Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = electrochemical oxidation of ammonia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3241 KiB  
Article
Cu@Pt Core–Shell Nanostructures for Ammonia Oxidation: Bridging Electrocatalysis and Electrochemical Sensing
by Bommireddy Naveen and Sang-Wha Lee
Inorganics 2025, 13(7), 241; https://doi.org/10.3390/inorganics13070241 - 11 Jul 2025
Viewed by 395
Abstract
Electro-oxidation of ammonia has emerged as a promising route for sustainable energy conversion and pollutant mitigation. In this study, we report the facile fabrication of dendritic Cu@Pt core–shell nanostructures electrodeposited on pencil graphite, forming an efficient electrocatalyst for the ammonia oxidation reaction (AOR). [...] Read more.
Electro-oxidation of ammonia has emerged as a promising route for sustainable energy conversion and pollutant mitigation. In this study, we report the facile fabrication of dendritic Cu@Pt core–shell nanostructures electrodeposited on pencil graphite, forming an efficient electrocatalyst for the ammonia oxidation reaction (AOR). The designed electrocatalyst exhibited high catalytic activity towards AOR, achieving high current density at very low potentials (−0.3 V vs. Ag/AgCl), with a lower Tafel slope of 16.4 mV/dec. The catalyst also demonstrated high electrochemical stability over 1000 potential cycles with a regeneration efficiency of 78%. In addition to catalysis, Cu@Pt/PGE facilitated very sensitive and selective electrochemical detection of ammonia nitrogen by differential pulse voltammetry, providing an extensive linear range (1 μM to 1 mM) and a low detection limit of 0.78 μM. The dual functionality of Cu@Pt highlights its potential in enhancing ammonia-based fuel cells and monitoring ammonia pollution in aquatic environments, thereby contributing to the development of sustainable energy and environmental technologies. Full article
Show Figures

Figure 1

19 pages, 8425 KiB  
Article
Efficiency of the Electrocatalytic Nitrate Reduction to Ammonia: Do the Surface Nanostructures Play an Essential Role?
by Olga Lebedeva, Irina Kuznetsova, Dmitry Kultin, Alexander Leonov, Maxim Zakharov, Alexander Kustov, Stanislav Dvoryak and Leonid Kustov
Catalysts 2025, 15(7), 666; https://doi.org/10.3390/catal15070666 - 8 Jul 2025
Viewed by 474
Abstract
The degradation of electrochemical materials during energy conversion and storage, in particular the electrocatalyst materials, is becoming increasingly important. The selection and design of sustainable materials is an important task. This work examines the synthesis, characterization, and application of an electrocatalyst (based on [...] Read more.
The degradation of electrochemical materials during energy conversion and storage, in particular the electrocatalyst materials, is becoming increasingly important. The selection and design of sustainable materials is an important task. This work examines the synthesis, characterization, and application of an electrocatalyst (based on an amorphous alloy Co75Si15Fe5Cr4.5) having a structured surface in the form of nanocells for a “green” nitrate reduction reaction (NO3RR), which can serve as an alternative to the well-known Haber-Bosch process for the synthesis of ammonia. The material for the electrocatalyst was obtained by anodizing the alloy in the ionic liquid BmimNTf2 and characterized by using a combination of modern physicochemical and electrochemical methods. The Faradaic efficiency (FE) for the nanocell catalyst exceeds by more than three-fold and seven-fold catalyst with a polished surface and the initial catalyst having a natural oxide on the surface, respectively. A mechanism of this reaction on the studied electrocatalysts with structured and non-structured surfaces is proposed. It is mentioned that the nanocell electrocatalyst is an extremely stable material that passes all tests without visible changes. The authors consider their work as a starting point for the application of a nanostructured Co-electrocatalyst in NO3RR. Full article
Show Figures

Graphical abstract

22 pages, 3709 KiB  
Review
Carbon-Based Catalysts for Electrochemical Nitrate Reduction to Ammonia: Design Strategies and Mechanistic Insights
by Qunyu Chen, Liuyang Deng, Jinrui Zhang, Ying Zhang, Lei Zhang, Shun Lu and Yanwei Wang
Materials 2025, 18(13), 3019; https://doi.org/10.3390/ma18133019 - 25 Jun 2025
Viewed by 549
Abstract
The electrochemical reduction of nitrate to ammonia offers a promising solution for both alleviating nitrate pollution in wastewater and providing a sustainable ammonia source for agriculture use. This review focuses on the role of carbon-based catalysts in electrochemical nitrate reduction to ammonia, emphasizing [...] Read more.
The electrochemical reduction of nitrate to ammonia offers a promising solution for both alleviating nitrate pollution in wastewater and providing a sustainable ammonia source for agriculture use. This review focuses on the role of carbon-based catalysts in electrochemical nitrate reduction to ammonia, emphasizing their potential in addressing environmental pollution and supporting sustainable ammonia production. Carbon materials, known for their abundance, affordability, and eco-friendly properties, are central to this process. The review highlights key strategies for enhancing catalytic performance, including heteroatom doping, the development of porous structures, and the integration of metal/metal oxide nanoparticles. Additionally, it addresses significant challenges such as weak nitrate adsorption, slow reaction kinetics, and competition with the hydrogen evolution reaction. Through the integration of advanced material design, mechanistic insights, and innovative engineering strategies, this review provides valuable guidance for the future design of carbon-based catalysts, paving the way for significant advancements in both nitrate removal and sustainable ammonia synthesis. Full article
Show Figures

Figure 1

40 pages, 5193 KiB  
Review
A Comprehensive Review of the Development of Perovskite Oxide Anodes for Fossil Fuel-Based Solid Oxide Fuel Cells (SOFCs): Prospects and Challenges
by Arash Yahyazadeh
Physchem 2025, 5(3), 25; https://doi.org/10.3390/physchem5030025 - 23 Jun 2025
Viewed by 744
Abstract
Solid oxide fuel cells (SOFCs) represent a pivotal technology in renewable energy due to their clean and efficient power generation capabilities. Their role in potential carbon mitigation enhances their viability. SOFCs can operate via a variety of alternative fuels, including hydrocarbons, alcohols, solid [...] Read more.
Solid oxide fuel cells (SOFCs) represent a pivotal technology in renewable energy due to their clean and efficient power generation capabilities. Their role in potential carbon mitigation enhances their viability. SOFCs can operate via a variety of alternative fuels, including hydrocarbons, alcohols, solid carbon, and ammonia. However, several solutions have been proposed to overcome various technical issues and to allow for stable operation in dry methane, without coking in the anode layer. To avoid coke formation thermodynamically, methane is typically reformed, contributing to an increased degradation rate through the addition of oxygen-containing gases into the fuel gas to increase the O/C ratio. The performance achieved by reforming catalytic materials, comprising active sites, supports, and electrochemical testing, significantly influences catalyst performance, showing relatively high open-circuit voltages and coking-resistance of the CH4 reforming catalysts. In the next step, the operating principles and thermodynamics of methane reforming are explored, including their traditional catalyst materials and their accompanying challenges. This work explores the components and functions of SOFCs, particularly focusing on anode materials such as perovskites, Ruddlesden–Popper oxides, and spinels, along with their structure–property relationships, including their ionic and electronic conductivity, thermal expansion coefficients, and acidity/basicity. Mechanistic and kinetic studies of common reforming processes, including steam reforming, partial oxidation, CO2 reforming, and the mixed steam and dry reforming of methane, are analyzed. Furthermore, this review examines catalyst deactivation mechanisms, specifically carbon and metal sulfide formation, and the performance of methane reforming and partial oxidation catalysts in SOFCs. Single-cell performance, including that of various perovskite and related oxides, activity/stability enhancement by infiltration, and the simulation and modeling of electrochemical performance, is discussed. This review also addresses research challenges in regards to methane reforming and partial oxidation within SOFCs, such as gas composition changes and large thermal gradients in stack systems. Finally, this review investigates the modeling of catalytic and non-catalytic processes using different dimension and segment simulations of steam methane reforming, presenting new engineering designs, material developments, and the latest knowledge to guide the development of and the driving force behind an oxygen concentration gradient through the external circuit to the cathode. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

26 pages, 4070 KiB  
Review
Transitioning Ammonia Production: Green Hydrogen-Based Haber–Bosch and Emerging Nitrogen Reduction Technologies
by Cátia Ribeiro and Diogo M. F. Santos
Clean Technol. 2025, 7(2), 49; https://doi.org/10.3390/cleantechnol7020049 - 16 Jun 2025
Viewed by 2070
Abstract
Ammonia production is a cornerstone of the modern chemical industry, essential for fertilizer manufacturing and increasingly relevant in the energy sector. However, the conventional Haber–Bosch (HB) process is highly energy- and carbon-intensive, contributing significantly to global greenhouse gas emissions, releasing approximately 1.6 tonnes [...] Read more.
Ammonia production is a cornerstone of the modern chemical industry, essential for fertilizer manufacturing and increasingly relevant in the energy sector. However, the conventional Haber–Bosch (HB) process is highly energy- and carbon-intensive, contributing significantly to global greenhouse gas emissions, releasing approximately 1.6 tonnes of carbon dioxide for every tonne of ammonia produced. In the context of the ongoing climate crisis, exploring sustainable alternatives that can reduce or even eradicate these emissions is imperative. This review examines the potential of ammonia as a future energy carrier and evaluates the transition to green hydrogen-based HB production. Key technologies for green hydrogen generation are reviewed in conjunction with environmental, energy, and economic considerations. The transition to a green hydrogen-based HB process has been demonstrated to offer significant environmental advantages, potentially reducing carbon emissions by up to eight times compared to the conventional method. Furthermore, the economic viability of this process is particularly pronounced under conditions of low-cost renewable electricity, whether utilizing solid oxide electrolysis cells or proton-exchange membrane electrolyzers. Additionally, two emerging zero-emission, electrochemical routes for ammonia synthesis are analyzed in terms of their methodologies, efficiencies, and economic viability. Promising progress has been made in both direct and indirect nitrogen reduction approaches to ammonia. The indirect lithium-mediated pathway demonstrates the greatest potential, significantly reducing ammonia production costs. Despite existing challenges, particularly related to efficiency, these emerging technologies offer decentralized, electrified pathways for sustainable ammonia production in the future. This study highlights the near-term feasibility of decarbonizing ammonia production through green hydrogen in the HB process, while outlining the long-term potential of electrochemical nitrogen reduction as a sustainable alternative once the technology matures. Full article
(This article belongs to the Topic Green and Sustainable Chemical Processes)
Show Figures

Graphical abstract

20 pages, 15674 KiB  
Article
Binder-Free Fe-N-C-O Bifunctional Electrocatalyst in Nickel Foam for Aqueous Zinc–Air Batteries
by Jorge González-Morales, Jadra Mosa and Mario Aparicio
Batteries 2025, 11(4), 159; https://doi.org/10.3390/batteries11040159 - 17 Apr 2025
Viewed by 950
Abstract
The development of efficient, sustainable, and cost-effective catalysts is crucial for energy storage technologies, such as zinc–air batteries (ZABs). These batteries require bifunctional catalysts capable of efficiently and selectively catalyzing oxygen redox reactions. However, the high cost and low selectivity of conventional catalysts [...] Read more.
The development of efficient, sustainable, and cost-effective catalysts is crucial for energy storage technologies, such as zinc–air batteries (ZABs). These batteries require bifunctional catalysts capable of efficiently and selectively catalyzing oxygen redox reactions. However, the high cost and low selectivity of conventional catalysts hinder the large-scale integration of ZABs into the electric grid. This study presents binder-free Fe-based bifunctional electrocatalysts synthesized via a sol–gel method, followed by thermal treatment under ammonia flow. Supported on nickel foam, the catalyst exhibits enhanced activity for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), essential for ZAB operation. This work addresses two critical challenges in the development of ZABs: first, the replacement of costly cobalt or platinum-group-metal (PGM)-based catalysts with an efficient alternative; second, the achievement of prolonged battery performance under real conditions without passivation. Structural analysis confirms the integration of iron nitrides, oxides, and carbon, resulting in high conductivity and catalytic stability without relying on precious or cobalt-based metals. Electrochemical tests reveal that the catalyst calcined at 800 °C delivers superior performance, achieving a four-electron ORR mechanism and prolonged operational life compared to its 900 °C counterpart. Both catalysts outperform conventional Pt/C-RuO2 systems in stability and selective bifunctionality, offering a more sustainable and cost-effective alternative. The innovative combination of nitrogen, carbon, and iron compounds overcomes limitations associated with traditional materials, paving the way for scalable, high-performance applications in renewable energy storage. This work underscores the potential of transition metal-based catalysts in advancing the commercial viability of ZABs. Full article
Show Figures

Graphical abstract

29 pages, 3880 KiB  
Review
Comparative Electrochemical Performance of Solid Oxide Fuel Cells: Hydrogen vs. Ammonia Fuels—A Mini Review
by Lina Hamid, Omer Elmutasim, Dattatray S. Dhawale, Sarbjit Giddey and Gary Paul
Processes 2025, 13(4), 1145; https://doi.org/10.3390/pr13041145 - 10 Apr 2025
Cited by 1 | Viewed by 1098
Abstract
Solid oxide fuel cells (SOFCs) have garnered significant attention as a promising technology for clean and efficient power generation due to their ability to utilise renewable fuels such as hydrogen and ammonia. As carbon-free energy carriers, hydrogen and ammonia are expected to play [...] Read more.
Solid oxide fuel cells (SOFCs) have garnered significant attention as a promising technology for clean and efficient power generation due to their ability to utilise renewable fuels such as hydrogen and ammonia. As carbon-free energy carriers, hydrogen and ammonia are expected to play a pivotal role in achieving net-zero emissions. However, a critical research question remains: how does the electrochemical performance of SOFCs compare when fuelled by hydrogen vs. ammonia, and what are the implications for their practical application in power generation? This mini-review paper is premised on the hypothesis that while hydrogen-fuelled SOFCs currently demonstrate superior stability and performance at low and high temperatures, ammonia-fuelled SOFCs offer unique advantages, such as higher electrical efficiencies and improved fuel utilisation. These benefits make ammonia a viable alternative fuel source for SOFCs, particularly at elevated temperatures. To address this, the mini-review paper provides a comprehensive comparative analysis of the electrochemical performance of SOFCs under direct hydrogen and ammonia fuels, focusing on key parameters such as open-circuit voltage (OCV), power density, electrochemical impedance spectroscopy, fuel utilisation, stability, and electrical efficiency. Recent advances in electrode materials, electrolytes, fabrication techniques, and cell structures are also highlighted. Through an extensive literature survey, it is found that hydrogen-fuelled SOFCs exhibit higher stability and are less affected by temperature cycling. In contrast, ammonia-fuelled SOFCs achieve higher OCVs (by 7%) and power densities (1880 mW/cm2 vs. 1330 mW/cm2 for hydrogen) at 650 °C, along with 6% higher electrical efficiency. Despite these advantages, ammonia-fuelled SOFCs face challenges such as NOx emissions, nitride formation, environmental impact, and OCV stabilisation, which are discussed alongside potential solutions. This mini review aims to provide insights into the future direction of SOFC research, emphasising the need for further exploration of ammonia as a sustainable fuel alternative. Full article
(This article belongs to the Special Issue Advances in Solid Oxide Cells (SOCs): Performance and Reliability)
Show Figures

Figure 1

13 pages, 3236 KiB  
Article
Detection of Ammonia Nitrogen in Neutral Aqueous Solutions Based on In Situ Modulation Using Ultramicro Interdigitated Array Electrode Chip
by Yuqi Liu, Nan Qiu, Zhihao Zhang, Yang Li and Chao Bian
Chemosensors 2025, 13(4), 138; https://doi.org/10.3390/chemosensors13040138 - 9 Apr 2025
Viewed by 2382
Abstract
In this study, an in situ electrochemical modulation method based on an ultramicro interdigitated array electrode (UIAE) sensor chip was developed for the detection of ammonia nitrogen (NH3-N) in neutral aqueous solutions. One comb of the UIAE was used as the [...] Read more.
In this study, an in situ electrochemical modulation method based on an ultramicro interdigitated array electrode (UIAE) sensor chip was developed for the detection of ammonia nitrogen (NH3-N) in neutral aqueous solutions. One comb of the UIAE was used as the working electrode for both the modulating and sensing functions, while the other comb was used as the counter electrode. Utilizing its enhanced mass transfer and proximity effects, the feasibility of in situ modulation of the solution environment near the UIAE chip to generate an electrochemical response for NH3-N was investigated using electrochemical methods. The proposed method enhances the concentration of hydroxide ions and active chloride in the local solution near the sensor chip. These reactive species play a key role in improving the sensor’s electrocatalytic oxidation capability toward ammonia nitrogen, facilitating the sensitive detection of ammonia nitrogen in neutral environments. A linear relationship was displayed, ranging from 0.15–2.0 mg/L (as nitrogen) with a sensitivity of 3.7936 µA·L·mg−1 (0.0664 µA µM−1 mm−2), which was 2.45 times that in strong alkaline conditions without modulation. Additionally, the relative standard deviation of the measurement remained below 2.9% over five days of repeated experiments, indicating excellent stability. Full article
(This article belongs to the Special Issue Advancements of Chemosensors and Biosensors in China—2nd Edition)
Show Figures

Figure 1

24 pages, 3072 KiB  
Review
Recent Advances in Membrane Electrode Assembly Based Nitrate Reduction Electrolyzers for Sustainable Ammonia Synthesis
by Keon-Han Kim and Jeonghoon Lim
Catalysts 2025, 15(2), 172; https://doi.org/10.3390/catal15020172 - 12 Feb 2025
Cited by 1 | Viewed by 1949
Abstract
The electrochemical reduction from nitrate (NO3RR) to ammonia (NH3) provides a decentralized and environmentally friendly route for sustainable ammonia production while addressing the urgent issue of nitrate pollution in water bodies. Recent advancements in NO3RR research have [...] Read more.
The electrochemical reduction from nitrate (NO3RR) to ammonia (NH3) provides a decentralized and environmentally friendly route for sustainable ammonia production while addressing the urgent issue of nitrate pollution in water bodies. Recent advancements in NO3RR research have improved catalyst designs, mechanistic understanding, and electrolyzer technologies, enhancing selectivity, yield, and energy efficiency. This review explores cutting-edge developments, focusing on innovative designs for catalysts and electrolyzers, such as membrane electrode assemblies (MEA) and electrolyzer configurations, understanding the role of membranes in MEA designs, and various types of hybrid and membrane-free reactors. Furthermore, the integration of NO3RR with anodic oxidation reactions has been demonstrated to improve overall efficiency by generating valuable co-products. However, challenges such as competitive hydrogen evolution, catalyst degradation, and scalability remain critical barriers to large-scale adoption. We provide a comprehensive overview of recent progress, evaluate current limitations, and identify future research directions for realizing the full potential of NO3RR in sustainable nitrogen cycling and ammonia synthesis. Full article
(This article belongs to the Special Issue Electrocatalytic Nitrogen-Cycle)
Show Figures

Graphical abstract

20 pages, 8145 KiB  
Article
Assessing a Multilayered Hydrophilic–Electrocatalytic Forward Osmosis Membrane for Ammonia Electro-Oxidation
by Perla Cruz-Tato, Laura I. Penabad, César Lasalde, Alondra S. Rodríguez-Rolón and Eduardo Nicolau
Membranes 2025, 15(2), 37; https://doi.org/10.3390/membranes15020037 - 22 Jan 2025
Viewed by 1644
Abstract
Over the years, the ammonia concentration in water streams and the environment is increasing at an alarming rate. Many membrane-based processes have been studied to alleviate this concern via adsorption and filtration. On the other hand, ammonia electro-oxidation is an approach of particular [...] Read more.
Over the years, the ammonia concentration in water streams and the environment is increasing at an alarming rate. Many membrane-based processes have been studied to alleviate this concern via adsorption and filtration. On the other hand, ammonia electro-oxidation is an approach of particular interest owing to its energetic and environmental benefits. Thus, a plausible alternative to combine these two paths is by using an electroconductive membrane (ECM) to complete the ammonia oxidation reaction (AOR). This combination of processes has been studied very limitedly, and it can be an area for development. Herein, we developed a multilayered membrane with hydrophilic and electrocatalytic properties capable of completing the AOR. The porosity of carbon black (CB) particles was embedded in the polymeric support (CBES) and the active side was composed of a triple layer consisting of polyamide/CB/Pt nanoparticles (PA:CB:Pt). The CBES increased the membrane porosity, changed the pores morphology, and enhanced water permeability and electroconductivity. The deposition of each layer was monitored and corroborated physically, chemically, and electrochemically. The final membrane CBES:PA:VXC:Pt reached higher water flux than its PSF counterpart (3.9 ± 0.3 LMH), had a hydrophilic surface (water contact angle: 19.8 ± 0.4°), and achieved the AOR at −0.3 V vs. Ag/AgCl. Our results suggest that ECMs with conductive material in both membrane layers enhanced their electrical properties. Moreover, this study is proof-of-concept that the AOR can be succeeded by a polymeric FO-ECMs. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

17 pages, 2035 KiB  
Review
The Removal of Organic Pollutants and Ammonia Nitrogen from High-Salt Wastewater by the Electro-Chlorination Process and Its Mechanism
by Yujun Zhou, Tangrui Hou and Bo Zhou
Separations 2024, 11(12), 353; https://doi.org/10.3390/separations11120353 - 18 Dec 2024
Cited by 2 | Viewed by 1667
Abstract
Electro-chlorination (E-Cl) is an emerging and promising electrochemical advanced oxidation technology for wastewater treatment with the advantages of high efficiency, deep mineralization, a green process, and easy operation. It was found that the mechanism of pollutant removal by electro-chlorination mainly involves an indirect [...] Read more.
Electro-chlorination (E-Cl) is an emerging and promising electrochemical advanced oxidation technology for wastewater treatment with the advantages of high efficiency, deep mineralization, a green process, and easy operation. It was found that the mechanism of pollutant removal by electro-chlorination mainly involves an indirect oxidation process, in which pollutant removal is mainly driven by the intermediate active species, especially RCS and chlorine radicals, with a strong oxidization ability produced at the anodes. In this work, we summarized the principles and pathways of the removal/degradation of pollutants (organic pollutants and ammonia nitrogen) by E-Cl and the major affecting factors including the applied current density, voltage, electrolyte concentration, initial pH value, etc. In the E-Cl system, the DSA and BDD electrodes were the most widely used electrode materials. The flow-through electrode reactor was considered to be the most promising reactor since it had a high porosity and large pore size, which could effectively improve the mass transfer efficiency and electron transfer efficiency of the reaction. Of the many detection methods for chlorine radicals and RCS, electron paramagnetic resonance (EPR) and spectrophotometry with N, N-diethyl-1,4-phenylenediamine sulfate (DPD) as the chromogenic agent were the two most widely used methods. Overall, the E-Cl process had excellent performance and prospects in treating salt-containing wastewater. Full article
Show Figures

Figure 1

17 pages, 6264 KiB  
Article
Linking Water Quality Indicators in Stable Reservoir Ecosystems: Correlation Analysis and Ecohydrological Implications
by Juan Du, Xiao Yang, Peng Xu, Xiang Wan, Pan Wang, Ding Wang, Qi Yang, Qiu Wang and Amar Razzaq
Water 2024, 16(24), 3600; https://doi.org/10.3390/w16243600 - 14 Dec 2024
Cited by 3 | Viewed by 1519
Abstract
This research was conducted to determine the connections between dissolved oxygen (DO), chemical oxygen demand (COD), permanganate index (CODMn), five-day biochemical oxygen demand (BOD5), and ammonia nitrogen (NH3-H) across five reservoirs of Yunmeng County, China, from January to November [...] Read more.
This research was conducted to determine the connections between dissolved oxygen (DO), chemical oxygen demand (COD), permanganate index (CODMn), five-day biochemical oxygen demand (BOD5), and ammonia nitrogen (NH3-H) across five reservoirs of Yunmeng County, China, from January to November 2022. Each month, water samples were collected and subjected to analysis using standard methods. The samples were collected and analyzed using standard methods: dissolved oxygen was determined using the electrochemical probe method, COD was measured via the rapid digestion spectrophotometric method, CODMn was detected using the potassium permanganate oxidation method, BOD5 was determined using the dilution and inoculation method, and NH3-N was measured by using the Nessler reagent spectrophotometry method. The results confirmed strong positive correlations between COD and CODMn, with different intensities from reservoir to reservoir. More specific and demanding COD parameters were used to estimate the level of oxygen consumption; hence, a more variable correlation strength was observed between BOD5 and the other two parameters. Thus, BOD5 was found to be the main indicator of biodegradable organic matter and bacterial oxygen consumption. However, the results were negative, showing a decreasing trend. This means that the oxygen content was lower in the majority of reservoirs, which is attributed to the decomposition of ammonia nitrogen and the presence of organic matter. These findings significantly contribute to the development of appropriate programs for efficient water quality monitoring and the development of reservoir-specific management strategies. This study suggests that there is a need for continuous monitoring of these parameters, together with the extension of the program to additional reservoirs and water quality indicators, along with the use of advanced modeling techniques to clarify the underlying factors that connect water quality parameters in these complex reservoir ecosystems. Full article
Show Figures

Figure 1

14 pages, 2519 KiB  
Article
Electrochemical Ammonia Synthesis from Dilute Gaseous Nitric Oxide Reduction at Ambient Conditions
by Haroon Ur Rasheed, Jae Hyung Kim, Taek-Seung Kim, Kyungho Lee, Joonmok Shim, Sung Hyung Kim and Hyung Chul Yoon
Catalysts 2024, 14(11), 838; https://doi.org/10.3390/catal14110838 - 20 Nov 2024
Viewed by 1715
Abstract
Converting gaseous nitric oxide (NO) to ammonia (NH3) is important because of its environmental and industrial implications. The electrochemical transformation of nitrogen (N2) to NH3 faces several challenges, including a slow reaction rate and low Faradaic efficiency (FE). [...] Read more.
Converting gaseous nitric oxide (NO) to ammonia (NH3) is important because of its environmental and industrial implications. The electrochemical transformation of nitrogen (N2) to NH3 faces several challenges, including a slow reaction rate and low Faradaic efficiency (FE). This study presents an innovative approach by integrating NO elimination and NH3 production by electrochemical gaseous NO reduction reaction (NORR) under ambient conditions. Co and Mo-based catalysts were investigated for the continuous reduction of diluted NO gas (1%) to NH3 within a proton exchange membrane (PEM) cell under ambient conditions. In electrochemical NORR tests conducted without a catholyte, CoMo-NC demonstrated notable NORR performance, achieving an NH3 yield rate of 23.2 × 10−10 mol s−1 cm−2 at −2.2 Vcell and FENH3 of 94.6% at −1.6 Vcell, along with enhanced durability. Notably, this performance represents one of the highest FENH3 achievements for electrochemical gas-phase NO reduction at room temperature. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

14 pages, 5519 KiB  
Article
Optimized Ammonia-Sensing Electrode with CeO2/rGO Nano-Composite Coating Synthesized by Focused Laser Ablation in Liquid
by Mengqi Shi and Hiroyuki Wada
Nanomaterials 2024, 14(15), 1238; https://doi.org/10.3390/nano14151238 - 23 Jul 2024
Viewed by 1303
Abstract
This study investigated the synthesis of cerium oxide (CeO2) nanoparticles (NPs) and composites with reduced graphene oxide (rGO) for the enhanced electrochemical sensing of ammonia. CeO2 NPs were prepared by the focused laser ablation in liquid (LAL) method, which enabled [...] Read more.
This study investigated the synthesis of cerium oxide (CeO2) nanoparticles (NPs) and composites with reduced graphene oxide (rGO) for the enhanced electrochemical sensing of ammonia. CeO2 NPs were prepared by the focused laser ablation in liquid (LAL) method, which enabled the production of high-purity, spherical nanoparticles with a uniform dispersion and sizes under 50 nm in a short time. The effects of varying irradiation fluence and time on the nanoparticle size, production yield, and dispersion were systematically studied. The synthesized CeO2 NPs were doped with rGO to form CeO2/rGO composites, which were drop casted to modify the glassy carbon electrodes (GCE). The CeO2/rGO-GCE electrodes exhibited superior electrochemical properties compared with single-component electrodes, which demonstrated the significant potential for ammonia detection, especially at a 4 J/cm2 fluence. The CeO2/rGO composites showed uniformly dispersed CeO2 NPs between the rGO sheets, which enhanced the conductivity, as confirmed by SEM, EDS mapping, and XRD analysis. Cyclic voltammetry data demonstrated superior electrochemical activity of the CeO2/rGO composite electrodes, with the 2rGO/1CeO2 ratio showing the highest current response and sensitivity. The CV response to varying ammonia concentrations exhibited a linear relationship, indicating the electrode’s capability for accurate quantification. These findings highlight the effectiveness of focused laser ablation in enhancing nanoparticle synthesis and the promising synergistic effects of CeO2 and rGO in developing high-performance electrochemical sensors. Full article
(This article belongs to the Special Issue Laser-Based Nano Fabrication and Nano Lithography: Second Edition)
Show Figures

Figure 1

14 pages, 6933 KiB  
Article
Molybdenum-Modified Titanium Dioxide Nanotube Arrays as an Efficient Electrode for the Electroreduction of Nitrate to Ammonia
by Huixi Chen, Wenqi Hu, Tingting Ma, Yixuan Pu, Senhao Wang, Yuan Wang and Shaojun Yuan
Molecules 2024, 29(12), 2782; https://doi.org/10.3390/molecules29122782 - 11 Jun 2024
Cited by 4 | Viewed by 1667
Abstract
Electrochemical nitrate reduction (NO3RR) has been recognized as a promising strategy for sustainable ammonia (NH3) production due to its environmental friendliness and economical nature. However, the NO3RR reaction involves an eight-electron coupled proton transfer process [...] Read more.
Electrochemical nitrate reduction (NO3RR) has been recognized as a promising strategy for sustainable ammonia (NH3) production due to its environmental friendliness and economical nature. However, the NO3RR reaction involves an eight-electron coupled proton transfer process with many by-products and low Faraday efficiency. In this work, a molybdenum oxide (MoOx)-decorated titanium dioxide nanotube on Ti foil (Mo/TiO2) was prepared by means of an electrodeposition and calcination process. The structure of MoOx can be controlled by regulating the concentration of molybdate during the electrodeposition process, which can further influence the electron transfer from Ti to Mo atoms, and enhance the binding energy of intermediate species in NO3RR. The optimized Mo/TiO2-M with more Mo(IV) sites exhibited a better activity for NO3RR. The Mo/TiO2-M electrode delivered a NH3 yield of 5.18 mg h−1 cm−2 at −1.7 V vs. Ag/AgCl, and exhibited a Faraday efficiency of 88.05% at −1.4 V vs. Ag/AgCl. In addition, the cycling test demonstrated that the Mo/TiO2-M electrode possessed a good stability. This work not only provides an attractive electrode material, but also offers new insights into the rational design of catalysts for NO3RR. Full article
(This article belongs to the Special Issue Nano Environmental Materials II)
Show Figures

Graphical abstract

Back to TopTop