Manganese Nanoparticles for Heavy Metal Detection vs. Noble and Base Metal Nanoparticles; Prospects, Limitations, and Applications in Electroanalysis
Abstract
1. Introduction
2. Chemical and Physical Properties of Manganese
2.1. Redox Properties
2.2. Magnetic Properties
2.3. Catalytic Activity
2.4. Electrical Conductivity
2.5. Toxicity and Environmental Considerations of Manganese-Based Nanomaterials
3. Overview of Previous Studies
3.1. Mn-Oxides Nanostructures and Morphology Effects on Heavy Metal Detection
3.2. Manganese Nanoparticles for Electrochemical Detection and Removal of Heavy Metals
4. Comparative Analysis of Mn-NPs with Other Metallic Nanoparticles
4.1. Noble-Metal Nanoparticles
4.2. Base-Metal Nanoparticles
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bian, L.; Li, Y.-J.; Li, J.; Nie, J.-N.; Dong, F.-Q.; Song, M.-X.; Wang, L.-S.; Dong, H.-L.; Li, H.-L.; Nie, X.-Q.; et al. Photovoltage response of (XZn)Fe2O4-BiFeO3 (X = Mg, Mn or Ni) interfaces for highly selective Cr3+, Cd2+, Co2+ and Pb2+ ions detection. J. Hazard. Mater. 2017, 336, 174–187. [Google Scholar] [CrossRef]
- Hoseinpour, V.; Souri, M.; Ghaemi, N.; Shakeri, A. Optimization of green synthesis of ZnO nanoparticles by Dittrichia graveolens (L.) aqueous extract. Health Biotechnol. Biopharma 2017, 1, 39–49. [Google Scholar]
- Xu, M.; Hadi, P.; Chen, G.; McKay, G. Removal of cadmium ions from wastewater using innovative electronic waste-derived material. J. Hazard. Mater. 2014, 273, 118–123. [Google Scholar] [CrossRef]
- Yu, S.; Pang, H.; Huang, S.; Tang, H.; Wang, S.; Qiu, M.; Chen, Z.; Yang, H.; Song, G.; Fu, D. Recent advances in metal-organic framework membranes for water treatment: A review. Sci. Total Environ. 2021, 800, 149662. [Google Scholar] [CrossRef]
- Aragay, G.; Pons, J.; Merkoçi, A. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 2011, 111, 3433–3458. [Google Scholar] [CrossRef] [PubMed]
- Hoseinpour, V.; Ghaemi, N. Novel ZnO–MnO2–Cu2O triple nanocomposite: Facial synthesis, characterization, antibacterial activity and visible light photocatalytic performance for dyes degradation—A comparative study. Mater. Res. Express 2018, 5, 085012. [Google Scholar] [CrossRef]
- Ahmed, S.; Annu; Chaudhry, S.A.; Ikram, S. A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. J. Photochem. Photobiol. B Biol. 2017, 166, 272–284. [Google Scholar] [CrossRef]
- Servos, M.R. Nanotechnology for Water Treatment and Purification; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Yadav, P.; Bhaduri, A.; Thakur, A. Manganese Oxide Nanoparticles: An Insight into Structure, Synthesis and Applications. ChemBioEng Rev. 2023, 10, 363–610. [Google Scholar] [CrossRef]
- Rahmat, M.; Rehman, A.; Rahmat, S.; Bhatti, H.N.; Iqbal, M.; Khan, W.S.; Bajwa, S.Z.; Rahmat, R.; Nazir, A. Highly efficient removal of crystal violet dye from water by MnO2 based nanofibrous mesh/photocatalytic process. J. Mater. Res. Technol. 2019, 8, 5149–5159. [Google Scholar] [CrossRef]
- Musil, M.; Choi, B.; Tsutsumi, A. Morphology and Electrochemical Properties of α-, β-, γ-, and δ-MnO2 Synthesized by Redox Method. J. Electrochem. Soc. 2015, 162, A2058–A2065. [Google Scholar] [CrossRef]
- Prashanth, S.A.; Ashoka, S.; Pandurangappa, M. Fabrication of new Calix[4]arene functionalized Mn3O4 nanoparticles based modified glassy carbon electrode as fast responding sensor towards Pb2+ and Cd2+ ions. Anal. Methods 2019, 11, 813–820. [Google Scholar]
- Kong, J.; Coolahana, K.; Mugweru, A. Manganese based magnetic nanoparticles for heavy metal detection and environmental remediation. Anal. Methods 2013, 5, 5128–5133. [Google Scholar] [CrossRef]
- Siyamthanda, H.M.; Munonde, T.S.; Nomngongo, P.N. MnO2@Reduced Graphene Oxide Nanocomposite-Based Electrochemical Sensor for the Simultaneous Determination of Trace Cd(II), Zn(II) and Cu(II) in Water Samples. Membranes 2021, 11, 517. [Google Scholar]
- Hoseinpour, V.; Ghaemi, N. Green synthesis of manganese nanoparticles: Applications and future perspective–A review. J. Photochem. Photobiol. B Biol. 2018, 189, 234–243. [Google Scholar] [CrossRef]
- Panda, B.; Lenka, A.; Dixit, P.K.; Dash, S.K. Biosynthesis, Biofunctionalization, and Bioapplications of Manganese Nanomaterials: An Overview. In Biomaterials-Based Sensors; Springer: Singapore, 2023; pp. 73–100. [Google Scholar]
- Asaikkutti, A.; Bhavan, P.S.; Vimala, K.; Karthik, M.; Cheruparambath, P. Dietary supplementation of green synthesized manganese-oxide nanoparticles and its effect on growth performance, muscle composition and digestive enzyme activities of the giant freshwater prawn Macrobrachium rosenbergii. J. Trace Elem. Med. Biol. 2016, 35, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.; Zheng, P.; Ma, P.; Lin, J. Manganese oxide nanomaterials: Synthesis, properties, and theranostic applications. Adv. Mater. 2020, 32, e1905823. [Google Scholar] [CrossRef]
- Prasad, A.S. Green synthesis of nanocrystalline manganese (II, III) oxide. Mater. Sci. Semicond. Process. 2017, 71, 342–347. [Google Scholar] [CrossRef]
- Tirukoti, M.; Shiddappa, L.B.; Vadiraj, K.T. Manganese oxide nanoparticles synthesis route, characterization and optical properties. Mater. Today Proc. 2023, 75, 72–76. [Google Scholar]
- Stobbe, E.; de Boer, B.; Geus, J. The reduction and oxidation behaviour of manganese oxides. Catal. Today 1999, 47, 161–167. [Google Scholar] [CrossRef]
- Mao, L.; Sotomura, T.; Nakatsu, K.; Koshiba, N.; Zhang, D.; Ohsaka, T. Electrochemical characterization of catalytic activities of manganese oxides to oxygen reduction in alkaline aqueous solution. J. Electrochem. Soc. 2002, 149, A504–A507. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, F.; Xue, J.; Chen, S.; Wang, J.; Yang, Y. Enhanced removal of heavy metal ions from aqueous solution using manganese dioxide-loaded biochar: Behavior and mechanism. Sci. Rep. 2020, 10, 6067. [Google Scholar] [CrossRef]
- Haque, S.; Tripathy, S.; Patra, C.R. Manganese-based advanced nanoparticles for biomedical applications: Future opportunity and challenges. Nanoscale 2021, 13, 16405–16426. [Google Scholar] [CrossRef] [PubMed]
- Ozkan-Ariksoysal, D.; Pantelidou, E.; Dendrinou-Samara, C.; Girousi, S. Nanoparticle-Based DNA Biosensor: Synthesis of Novel Manganese Nanoparticles Applied in the Development of a Sensitive Electrochemical Double-Stranded/Single-Stranded DNA Biosensor. Micromachines 2025, 16, 232. [Google Scholar] [CrossRef]
- Dippong, T.; Levei, E.A.; Cadar, O. Recent Advances in Synthesis and Applications of MFe2O4 (M = Co, Cu, Mn, Ni, Zn) Nanoparticles. Nanomaterials 2021, 11, 1560. [Google Scholar] [CrossRef] [PubMed]
- Nazish, P.; Sajid, A.A.; Mohd, Z.A.; Mohammad, O.A. Manganese oxide as an effective electrode material for energy storage: A review. Environ. Chem. Lett. 2021, 20, 283–309. [Google Scholar] [CrossRef]
- Sobanska, Z.; Roszak, J.; Kowalczyk, K.; Stepnik, M. Applications and Biological Activity of Nanoparticles of Manganese and Manganese Oxides in In Vitro and In Vivo Models. Nanomaterials 2021, 11, 1084. [Google Scholar] [CrossRef]
- Carney, J.R.; Dillon, B.R.; Thomas, S.P. Recent Advances of Manganese Catalysis for Organic Synthesis. Eur. J. Org. Chem. 2016, 2016, 3912–3929. [Google Scholar] [CrossRef]
- Li, M.; Kuang, S.; Kang, Y.; Ma, H.; Dong, J.; Guo, Z. Recent advances in application of iron-manganese oxide nanomaterials for removal of heavy metals in the aquatic environment. Sci. Total Environ. 2022, 819, 153157. [Google Scholar] [CrossRef]
- Kim, E.-J.; Lee, C.-S.; Chang, Y.-Y.; Chang, Y.-S. Hierarchically Structured Manganese Oxide-Coated Magnetic Nanocomposites for the Efficient Removal of Heavy Metal Ions from Aqueous Systems. ACS Appl. Mater. Interfaces 2013, 5, 9628–9634. [Google Scholar] [CrossRef]
- Li, L.; Zhao, L.; Ma, J.; Tian, Y. Preparation of graphene oxide/chitosan complex and its adsorption properties for heavy metal ions. Green Process. Synth. 2020, 9, 294–303. [Google Scholar] [CrossRef]
- Dey, S.; Kumar, V.V.P. The performance of highly active manganese oxide catalysts for ambient conditions carbon monoxide oxidation. Curr. Res. Green Sustain. Chem. 2020, 3, 100012. [Google Scholar] [CrossRef]
- Yu, L.; Li, Y.; Ruan, Y. Fe–Mn Oxides Based Multifunctional Adsorptive/Electrosensing Nanoplatforms: Dynamic Site Rearrangement for Metal Ion Selectivity. Environ. Sci. Technol. 2021, 55, 3967–3975. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, Y.; Wang, J. Manganese-Oxide-Based Electrode Materials for Energy Storage Applications: How Close Are We to the Theoretical Capacitance? Adv. Mater. 2018, 30, 1802569. [Google Scholar] [CrossRef]
- Huang, M.; Li, F.; Dong, F.; Zhang, Y.X.; Zhang, L.L. MnO2-based nanostructures for high-performance supercapacitors. J. Mater. Chem. A 2015, 3, 21380. [Google Scholar] [CrossRef]
- Sonika, D.; Gupta, A.; Manita, K.; Biplab, B.; Ganesh, L.; Niranjan, P. Manganese dioxide nanoparticles: Synthesis, application and challenges. Bull. Mater. Sci. 2020, 43, 277. [Google Scholar] [CrossRef]
- Chen, P.; Bornhorst, J.; Aschner, M. Manganese metabolism in humans. Front. Biosci. 2018, 23, 1655–1679. [Google Scholar] [CrossRef] [PubMed]
- Neeraj, K.; Supriya, T.T.; Kotha, S.R. Multi biomarker approach to assess manganese and manganese nanoparticles toxicity in Pangasianodon hypophthalmus. Sci. Rep. 2023, 13, 8505. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Jing, P.; Xu, W. Hemin on graphene nanosheets functionalized with flower-like MnO2 and hollow AuPd for the electrochemical sensing lead ion based on the specific DNAzyme. Biosens. Bioelectron. 2016, 86, 958–965. [Google Scholar] [CrossRef]
- Bhuvaneswari, K.; Radha, S.; Sreeja, B.S.; Kumar, P.S. Development of in-situ electrochemical heavy metal ion sensor using integrated 1D/0D/1D hybrid by MWCNT and CQDs supported MnO2 nanomaterial. Environ. Res. 2023, 225, 115570. [Google Scholar] [CrossRef]
- Zhang, Q.X.; Wen, H.; Peng, D.; Fu, Q.; Huang, X.J. Interesting interference evidences of electrochemical detection of Zn(II), Cd(II) and Pb(II) on three different morphologies of MnO2 nanocrystals. J. Electroanal. Chem. 2015, 739, 89–96. [Google Scholar] [CrossRef]
- Zhang, Q.X.; Peng, D.; Huang, X.J. Effect of morphology of α-MnO2 nanocrystals on electrochemical detection of toxic metal ions. Electrochem. Commun. 2013, 34, 270–273. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Zhang, Y.; Li, W.; Hao, X.; Liu, T.; Liang, X.; Liu, F.; Liu, F.; Yan, X.; et al. High-Performance Electrochemical Sensor Based on Mn1-xZnxFe2O4 Nanoparticle/Nafion-Modified Glassy Carbon Electrode for Pb2+ Detection. J. Electrochem. Soc. 2019, 166, B341–B348. [Google Scholar] [CrossRef]
- Prashanth, S.A.; Vijaya, K.G.; Craig, E.B.; Ashoka, S. One-pot synthesis of Mn3O4/graphitic carbon nanoparticles for simultaneous nanomolar detection of Pb(II), Cd(II) and Hg(II). J. Mater. Sci. 2017, 53, 4961–4973. [Google Scholar]
- Negussie, W.B.; Kotzian, P.; Schachl, K.; Alemu, H.; Turkušic, E.; Copra, A.; Moderegger, H.; Švancara, I.; Vytras, K.; Kalcher, K. (Bio)sensors based on manganese dioxide-modified carbon substrates: Retrospections, further improvements and applications. Talanta 2004, 64, 1151–1159. [Google Scholar]
- Hsu, B.Y.W.; Kirby, G.; Tan, A.; Seifalian, A.M.; Li, X.; Wang, J. Relaxivity and toxicological properties of Manganese oxide nanoparticles for MRI applications. RSC Adv. 2016, 6, 45462. [Google Scholar] [CrossRef] [PubMed]
- Hyon, B.N.; Jung, H.L.; Kwangjin, A.; Yong, I.P.; Mihyun, P.; In, S.L.; Do-Hyun, N.; Sung, T.K.; Seung-Hoon, K.; Sang-Wook, K.; et al. Development of a T1 Contrast Agent for Magnetic Resonance Imaging Using MnO Nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 5397–5401. [Google Scholar]
- Zhang, H.; Zhang, Y.; Pan, Y.; Wang, F.; Sun, Y.; Wang, S.; Wang, Z.; Wu, A.; Zhang, Y. Efficient removal of heavy metal ions from wastewater and fixation of heavy metals in soil by manganese dioxide nanosorbents with tailored hollow mesoporous structure. Chem. Eng. J. 2023, 459, 141583. [Google Scholar] [CrossRef]
- Qin, J.; Dong, B.; Gao, R.; Su, G.; Han, J.; Li, X.; Liu, W.; Wang, W.; Cao, L. Water-soluble silica-coated ZnS:Mn nanoparticles as fluorescent sensor for ultratrace copper(II) ions in seawater. Anal. Methods 2017, 9, 322–328. [Google Scholar] [CrossRef]
- Ge, S.; Wu, K.; Zhang, Y.; Yan, M.; Yu, J. Paper-based biosensor relying on flower-like reduced graphene guided enzymatically deposition of polyaniline for Pb2+ detection. Biosens. Bioelectron. 2016, 80, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.-F.; Wang, J.-J.; Gan, L.; Han, X.-J.; Fan, H.-L.; Mei, L.-Y.; Huang, J.; Liu, Y.-Q. Individual and simultaneous electrochemical detection toward heavy metal ions based on L-cysteine modified mesoporous MnFe2O4 nanocrystal clusters. J. Alloys Compd. 2017, 721, 492–500. [Google Scholar] [CrossRef]
- Zhou, S.-F.; Han, X.-J.; Fan, H.-L.; Huang, J.; Liu, Y.-Q. Enhanced electrochemical performance for sensing Pb(II) based on graphene oxide incorporated mesoporous MnFe2O4 nanocomposites. J. Alloys Compd. 2018, 747, 447–454. [Google Scholar] [CrossRef]
- Idrissi, G.E.; Achache, M.; El Haddaoui, H.; El-Haddar, S.; Draoui, K.; Bouchta, D.; Choukairi, M. Carbon paste electrode modified with Mn2O3 nanoparticles for simultaneous detection of heavy metals Cd(II) and Pb(II) in wastewater sample. J. Water Process Eng. 2025, 75, 107928. [Google Scholar] [CrossRef]
- Altammar, K.A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Front. Microbiol. 2023, 14, 1155622. [Google Scholar] [CrossRef]
- Amany, E.S.; Doaa, G.G.; Omar, R.; Eslam, M.E.-N.; Ahmed, S.; Rabeay, Y.A.H. Highly selective detection of heavy metal ions in food and water using a 5-BHAHS@NC/MnO2-based electrochemical sensor. Biochem. Eng. J. 2025, 216, 109660. [Google Scholar]
- Wang, J.; Wang, J.; Zhou, P.; Tao, H.; Wang, X.; Wu, Y. Oligonucleotide-induced regulation of the oxidase-mimicking activity of octahedral Mn3O4 nanoparticles for colorimetric detection of heavy metals. Microchim. Acta 2020, 187, 99. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Kang, Y.; Ma, H.; Dong, J.; Wang, Y.; Kuang, S. Efficient removal of heavy metals from aqueous solutions using Mn-doped FeOOH: Performance and mechanisms. Environ. Res. 2023, 231 Pt 1, 116161. [Google Scholar] [CrossRef]
- Antunović, V.; Ilić, M.; Baošić, R.; Jelić, D.; Lolić, A. Synthesis of MnCo2O4 nanoparticles as modifiers for simultaneous determination of Pb(II) and Cd(II). PLoS ONE 2019, 14, e0210904. [Google Scholar] [CrossRef]
- Nilghaz, A.; Mousavi, S.M.; Tian, J.; Cao, R.; Guijt, R.M.; Wang, X. Noble-Metal Nanoparticle-Based Colorimetric Diagnostic Assays for Point-of-Need Applications. ACS Appl. Nano Mater. 2021, 4, 12808–12824. [Google Scholar] [CrossRef]
- Adeniji, T.M.; Stine, K.J. Nanostructure Modified Electrodes for Electrochemical Detection of Contaminants of Emerging Concern. Coatings 2023, 13, 381. [Google Scholar] [CrossRef]
- Sawan, S.; Maalouf, R.; Errachid, A.; Jaffrezic-Renault, N. Metal and metal oxide nanoparticles in the voltammetric detection of heavy metals ions: A review. Trends Anal. Chem. 2020, 131, 116014. [Google Scholar] [CrossRef]
- Jelić, D.; Zeljković, S.; Škundrić, B.; Mentus, S. Thermogravimetric study of the reduction of CuO–WO3 oxide mixtures in the entire range of molar ratios. J. Therm. Anal. Calorim. 2018, 132, 77–90. [Google Scholar] [CrossRef]
- Lu, D.; Sullivan, C.; Brack, E.M.; Drew, C.P.; Kurup, P. Simultaneous voltammetric detection of cadmium(II), arsenic(III), and selenium(IV) using gold nanostar–modified screen-printed carbon electrodes and modified Britton-Robinson buffer. Anal. Bioanal. Chem. 2020, 412, 4113–4125. [Google Scholar] [CrossRef] [PubMed]
- Kusuma, S.A.F.; Harmonis, J.A.; Pratiwi, R.; Hasanah, A.N. Gold Nanoparticle-Based Colorimetric Sensors: Properties and Application in Detection of Heavy Metals and Biological Molecules. Sensors 2023, 23, 8172. [Google Scholar] [CrossRef] [PubMed]
- Yah, C.S. The toxicity of Gold Nanoparticles in relation to their physiochemical properties. Biomed. Res. 2013, 24, 400–413. [Google Scholar]
- Renault, S.; Baudrimont, M.; Mesmer-Dudons, N.; Gonzalez, P.; Mornet, S.; Brisson, A. Impacts of gold nanoparticle exposure on two freshwater species: A phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea). Gold Bull. 2008, 41, 116–126. [Google Scholar] [CrossRef]
- Jennings, T.; Strouse, G. Past, present, and future of gold nanoparticles. Adv. Exp. Med. Biol. 2007, 620, 34. [Google Scholar]
- Sani, A.; Cao, C.; Cui, D. Toxicity of gold nanoparticles (AuNPs): A review. Biochem. Biophys. Rep. 2021, 26, 100991. [Google Scholar] [CrossRef]
- Van Doren, E.A.F.; Temmerman, P.R.H.D.; Francisco, A.D.; Mast, J. Determination of the volume specific surface area by using transmission electron tomography for characterization and definition of nanomaterials. J. Nanobiotechnol. 2011, 9, 17. [Google Scholar] [CrossRef]
- Hassan, K.M.; Elhaddad, G.M.; AbdelAzzem, M. Voltammetric determination of cadmium(II), lead(II) and copper(II) with a glassy carbon electrode modified with silver nanoparticles deposited on poly(1,8-diaminonaphthalene). Microchim. Acta 2019, 186, 440. [Google Scholar] [CrossRef]
- Shirsat, M.D.; Hianik, T. Electrochemical Detection of Heavy Metal Ions Based on Nanocomposite Materials. J. Compos. Sci. 2023, 7, 473. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, N.; Zhang, L.; Xu, J.; Wang, H.; Wang, C.; Geng, T. Amperometric sensing of hydrogen peroxide using a glassy carbon electrode modified with silver nanoparticles on poly(alizarin yellow R). Microchim. Acta 2011, 173, 135–141. [Google Scholar] [CrossRef]
- Abbas, A.; Amin, H.M.A. Silver nanoparticles modified electrodes for electroanalysis: An updated review and a perspective. Microchem. J. 2022, 175, 107166. [Google Scholar] [CrossRef]
- Zhang, T.; Jin, H.; Fang, Y.; Guan, J.; Ma, S.; Pan, Y.; Zhang, M.; Zhu, H.; Liu, X.; Du, M. Detection of trace Cd2+, Pb2+ and Cu2+ ions via porous activated carbon supported palladium nanoparticles modified electrodes using SWASV. Mater. Chem. Phys. 2019, 225, 433–442. [Google Scholar] [CrossRef]
- Alaqarbeh, M.; Adil, S.F.; Ghrear, T.; Khan, M.; Bouachrine, M.; Al-Warthan, A. Recent Progress in the Application of Palladium Nanoparticles: A Review. Catalysts 2023, 13, 1343. [Google Scholar] [CrossRef]
- Cadevall, M.; Ros, J.; Merkoc, A. Bismuth nanoparticles integration into heavy metal electrochemical stripping sensor. Electrophoresis 2015, 36, 1872–1879. [Google Scholar] [CrossRef] [PubMed]
- Buledi, J.A.; Amin, S.; Haider, S.I.; Bhanger, M.I.; Solangi, A.R. A review on detection of heavy metals from aqueous media using nanomaterial-based sensors. Environ. Sci. Pollut. Res. 2021, 28, 58994–59002. [Google Scholar] [CrossRef]
- Lee, G.J.; Kim, C.K.; Lee, M.K.; Rhee, C.K. Simultaneous voltammetric determination of Zn, Cd and Pb at bismuth nanopowder electrodes with various particle size distributions. Electroanalysis 2010, 22, 530–535. [Google Scholar] [CrossRef]
- He, Y.; Ma, L.; Zhou, L.; Liu, G.; Jiang, Y.; Gao, J. Preparation and Application of Bismuth/MXene Nano-Composite as Electrochemical Sensor for Heavy Metal Ions Detection. Nanomaterials 2020, 10, 866. [Google Scholar] [CrossRef] [PubMed]
- Kulpa-Koterwa, A.; Ossowski, T.; Niedziałkowski, P. Functionalized Fe3O4 Nanoparticles as Glassy Carbon Electrode Modifiers for Heavy Metal Ions Detection—A Mini Review. Materials 2021, 14, 7725. [Google Scholar] [CrossRef]
- Daniel, S.; Malathi, S.; Balasubramanian, S.; Sivakumar, M.; Sironmani, T.A. Multifunctional silver, copper and zero valent iron metallic nanoparticles for wastewater treatment. In Application of Nanotechnology in Water; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 435–457. [Google Scholar]
- Jjagwea, J.; Olupota, P.Q.; Kulabako, R.; Carrara, S. Electrochemical sensors modified with iron oxide nanoparticles/nanocomposites for voltammetric detection of Pb (II) in water: A review. Heliyon 2024, 10, e29743. [Google Scholar] [CrossRef]
- Cheng, Z.; Tan, A.L.K.; Tao, Y.; Shan, D.; Ting, K.E.; Yin, X.J. Synthesis and characterization of iron oxide nanoparticles and applications in the removal of heavy metals from industrial wastewater. Int. J. Photoenergy 2012, 2012, 608298. [Google Scholar] [CrossRef]
- Yadav, V.K.; Ali, D.; Khan, S.H.; Gnanamoorthy, G.; Choudhary, N.; Yadav, K.K.; Thai, V.N.; Hussain, S.A.; Manhrdas, S. Synthesis and characterization of amorphous iron oxide nanoparticles by the sonochemical method and their application for the remediation of heavy metals from wastewater. Nanomaterials 2020, 10, 1551. [Google Scholar] [CrossRef]
- Jasaswini, T.; Akanshya, M.; Mayank, P.; Rakesh, R.T.; Sasmita, C.; Prangya, R.R.; Muhammad, K.S. Advances in Nanoparticles and Nanocomposites for Water and Wastewater Treatment: A Review. Water 2024, 16, 1481. [Google Scholar] [CrossRef]
- Xiong, S.; Yang, B.; Cai, D.; Qiu, G.; Wu, Z. Individual and simultaneous stripping voltammetric and mutual interference analysis of Cd2+, Pb2+ and Hg2+ with reduced graphene oxide-Fe3O4 nanocomposites. Electrochim. Acta 2015, 185, 52–61. [Google Scholar] [CrossRef]
- Sun, Y.-F.; Chen, W.-K.; Li, W.-J.; Jiang, T.-J.; Liu, J.-H.; Liu, Z.-G. Selective detection toward Cd2+ using Fe3O4/rGO nanoparticle modified glassy carbon electrode. J. Electroanal. Chem. 2014, 714, 97–102. [Google Scholar] [CrossRef]
- Ghasemi, E.; Heydari, A.; Sillanpää, M. Superparamagnetic Fe3O4@EDTA nanoparticles as an efficient adsorbent for simultaneous removal of Ag(I), Hg(II), Mn(II), Zn(II), Pb(II) and Cd(II) from water and soil environmental samples. Microchem. J. 2017, 131, 51–56. [Google Scholar] [CrossRef]
- Deshmukh, S.; Kandasamy, G.; Upadhyay, R.K.; Bhattacharya, G.; Banerjee, D.; Maity, D.; Deshusses, M.A.; Roy, S.S. Terephthalic acid capped iron oxide nanoparticles for sensitive electrochemical detection of heavy metal ions in water. J. Electroanal. Chem. 2017, 788, 91–98. [Google Scholar] [CrossRef]
- Dai, P.; Yang, Z. Sensor for lead (II) ion based on a glassy carbon electrode modified with double-stranded DNA and ferric oxide nanoparticles. Microchim. Acta 2012, 176, 109–115. [Google Scholar] [CrossRef]
- Mustafa, G.; Aslı, E.A.; Samet, Y.; Abdullah, A.; Kariper, İ.A.; İlknur, Ü. Evaluation of nanomanganese decorated typha tassel carbonaceous electrode: Preparation, characterization, and simultaneous determination of Cd2+ and Pb2+. Chem. Pap. 2019, 73, 2869–2878. [Google Scholar]
Nanoparticle Type | Surface Area | Detection Limit | Advantages | Disadvantages | References |
---|---|---|---|---|---|
MnO2@RGO-NPs | 148.7 m2/g | Cd2+: 15.1 ng/L Cu2+: 9.3 ng/L Zn2+: 13.7 ng/L | Multiple oxidation states (−3 to +7) Magnetic separation Catalytic activity Low cost | Low electrical conductivity Requires doping for performance | [14,24,29,31,33,36,92] |
MnO2-CT-NPs | - | Cd2+: 50 ng/L Pb2+: 10 ng/L | |||
Mn3O4-NPs | 30–70 m2/g | - | |||
MnO2-NPs | 20–200 m2/g | - | |||
Fe3O4/MnO2-NPs | 118 m2/g | - | |||
AuNPs | - | Cd2+: 99.95 ng/L Pb2+: 49.73 ng/L Cu2+: 0.0064 ng/L | Stability, biocompatibility High optical/electronic response High surface-to-volume ratio | Toxicity concerns High cost | [61,63,65] |
AgNPs@p-1,8-DAN/GC | - | Cd2+: 19 ng/L Pb2+: 30 ng/L Cu2+: 6 ng/L | High conductivity Simple synthesis | Aggregation issues Time-intensive processing | [38,72,74] |
Pd@PAC-NPs | 881.79 m2/g | Cd2+: 56.205 ng/L Pb2+: 103.60 ng/L Cu2+: 31.775 ng/L | Effective for multi-ion detection (Cd2+, Pb2+, Cu2+) Compatible with SWASV | Reduced sensitivity in complex matrices | [61,76] |
BiNPs | 13.47 m2/g | Cd2+: 90 ng/L Pb2+: 170 ng/L | Strong metal affinity Compatible with SWASV | Cu2+ interference Size distribution issues | [65,66,77] |
BiNPs@Ti3C2Tx | - | Cd2+: 1.40 ng/L Pb2+: 2.24 ng/L | |||
Fe3O4@MPC-NPs | 75.7–238.4 m2/g | Pb2+: 2507.12–7086.24 ng/L | Strong heavy metal affinity Chemical stability Biocompatible, superparamagnetic Low-cost, simple synthesis Multi-metal detection capability | Aggregation tendency Reduced electrochemical performance Limited applications when unmodified | [67,81,87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keramari, V.; Girousi, S. Manganese Nanoparticles for Heavy Metal Detection vs. Noble and Base Metal Nanoparticles; Prospects, Limitations, and Applications in Electroanalysis. Chemosensors 2025, 13, 313. https://doi.org/10.3390/chemosensors13080313
Keramari V, Girousi S. Manganese Nanoparticles for Heavy Metal Detection vs. Noble and Base Metal Nanoparticles; Prospects, Limitations, and Applications in Electroanalysis. Chemosensors. 2025; 13(8):313. https://doi.org/10.3390/chemosensors13080313
Chicago/Turabian StyleKeramari, Vasiliki, and Stella Girousi. 2025. "Manganese Nanoparticles for Heavy Metal Detection vs. Noble and Base Metal Nanoparticles; Prospects, Limitations, and Applications in Electroanalysis" Chemosensors 13, no. 8: 313. https://doi.org/10.3390/chemosensors13080313
APA StyleKeramari, V., & Girousi, S. (2025). Manganese Nanoparticles for Heavy Metal Detection vs. Noble and Base Metal Nanoparticles; Prospects, Limitations, and Applications in Electroanalysis. Chemosensors, 13(8), 313. https://doi.org/10.3390/chemosensors13080313