Efficiency of the Electrocatalytic Nitrate Reduction to Ammonia: Do the Surface Nanostructures Play an Essential Role?
Abstract
1. Introduction
2. Results and Discussion
2.1. Samples and SEM Characterization
2.2. Microsecond Transients
2.3. XPS Characterization
2.4. Diffuse Reflectance Spectroscopy and XRD Characterization
2.5. Linear Voltammograms (LVs) and Chronoamperometry (CA): Determination of Optimal Conditions of Synthesis and Carrying out NO3RR
2.6. FE and NH3 Yield Rate
- There is a depletion of the surface of all components compared to Co for the sample with nanocells compared to the original (with natural oxide) sample;
- A significant amount of Si remains, but this is not a catalyst for NO3RR;
- CoO is a catalyst for the stage of adsorption of NO3− ions [30], but it is not an active catalyst (such as Co3+ could be) for the entire NO3RR.
2.7. Electrochemically Active Surface Area (ECSA)
2.8. Electrochemical Impedance Spectroscopy (EIS)
2.9. The Scheme of the Mechanism
- The influence of CoO—its enrichment is most noticeable for a sample with natural cells;
- Crystallites, and consequently dislocations and defects in the crystal structure, increase the catalytic activity compared to an amorphous sample;
- CoO is a weak catalyst (it works better for the nitrate ion adsorption stage), but in general, the total FE value for NO3RR remains very low compared to the best electrocatalysts in modern works;
- The expected tandem effect based on the presence of a joint content in the composition of the Fe and Co alloy [21] does not work here;
2.10. Sustainability and Stability
3. Materials and Methods
3.1. Catalyst Synthesis
3.2. SEM Characterization
3.3. DRS Characterization
3.4. XRD Characterization
3.5. XPS Characterization
3.6. Electrochemical Experiments
3.7. Electrochemical Measurements
3.8. Electrocatalytic Nitrate Reduction
3.9. Quantification of Ammonia
3.10. Calculation of Faradaic Efficiency
4. Conclusions
- The “hexagonal” nanocells on the surface were synthesized by single-stage anodizing in the ionic liquid BmimNTf2 for 200 s (j = 15 mA cm−2);
- Electrocatalysts have been characterized by a complex of modern physicochemical methods such as SEM, XPS, DRS, and XRD. The morphology of the surface, the valence state of the elements on the surface, and the size of the crystallites were determined. It was found that the main substance of the nanocells is cobalt (II) oxide;
- The optimal NH3 synthesis potential and the concentration of NO3− ions were determined by the LVs method;
- The NO3RR reaction performed chronoamperometrically for 1 h showed a difference in FE for electrocatalysts with and without nanocells, which reaches an increase of 700%. At the same time, the total FE remains low (14.3%) even for the best (nanostructured) sample;
- The scheme of the NO3RR mechanism has been proposed.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NO3RR | nitrate reduction reaction |
IL | ionic liquid |
SEM | scanning electron microscopy |
XRD | X-ray diffraction |
DRS | diffuse reflectance spectroscopy |
XPS | X-ray photoelectron spectroscopy |
LVs | linear voltammograms |
CA | chronoamperometry |
FE | Faradaic efficiency |
ECSA | electrochemically active surface area |
Cdl | electrochemical capacity of the double layer |
EIS | electrochemical impedance spectroscopy |
References
- Shi, K.; Willis, M.D.; Ren, Z.; Feng, X. Efficient Recycling of Dilute Nitrate to Ammonia Using Cu Nanowire Electrocatalyst. J. Phys. Chem. C 2023, 127, 20710–20717. [Google Scholar] [CrossRef]
- Jeon, T.H.; Wu, Z.-Y.; Chen, F.-Y.; Choi, W.; Alvarez, P.J.J.; Wang, H. Cobalt–Copper Nanoparticles on Three-Dimensional Substrate for Efficient Ammonia Synthesis via Electrocatalytic Nitrate Reduction. J. Phys. Chem. C 2022, 126, 6982–6989. [Google Scholar] [CrossRef]
- Tong, X.; Zhang, Z.; Fang, Z.; Guo, J.; Zheng, Y.; Liang, X.; Liu, R.; Zhang, L.; Chen, W. PdMoCu Trimetallenes for Nitrate Electroreduction to Ammonia. J. Phys. Chem. C 2023, 127, 5262–5270. [Google Scholar] [CrossRef]
- Chatterjee, S.; Parsapur, R.K.; Huang, K.-W. Limitations of Ammonia as a Hydrogen Energy Carrier for the Transportation Sector. ACS Energy Lett. 2021, 6, 4390–4394. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, S.; Guo, Y.; Li, C.; Liu, J.; Huang, Z.; Zhao, Y.; Li, Y.; Zhi, C. A Zn–Nitrite Battery as an Energy-Output Electrocatalytic System for High-Efficiency Ammonia Synthesis Using Carbon-Doped Cobalt Oxide Nanotubes. Energy Environ. Sci. 2022, 15, 3024–3032. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, R.; Ren, H.; Sun, T.; Liu, D. Ultrasmall Iron Nanoparticle-Decorated Carbon Black for High-Efficiency Nitrate-to-Ammonia Electrosynthesis and Zinc-Nitrate Batteries. ACS Sustain. Chem. Eng. 2024, 12, 3780–3789. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, Y.; Chen, Z.; Gao, D.; Feng, F.; Rios-Studer, T.; Bansmann, J.; Biskupek, J.; Kaiser, U.; Liu, R.; et al. Metal Alloy-Functionalized 3D-Printed Electrodes for Nitrate-to-Ammonia Conversion in Zinc-Nitrate Batteries. ChemElectroChem 2024, 11, e202400291. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, Y.; Sun, M.; Chen, J.; Zhou, J.; Hao, F.; Liu, F.; Lu, P.; Meng, X.; Guo, L.; et al. Regulating the Electrochemical Nitrate Reduction Performance with Controllable Distribution of Unconventional Phase Copper on Alloy Nanostructures. Adv. Mater. 2024, 36, 2407889. [Google Scholar] [CrossRef]
- Qian, Y.; Lv, J.; Zhong, Y.; Liu, X.; Li, X.; Peng, Y.; Yan, J.; Wu, A. Efficient Electrocatalytic Nitrate Reduction Using 3D Copper Foam-Supported Co Hexagonal Nanoparticles in a Membrane Electrode Assembly. Int. J. Hydrog. Energy 2024, 64, 178–185. [Google Scholar] [CrossRef]
- Kim, Y.; Ko, J.; Shim, M.; Park, J.; Shin, H.-H.; Kim, Z.H.; Jung, Y.; Byon, H.R. Identifying the Active Sites and Intermediates on Copper Surfaces for Electrochemical Nitrate Reduction to Ammonia. Chem. Sci. 2024, 15, 2578–2585. [Google Scholar] [CrossRef]
- Li, Q.; Hou, Y.; Yin, J.; Xi, P. The Evolution of Hexagonal Cobalt Nanosheets for CO2 Electrochemical Reduction Reaction. Catalysts 2023, 13, 1384. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, F.; Sun, M.; Liu, M.; Zhou, J.; Xiong, Y.; Ye, C.; Wang, X.; Liu, F.; Wang, J.; et al. Crystal Phase Engineering of Ultrathin Alloy Nanostructures for Highly Efficient Electroreduction of Nitrate to Ammonia. Adv. Mater. 2024, 36, 2313548. [Google Scholar] [CrossRef]
- Jiang, L.; Li, P.; Wang, S.; Liu, R.; Zhu, X.; Song, Y.; van Ree, T. Anodization fabrication techniques and energy-related applications for nanostructured anodic films on transition metals. Energy Mater. 2022, 2, 200038. [Google Scholar] [CrossRef]
- Zhou, J.; Xiong, Y.; Sun, M.; Xu, Z.; Wang, Y.; Lu, P.; Liu, F.; Hao, F.; Feng, T.; Ma, Y.; et al. Constructing Molecule-Metal Relay Catalysis over Heterophase Metallene for High-Performance Rechargeable Zinc-Nitrate/Ethanol Batteries. Proc. Natl. Acad. Sci. USA 2023, 120, e2311149120. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Guo, P.; Han, Y.; Han, C.; Sun, H.; Huang, R.; Liu, X.; Huang, M.; Mao, Z.; Yan, X.; et al. Coupling Single-Atomic Iron Sites with Iron Nanoparticles for Tandem-Enhanced Ammonia Electrosynthesis from Nitrate. Chem Catal. 2024, 4, 100936. [Google Scholar] [CrossRef]
- Murphy, E.; Sun, B.; Rüscher, M.; Liu, Y.; Zang, W.; Guo, S.; Chen, Y.; Hejral, U.; Huang, Y.; Ly, A.; et al. Synergizing Fe2 O3 Nanoparticles on Single Atom Fe-N-C for Nitrate Reduction to Ammonia at Industrial Current Densities. Adv. Mater. 2024, 36, 2401133. [Google Scholar] [CrossRef]
- Peng, Q.; Xing, D.; Dong, L.; Fu, Y.; Lu, J.; Wang, X.; Wang, C.; Guo, C. Electrochemical Nitrate Reduction for Ammonia Production: Amorphous or Crystalline Oxidized Copper Catalyst? J. Mater. Chem. A 2024, 12, 8689–8693. [Google Scholar] [CrossRef]
- Kori, D.K.K.; Das, A.K. Engineering of Bimetallic Cu–Pt Nanostructures for the Electrochemical Ammonia Synthesis via Nitrate Reduction. ACS Appl. Eng. Mater. 2023, 1, 2386–2396. [Google Scholar] [CrossRef]
- Harmon, N.J.; Li, J.; Wang, B.T.; Gao, Y.; Wang, H. Influence of Carbon Nanotube Support on Electrochemical Nitrate Reduction Catalyzed by Cobalt Phthalocyanine Molecules. ACS Catal. 2024, 14, 3575–3581. [Google Scholar] [CrossRef]
- Especel, C.; Lafaye, G.; Epron, F. Bimetallic Catalysts for Sustainable Chemistry: Surface Redox Reactions For Tuning The Catalytic Surface Composition. ChemCatChem 2023, 15, e202201478. [Google Scholar] [CrossRef]
- Kuznetsova, I.; Lebedeva, O.; Kultin, D.; Mashkin, M.; Kalmykov, K.; Kustov, L. Enhancing Efficiency of Nitrate Reduction to Ammonia by Fe and Co Nanoparticle-Based Bimetallic Electrocatalyst. Int. J. Mol. Sci. 2024, 25, 7089. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.-H.; Liao, M.-T.; Chen, J.-T.; Li, W.; Yang, C.; Wang, A.-Q.; Lv, S.-H. Insights into the Multiple Active Sites in Bi-Co Bimetallic Oxide for a Deeper Understanding of Nitrate Electroreduction to Ammonia. Sep. Purif. Technol. 2025, 354, 129425. [Google Scholar] [CrossRef]
- Qi, R.; Jiang, Q.; Zhong, M.; Li, W.; Ren, S.; Wang, Y.; Feng, M.; Lu, X. Manipulating D-Band Center of Bimetallic Sn-Alloy Coupling with Carbon Nanofibers for High-Performance Electrocatalytic Production of Ammonia from Nitrate. Chem. Eng. J. 2024, 496, 154094. [Google Scholar] [CrossRef]
- Kuznetsova, I.; Lebedeva, O.; Kultin, D.; Perova, N.; Kalmykov, K.; Chernavskii, P.; Perov, N.; Kustov, L. Is a 2D Nanostructured Surface Capable of Changing the Corrosion and Magnetic Properties of an Amorphous Alloy? Int. J. Mol. Sci. 2023, 24, 13373. [Google Scholar] [CrossRef] [PubMed]
- Lebedeva, O.; Kultin, D.; Kalmykov, K.; Snytko, V.; Kuznetsova, I.; Orekhov, A.; Zakharov, A.; Kustov, L. Nanorolls Decorated with Nanotubes as a Novel Type of Nanostructures: Fast Anodic Oxidation of Amorphous Fe–Cr–B Alloy in Hydrophobic Ionic Liquid. ACS Appl. Mater. Interfaces 2021, 13, 2025–2032. [Google Scholar] [CrossRef]
- Lebedeva, O.; Kultin, D.; Kustov, L. Electrochemical Synthesis of Unique Nanomaterials in Ionic Liquids. Nanomaterials 2021, 11, 3270. [Google Scholar] [CrossRef]
- Liu, F.; Fan, Z. Defect Engineering of Two-Dimensional Materials for Advanced Energy Conversion and Storage. Chem. Soc. Rev. 2023, 52, 1723–1772. [Google Scholar] [CrossRef]
- Ye, M.; Jiang, X.; Zhang, Y.; Liu, Y.; Liu, Y.; Zhao, L. Enhanced Electrocatalytic Nitrate Reduction to Ammonia Using Functionalized Multi-Walled Carbon Nanotube-Supported Cobalt Catalyst. Nanomaterials 2024, 14, 102. [Google Scholar] [CrossRef]
- Hu, Q.; Qi, S.; Huo, Q.; Zhao, Y.; Sun, J.; Chen, X.; Lv, M.; Zhou, W.; Feng, C.; Chai, X.; et al. Designing Efficient Nitrate Reduction Electrocatalysts by Identifying and Optimizing Active Sites of Co-Based Spinels. J. Am. Chem. Soc. 2024, 146, 2967–2976. [Google Scholar] [CrossRef]
- Ma, C.; Li, Y.; Zhao, D.; Yan, J.; Cao, D.; Zhao, J.; Xie, H.; Yao, J.; Wang, G. In Situ Derivation of Dual-Active Co/CoO Heterojunction Nanoarrays for Synergistic Catalytic NH3 Synthesis. ACS Sustain. Chem. Eng. 2024, 12, 17817–17828. [Google Scholar] [CrossRef]
- Dong, Z.; Sun, Q.; Xu, G.; Wu, Z.; Li, Y.; Lai, J.; Li, G.; Wang, L. Universal Synthesized Strategy for Amorphous Pd-Based Nanosheets Boosting Ambient Ammonia Electrosynthesis. Small Methods 2023, 7, 2201225. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Sun, Q.; Zhang, L.; Yang, H.; Chen, Y.; Guo, J.; Zhang, M.; Zhang, Z.; Jiang, Y. Research Progress of Amorphous Catalysts in the Field of Electrocatalysis. Microstructures 2024, 4, 2024022. [Google Scholar] [CrossRef]
- Cao, M.; Li, W.; Li, T.; Zhu, F.; Wang, X. Polymetallic Amorphous Materials: Research Progress in Synthetic Strategies and Electrocatalytic Applications. J. Mater. Chem. A 2024, 12, 15541–15557. [Google Scholar] [CrossRef]
- Adalder, A.; Mitra, K.; Barman, N.; Thapa, R.; Bhowmick, S.; Ghorai, U.K. Magneto-Electrochemical Ammonia Synthesis: Boosting Nitrite Reduction Activity by the Optimized Magnetic Field Induced Spin Polarized System. Adv. Energy Mater. 2024, 14, 2403295. [Google Scholar] [CrossRef]
- Huang, Y.; He, C.; Cheng, C.; Han, S.; He, M.; Wang, Y.; Meng, N.; Zhang, B.; Lu, Q.; Yu, Y. Pulsed Electroreduction of Low-Concentration Nitrate to Ammonia. Nat. Commun. 2023, 14, 7368. [Google Scholar] [CrossRef]
- Lebedeva, O.; Kudryavtsev, I.; Kultin, D.; Dzhungurova, G.; Kalmykov, K.; Kustov, L. Self-Organized Hexagonal Nanostructures on Nickel and Steel Formed by Anodization in 1-Butyl-3-Methylimidazolium Bis(Triflate)Imide Ionic Liquid. J. Phys. Chem. C 2014, 118, 21293–21298. [Google Scholar] [CrossRef]
- Lebedeva, O.; Kultin, D.; Kudryavtsev, I.; Root, N.; Kustov, L. The Role of Initial Hexagonal Self-Ordering in Anodic Nanotube Growth in Ionic Liquid. Electrochem. Commun. 2017, 75, 78–81. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, D.; Lu, D.; Wang, H. The Synergistic Tandem Effect of Cu2+1O and Co3O4 Enhances the Activity and Selectivity of Nitrate Reduction to Ammonia in Neutral Solution. Appl. Catal. A 2024, 677, 119695. [Google Scholar] [CrossRef]
- Fang, L.; Lu, S.; Wang, S.; Yang, X.; Song, C.; Yin, F.; Liu, H. Defect Engineering on Electrocatalysts for Sustainable Nitrate Reduction to Ammonia: Fundamentals and Regulations. Chem.-Eur. J. 2024, 30, e202303249. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, Y.; Pan, Z.; Xia, Q.; Huo, X.; Esan, O.C.; Zhang, X.; An, L. Cu-Based Catalysts for Electrocatalytic Nitrate Reduction to Ammonia: Fundamentals and Recent Advances. EES Catal. 2024, 2, 727–752. [Google Scholar] [CrossRef]
- Wei, J.; Li, Y.; Lin, H.; Lu, X.; Zhou, C.; Li, Y. Copper-Based Electro-Catalytic Nitrate Reduction to Ammonia from Water: Mechanism, Preparation, and Research Directions. Environ. Sci. Ecotechnol. 2024, 20, 100383. [Google Scholar] [CrossRef]
- Outaleb, H.; Kouzbour, S.; Audonnet, F.; Vial, C.; Gourich, B. Electrocatalytic Nitrate Reduction for Brackish Groundwater Treatment: From Engineering Aspects to Implementation. Appl. Sci. 2024, 14, 8986. [Google Scholar] [CrossRef]
- Hoekx, S.; Daems, N.; Arenas Esteban, D.; Bals, S.; Breugelmans, T. Toward the Rational Design of Cu Electrocatalysts for Improved Performance of the NO3RR. ACS Appl. Energy Mater. 2024, 7, 3761–3775. [Google Scholar] [CrossRef]
- Kempler, P.A.; Nielander, A.C. Reliable Reporting of Faradaic Efficiencies for Electrocatalysis Research. Nat. Commun. 2023, 14, 1158. [Google Scholar] [CrossRef]
- Luo, H.; Li, S.; Wu, Z.; Jiang, M.; Kuang, M.; Liu, Y.; Luo, W.; Zhang, D.; Yang, J. Relay Catalysis of Fe and Co with Multi-Active Sites for Specialized Division of Labor in Electrocatalytic Nitrate Reduction Reaction. Adv. Funct. Mater. 2024, 34, 2403838. [Google Scholar] [CrossRef]
- Quoie, G.D.S.; Bavumiragira, J.P.; Kromah, V. Advancements in Catalysts for Electrochemical Nitrate Reduction: A Sustainable Approach for Mitigating Nitrate Pollution: A Review. Mod. Res. Catal. 2024, 13, 1–28. [Google Scholar] [CrossRef]
- Chen, X.; Ji, X.; Kou, J. Rational Design of Iron Single-Atom Catalysts for Electrochemical Nitrate Reduction to Produce Ammonia. Discover Chem. Eng. 2023, 3, 21. [Google Scholar] [CrossRef]
Sample | O | Si | Cr | Fe | Co |
---|---|---|---|---|---|
atom% | |||||
Natural oxide | 52.0 | 33.9 | 1.4 | 5.0 | 7.8 |
Nanocells | 63.6 | 22.0 | 0.7 | 2.8 | 10.8 |
Normalization of elements by the initial sample (%) | |||||
Natural oxide | 100 | 100 | 100 | 100 | 100 |
Nanocells | 122.4 | 65.0 | 50.1 | 56.2 | 139.5 |
Normalization by Co (%) | |||||
Nanocells | 87.7 | 46.6 | 35.9 | 40.3 | 100 |
Potential (V vs. RHE) | NH3 Yield Rate (×10−9 mol h−1 cm−2) | ||
---|---|---|---|
Natural Oxide | Polished Surface | Nanocells | |
−0.285 | 8.4 | - | 88.2 |
−0.335 | 16.8 | 9.2 | 159.7 |
−0.385 | 21.7 | 37.8 | 126.1 |
−0.485 | 33.6 | 168.1 | 378.2 |
−0.585 | 100.8 | 63.0 | 105.0 |
−0.685 | 0.0 | 79.8 | 63.0 |
Sample | Rs (Ohm × cm2) | Rp (kOhm × cm2) | CPE (Ohm−1 × cm−2 × cN) | N |
---|---|---|---|---|
Natural oxide | 95 ± 14 | 58,370 ± 7500 | (3.0 ± 0.3) × 10−6 | 0.94 ± 0.01 |
Nanocells | 71 ± 10 | 26,200 ± 170 | (8.2 ± 0.08) × 10−6 | 0.82 ± 0.004 |
Polished | 67 ± 6 | 2590 ± 20 | (8.2 ± 0.08) × 10−5 | 0.82 ± 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebedeva, O.; Kuznetsova, I.; Kultin, D.; Leonov, A.; Zakharov, M.; Kustov, A.; Dvoryak, S.; Kustov, L. Efficiency of the Electrocatalytic Nitrate Reduction to Ammonia: Do the Surface Nanostructures Play an Essential Role? Catalysts 2025, 15, 666. https://doi.org/10.3390/catal15070666
Lebedeva O, Kuznetsova I, Kultin D, Leonov A, Zakharov M, Kustov A, Dvoryak S, Kustov L. Efficiency of the Electrocatalytic Nitrate Reduction to Ammonia: Do the Surface Nanostructures Play an Essential Role? Catalysts. 2025; 15(7):666. https://doi.org/10.3390/catal15070666
Chicago/Turabian StyleLebedeva, Olga, Irina Kuznetsova, Dmitry Kultin, Alexander Leonov, Maxim Zakharov, Alexander Kustov, Stanislav Dvoryak, and Leonid Kustov. 2025. "Efficiency of the Electrocatalytic Nitrate Reduction to Ammonia: Do the Surface Nanostructures Play an Essential Role?" Catalysts 15, no. 7: 666. https://doi.org/10.3390/catal15070666
APA StyleLebedeva, O., Kuznetsova, I., Kultin, D., Leonov, A., Zakharov, M., Kustov, A., Dvoryak, S., & Kustov, L. (2025). Efficiency of the Electrocatalytic Nitrate Reduction to Ammonia: Do the Surface Nanostructures Play an Essential Role? Catalysts, 15(7), 666. https://doi.org/10.3390/catal15070666