and Purification Processes)
Show Figures

Figure 1

Back to TopTop