Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (164)

Search Parameters:
Keywords = electro-mathematical

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4408 KB  
Article
A Kinematic Analysis of Vehicle Acceleration from Standstill at Signalized Intersections: Implications for Road Safety, Traffic Engineering, and Autonomous Driving
by Alfonso Micucci, Luca Mantecchini, Giacomo Bettazzi and Federico Scattolin
Sustainability 2025, 17(20), 9332; https://doi.org/10.3390/su17209332 - 21 Oct 2025
Viewed by 195
Abstract
Understanding vehicle acceleration behavior during intersection departures is critical for advancing traffic safety, sustainable mobility, and intelligent transport systems. This study presents a high-resolution kinematic analysis of 714 vehicle departures from signalized intersections, encompassing straight crossings, left turns, and right turns, and involving [...] Read more.
Understanding vehicle acceleration behavior during intersection departures is critical for advancing traffic safety, sustainable mobility, and intelligent transport systems. This study presents a high-resolution kinematic analysis of 714 vehicle departures from signalized intersections, encompassing straight crossings, left turns, and right turns, and involving a diverse sample of internal combustion engine (ICE), hybrid electric (HEV), and battery electric vehicles (BEV). Using synchronized Micro Electro-Mechanical Systems (MEMS) accelerometers and Real-Time Kinematic (RTK)-GPS systems, the study captures longitudinal acceleration and velocity profiles over fixed distances. Results indicate that BEVs exhibit significantly higher acceleration and final speeds than ICE and HEV vehicles, particularly during straight crossings and longer left-turn maneuvers. Several mathematical models—including polynomial, arctangent, and Akçelik functions—were calibrated to describe acceleration and velocity dynamics. Findings contribute by modeling jerk and delay propagation, supporting better calibration of AV acceleration profiles and the optimization of intersection control strategies. Moreover, the study provides validated acceleration benchmarks that enhance the accuracy of forensic engineering and road accident reconstruction, particularly in scenarios involving intersection dynamics, and demonstrates that BEVs accelerate more rapidly than ICE and HEV vehicles, especially in straight crossings, with direct implications for traffic simulation, ADAS calibration, and urban crash analysis. Full article
(This article belongs to the Collection Urban Street Networks and Sustainable Transportation)
Show Figures

Figure 1

24 pages, 9974 KB  
Article
Mathematical Modeling and Optimal Design for HRE-Free Permanent-Magnet-Assisted Synchronous Reluctance Machine Considering Electro-Mechanical Characteristics
by Yeon-Tae Choi, Su-Min Kim, Soo-Jin Lee, Jun-Ho Jang, Seong-Won Kim, Jun-Beom Park, Yeon-Su Kim, Dae-Hyun Lee, Jang-Young Choi and Kyung-Hun Shin
Mathematics 2025, 13(17), 2858; https://doi.org/10.3390/math13172858 - 4 Sep 2025
Viewed by 724
Abstract
This paper presents the design of a permanent-magnet-assisted synchronous reluctance motor (PMa-SynRM) for compressor applications using Sm-series injection-molded magnets that eliminate heavy rare-earth elements. The high shape flexibility of the injection-molded magnets enables the formation of a curved multi-layer flux-barrier rotor geometry based [...] Read more.
This paper presents the design of a permanent-magnet-assisted synchronous reluctance motor (PMa-SynRM) for compressor applications using Sm-series injection-molded magnets that eliminate heavy rare-earth elements. The high shape flexibility of the injection-molded magnets enables the formation of a curved multi-layer flux-barrier rotor geometry based on the Joukowski airfoil potential, optimizing magnetic flux flow under typical compressor operating conditions. Furthermore, electromagnetic performance, irreversible demagnetization behavior, and rotor stress sensitivity were analyzed with respect to key design variables to derive a model that satisfies the target performance requirements. The validity of the proposed design was confirmed through finite element method (FEM) comparisons with a conventional IPMSM using sintered NdFeB magnets, demonstrating the feasibility of HRE-free PMa-SynRM for high-performance compressor drives. Full article
Show Figures

Figure 1

25 pages, 1017 KB  
Review
Smart Design Aided by Mathematical Approaches: Adaptive Manufacturing, Sustainability, and Biomimetic Materials
by Antreas Kantaros, Theodore Ganetsos, Evangelos Pallis and Michail Papoutsidakis
Designs 2025, 9(5), 102; https://doi.org/10.3390/designs9050102 - 1 Sep 2025
Viewed by 1147 | Correction
Abstract
The increased importance of sustainability imperatives has required a profound reconsideration of the interaction between materials, manufacturing, and design fields. Biomimetic smart materials such as shape-memory polymers, hydrogels, and electro-active composites represent an opportunity to combine adaptability, responsiveness, and ecological intelligence in systems [...] Read more.
The increased importance of sustainability imperatives has required a profound reconsideration of the interaction between materials, manufacturing, and design fields. Biomimetic smart materials such as shape-memory polymers, hydrogels, and electro-active composites represent an opportunity to combine adaptability, responsiveness, and ecological intelligence in systems and products. This work reviews the confluence of such materials with leading-edge manufacturing technologies, notably additive and 4D printing, and how their combining opens the door to the realization of time-responsive, low-waste, and user-adaptive design solutions. Through computational modeling and mathematical simulations, the adaptive performance of these materials can be predicted and optimized, supporting functional integration with high precision. On the basis of case studies in regenerative medicine, architecture, wearables, and sustainable product design, this work formulates the possibility of biomimetic strategies in shifting design paradigms away from static towards dynamic, from fixed products to evolvable systems. Major material categories of stimuli-responsive materials are systematically reviewed, existing 4D printing workflows are outlined, and the way temporal design principles are revolutionizing production, interaction, and lifecycle management is discussed. Quantitative advances such as actuation efficiencies exceeding 85%, printing resolution improvements of up to 50 μm, and lifecycle material savings of over 30% are presented where available, to underscore measurable impact. Challenges such as material scalability, process integration, and design education shortages are critically debated. Ethical and cultural implications such as material autonomy, transparency, and cross-cultural design paradigms are also addressed. By identifying existing limitations and proposing a future-proof framework, this work positions itself within the ongoing discussion on regenerative, interdisciplinary design. Ultimately, it contributes to the advancement of sustainable innovation by equipping researchers and practitioners with a set of adaptable tools grounded in biomimicry, computational intelligence, and temporal design thinking. Full article
Show Figures

Figure 1

21 pages, 6240 KB  
Article
Real-Time Gain Scheduling Controller for Axial Piston Pump Based on LPV Model
by Alexander Mitov, Tsonyo Slavov and Jordan Kralev
Actuators 2025, 14(9), 421; https://doi.org/10.3390/act14090421 - 29 Aug 2025
Cited by 1 | Viewed by 748
Abstract
This article is devoted to the design of a real-time gain scheduling (adaptive) proportional–integral (PI) controller for the displacement volume regulation of a swash plate-type axial piston pump. The pump is intended for open circuit hydraulic drive applications without “secondary control”. In this [...] Read more.
This article is devoted to the design of a real-time gain scheduling (adaptive) proportional–integral (PI) controller for the displacement volume regulation of a swash plate-type axial piston pump. The pump is intended for open circuit hydraulic drive applications without “secondary control”. In this type of pump, the displacement volume depends on the swash plate swivel angle. The swash plate is actuated by a hydraulic-driven mechanism. The classical control device is a hydro-mechanical type, which can realize different control laws (by pressure, flow rate, or power). In the present development, it is replaced by an electro-hydraulic proportional spool valve, which controls the swash plate-actuating mechanism. The designed digital gain scheduling controller evaluates control signal values applied to the proportional valve. The digital controller is based on the new linear parameter-varying mathematical model. This model is estimated and validated from experimental data for various loading modes by an identification procedure. The controller is implemented by a rapid prototyping system, and various real-time loading experiments are performed. The obtained results with the gain scheduling PI controller are compared with those obtained by other classical PI controllers. The developed control system achieves appropriate control performance for a wide working mode of the axial piston pump. The comparison analyses of the experimental results showed the advantages of the adaptive PI controller and confirmed the possibility for its implementation in a real-time control system of different types of variable displacement pumps. Full article
(This article belongs to the Special Issue Advances in Fluid Power Systems and Actuators)
Show Figures

Figure 1

25 pages, 4344 KB  
Article
Sliding Mode Control of Spool Position for a Lead-Type Electro-Hydraulic Proportional Multi-Way Valve Based on Disturbance Observation
by Junxue Feng, Yongxin Jia, Wei Gao, Pengyang Cai, Kai Zhang, Chao Ai and Lizhong Wei
Machines 2025, 13(9), 774; https://doi.org/10.3390/machines13090774 - 29 Aug 2025
Viewed by 500
Abstract
Electro-hydraulic proportional multi-way valves are widely used in construction machinery and equipment, and their performance directly affects the operation performance of construction machinery and equipment. In this paper, an electro-hydraulic proportional multi-way valve was taken as the research object, and the precise control [...] Read more.
Electro-hydraulic proportional multi-way valves are widely used in construction machinery and equipment, and their performance directly affects the operation performance of construction machinery and equipment. In this paper, an electro-hydraulic proportional multi-way valve was taken as the research object, and the precise control of the position of the spool of electro-hydraulic proportional multi-way valves under multi-source disturbances was studied. A mathematical model of the electro-hydraulic proportional multi-way valve was established to analyze the influence of hardware controller parameters on the control current. A proportional multi-way valve expansion state observer was established to observe the changes in internal and external multi-source disturbances, and a sliding mode controller was used to compensate for the influence of these disturbances on the position control accuracy of the valve spool of proportional multi-way valves. Compared with the PID control method, the results show that, when using the control method proposed in this paper, the reduction in the step response time and improvement in pressure control accuracy for the pilot proportional reducing pressure valve were maximally 44.4% and 0.61%, respectively; the reduction in the step response time and improvement in control accuracy for the spool of the pilot proportional multi-way valve were maximally 69.48% and 61.74%, respectively. The research results in this paper can help to improve the performance and multi-condition adaptability of electro-hydraulic proportional multi-way valves. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

24 pages, 7195 KB  
Article
Research on Position-Feedback Control Strategy of Engineered Drilling Rig Hydro-Mechanical Composite Propulsion System
by Sibo Liu, Zhong Liu, Yuanzhou Li, Dandan Wu and Hongwang Zhao
Processes 2025, 13(8), 2470; https://doi.org/10.3390/pr13082470 - 4 Aug 2025
Viewed by 678
Abstract
To solve the problem of traditional engineering drilling rig propulsion systems being difficult to adapt to complex working conditions due to their bulky structure and poor load adaptability, this study proposes a new type of mechanical hydraulic composite electro-hydraulic proportional propulsion system. The [...] Read more.
To solve the problem of traditional engineering drilling rig propulsion systems being difficult to adapt to complex working conditions due to their bulky structure and poor load adaptability, this study proposes a new type of mechanical hydraulic composite electro-hydraulic proportional propulsion system. The system innovatively adopts a composite design of parallel hydraulic cylinders and movable pulley groups in mechanical structure, aiming to achieve system lightweighting through displacement multiplication effect. In terms of control strategy, a fuzzy adaptive PID controller based on position feedback was designed to improve the dynamic tracking performance and robustness of the system under nonlinear time-varying loads. The study established a multi physics domain mathematical model of the system and conducted joint simulation using AMESim and MATLAB/Simulink to deeply verify the overall performance of the proposed scheme. The simulation results show that the mechanical structure can stably achieve a 2:1 displacement multiplication effect, providing a feasible path for shortening the system size. Compared with traditional PID control, the proposed fuzzy adaptive PID control strategy significantly improves the positioning accuracy of the system. The maximum tracking errors of the master and slave hydraulic cylinders are reduced from 6.3 mm and 10.4 mm to 2.3 mm and 5.6 mm, respectively, and the accuracy is improved by 63.49% and 46.15%, providing theoretical support and technical reference for the design of engineering drilling rig propulsion control systems. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

23 pages, 3067 KB  
Article
Flow Control of Tractor Multi-Channel Hydraulic Tester Based on AMESim and PSO-Optimized Fuzzy-PID
by Qinglun Li, Xuefeng Bai, Yang Lu, Xiaoting Deng and Zhixiong Lu
Agriculture 2025, 15(11), 1190; https://doi.org/10.3390/agriculture15111190 - 30 May 2025
Viewed by 668
Abstract
To improve the dynamic response, linearity, and control accuracy of the YYSCT-250-3 tractor multi-circuit hydraulic output power tester, this study develops a particle swarm optimization (PSO)-tuned fuzzy-proportional–integral–derivative (Fuzzy-PID) control strategy. By modulating the actuator-driven ball valve’s rotation angle (0–90°) in the proportional flow [...] Read more.
To improve the dynamic response, linearity, and control accuracy of the YYSCT-250-3 tractor multi-circuit hydraulic output power tester, this study develops a particle swarm optimization (PSO)-tuned fuzzy-proportional–integral–derivative (Fuzzy-PID) control strategy. By modulating the actuator-driven ball valve’s rotation angle (0–90°) in the proportional flow valve, the controller uses both the flow rate error and its rate of change between the setpoint and the flow meter feedback as fuzzy inputs to adjust the PID outputs. A detailed mathematical model of the electro-hydraulic proportional flow system is established, incorporating hydraulic resistance torque on the ball valve spool and friction coefficients to enhance accuracy. Through MATLAB/Simulink (R2022a) simulations, the PSO algorithm optimizes the fuzzy membership functions and PID gains, yielding faster response, reduced overshoot, and minimal steady-state error. The optimized controller achieved relative steady-state flow errors within ±1.0% and absolute flow control errors within ±0.5 L/min, significantly outperforming the traditional PID controller. These results demonstrate that the PSO-optimized Fuzzy-PID approach effectively addresses the flow control challenges of the YYSCT-250-3, enhancing both testing efficiency and precision. This work provides a robust theoretical framework and practical reference for rapid, high-precision flow control in multi-channel hydraulic power testing. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

19 pages, 9531 KB  
Article
Stability Analysis and Static–Dynamic Characterization of Subminiature Two-Dimensional (2D) Electro-Hydraulic Servo Valves
by Lei Pan, Quanchao Dai, Zhankai Song, Chengtao Zhu and Sheng Li
Machines 2025, 13(5), 388; https://doi.org/10.3390/machines13050388 - 6 May 2025
Viewed by 613
Abstract
Aiming to solve the difficult problem of the miniaturization of servo valves, this paper designs a subminiature two-dimensional (2D) electro-hydraulic servo valve, which realizes the integration of the pilot stage and the power stage and significantly improves the work-to-weight ratio. Meanwhile, a high-power-density [...] Read more.
Aiming to solve the difficult problem of the miniaturization of servo valves, this paper designs a subminiature two-dimensional (2D) electro-hydraulic servo valve, which realizes the integration of the pilot stage and the power stage and significantly improves the work-to-weight ratio. Meanwhile, a high-power-density brushless DC motor (BLDC) is adopted as the electro-mechanical converter to further reduce the volume and mass. Firstly, the structure and working principle of the two-dimensional (2D) servo valve are described, and the mathematical model of the electro-mechanical converter is established. Aiming at the special working condition of the electro-mechanical converter with high-frequency oscillation at a small turning angle, this paper designs a position–current double closed-loop PID control algorithm based on the framework of the vector control algorithm (FOC). At the same time, the current feedforward compensation technique is included to cope with the high-frequency nonlinear disturbance problem of the electro-mechanical converter. The stability conditions of the electro-mechanical converter and the main valve were established based on the Routh–Hurwitz criterion, and the effects of the control algorithm of the electro-mechanical converter and the main parameters of the main valve on the stability of the system were analyzed. The dynamic and static characteristics of the 2D valve were simulated and analyzed by establishing a joint simulation model in Matlab/Simulink and AMESim. The prototype was fabricated, and the experimental bench was built; the size of the experimental prototype was 31.7 mm × 29.3 mm × 31 mm, and its mass was 73 g. Under a system pressure of 7 MPa, the flow rate of this valve was 5 L/min; the hysteresis loop of the spool-displacement input–output curve was 4.8%, and the linearity was 2.54%, which indicated that it had the ability of high-precision control and that it was suitable for the precision fluid system. The step response time was 7.5 ms, with no overshoot; the frequency response amplitude bandwidth was about 90 Hz (−3 dB); the phase bandwidth was about 95 Hz (−90°); and the dynamic characterization experiment showed that it had a fast response characteristic, which can satisfy the demand of high-frequency and high-dynamic working conditions. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

20 pages, 4797 KB  
Article
Control of DC Bus Voltage in a 10 kV Off-Grid Wind–Solar–Hydrogen Energy Storage System
by Jiangzhou Cheng, Jialin Meng, Gang Bao and Xinyu Hu
Energies 2025, 18(9), 2328; https://doi.org/10.3390/en18092328 - 2 May 2025
Viewed by 873
Abstract
We propose a coordinated control strategy for off-grid 10 kV wind–solar–hydrogen energy storage DC microgrid systems based on hybrid energy storage and controllable loads to improve their stability and accommodation level. First, mathematical models of each unit are established based on the operating [...] Read more.
We propose a coordinated control strategy for off-grid 10 kV wind–solar–hydrogen energy storage DC microgrid systems based on hybrid energy storage and controllable loads to improve their stability and accommodation level. First, mathematical models of each unit are established based on the operating characteristics of wind turbines, photovoltaic (PV) units, alkaline electrolyzers, fuel cells, and lithium batteries. Second, on the side of the electro-hydrogen hybrid energy storage DC/DC converter, the traditional dual-loop control is improved by proposing a control scheme combining an extended state observer with adaptive backstepping control (ESO-adaptive backstepping). On the load demand side, an electric spring incorporating adaptive fuzzy control (AFC) is introduced to adjust and compensate for the voltage. Finally, an actual case analysis is conducted using data from the Ningbo Cixi hydrogen–electric coupling DC microgrid demonstration project. The results demonstrate that the control method proposed in this study significantly outperforms the traditional double closed-loop control method. Specifically, the proposed method reduces the bus voltage fluctuation range in the presence of load disturbances by 24.07% and decreases the stabilization time by 56.92%. Additionally, the efficiency of the hydrogen fuel cell is enhanced by 31.88%. This control method can be applied to 10 kV DC microgrid systems with distributed energy resources. It aims to reduce the fluctuation amplitude of the DC bus voltage and enhance the system’s ability to withstand transient impact events. Full article
Show Figures

Figure 1

22 pages, 582 KB  
Article
On Symmetry Properties of Tensors for Electromagnetic Deformable Solids
by Angelo Morro and Claudio Giorgi
Symmetry 2025, 17(4), 557; https://doi.org/10.3390/sym17040557 - 6 Apr 2025
Viewed by 360
Abstract
As a generalization of the symmetry of the stress tensor of continuum mechanics, the paper investigates symmetry properties arising in models of magneto- and electro-mechanical interaction. First, the balance of angular momentum is considered, thus obtaining a symmetry condition that is applied as [...] Read more.
As a generalization of the symmetry of the stress tensor of continuum mechanics, the paper investigates symmetry properties arising in models of magneto- and electro-mechanical interaction. First, the balance of angular momentum is considered, thus obtaining a symmetry condition that is applied as a mathematical constraint on admissible constitutive equations. Next, thermodynamic restrictions are also investigated and, among others, a further symmetry condition is determined. The joint validity of the two symmetry conditions implies that the dependence on electromagnetic fields has to be through variables involving deformation gradients. These variables constitute two classes that prove to be Euclidean invariants. The simplest selection of the variables is just that of Lagrangian fields in the literature. Furthermore, the variables of one class allow a positive magnetostriction and of the other one allow a negative magnetostriction. Some applications to (NO) Fe-Si are outlined. The use of entropy production as a constitutive function allows generalization to dissipative and heat-conducting electromagnetic solids. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

29 pages, 8480 KB  
Article
Electrochemical–Thermal Model of a Lithium-Ion Battery
by Paul Kalungi and James Menart
Energies 2025, 18(7), 1764; https://doi.org/10.3390/en18071764 - 1 Apr 2025
Cited by 3 | Viewed by 1332
Abstract
Lithium-ion batteries are a promising type of energy storage for renewable energy applications owing to their high energy density. Extensive research has therefore been carried out, utilizing both experimental and computational methods to aid in a deeper understanding of these types of batteries. [...] Read more.
Lithium-ion batteries are a promising type of energy storage for renewable energy applications owing to their high energy density. Extensive research has therefore been carried out, utilizing both experimental and computational methods to aid in a deeper understanding of these types of batteries. This research work presents an electrochemical–thermal computational model for lithium-ion battery cells that analyzes electrical behavior, chemical behavior and thermal behavior. This computational model is developed by implementing a finite volume solution of a set of partial differential equations that describe this behavior in the anode, separator and cathode. These differential equations are mass conservation, charge conservation and energy conversion. In addition, the Butler Volmer equation is used to describe the exchange of lithium ions between the solid electrodes and the electrolyte and empirical relationships are used to describe the equilibrium electrical potentials. The results obtained by the developed MATLAB program are validated against those published in the literature. On top of the comparisons, a number of additional results are generated using the developed computational tool such as profiles of the lithium-ion concentrations, profiles of the voltage and profiles of the temperature across the battery. In addition, the voltage output and temperature as a function of time for specified current flows are given. The effect of including a temperature simulating routine in the battery model is assessed. This work contributes toward the advancement of renewable and clean energy by providing a tool and results that can be used to better understand battery energy storage. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

22 pages, 5001 KB  
Article
Energy Efficacy Enhancement in a Reactive Couple-Stress Fluid Induced by Electrokinetics and Pressure Gradient with Variable Fluid Properties
by Peace O. Banjo, Ramoshweu S. Lebelo, Samuel O. Adesanya and Emmanuel I. Unuabonah
Mathematics 2025, 13(4), 615; https://doi.org/10.3390/math13040615 - 13 Feb 2025
Cited by 1 | Viewed by 672
Abstract
This study presents a mathematical analysis of the collective effect of chemical reactions, variable fluid properties, and thermal stability of a hydromagnetic couple-stress fluid flowing through a microchannel driven by electro-osmosis and a pressure gradient. The viscosity of the biofluid is assumed to [...] Read more.
This study presents a mathematical analysis of the collective effect of chemical reactions, variable fluid properties, and thermal stability of a hydromagnetic couple-stress fluid flowing through a microchannel driven by electro-osmosis and a pressure gradient. The viscosity of the biofluid is assumed to depend on the temperature, while the electrical conductivity is assumed to be a linear function of the drift velocity. The governing equations are derived non-dimensionalized, and numerical solutions are obtained using the spectral Chebyshev collocation method. The numerical solution is validated using the shooting Runge–Kutta method. The effects of varying the parameters on the thermal stability, temperature, velocity, and entropy profiles are discussed with adequate interpretations using tables and graphs. The results reveal that the chemical reactions and viscosity parameter increase the fluid temperature, while the Hartmann number decreases the temperature and increases the flow velocity and entropy generation. It was also observed that the chemical reactions and viscosity parameter increased the entropy at the channel walls, while the Hartmann number decreased the entropy at the core center of the channel. This study has tremendous empirical significance, including but not limited to biophysical applications of devices, engineering applications such as control systems, and thermo-fluidic transport. Full article
(This article belongs to the Special Issue Advanced Computational Methods for Fluid Dynamics and Applications)
Show Figures

Figure 1

20 pages, 9366 KB  
Article
Composite Power Management Strategy for Hybrid Powered Compound-Wing Aircraft in Level Flight
by Siqi An, Xu Peng, Yuantao Gan, Jingyu Yang, Guofei Xiang and Songyi Dian
Energies 2025, 18(4), 799; https://doi.org/10.3390/en18040799 - 8 Feb 2025
Viewed by 1221
Abstract
A composite strategy is proposed to address the optimal power management for a hybrid powered compound-wing aircraft, which integrates bang–bang regulation with optimal demand chasing regulation. The electro-gasoline hybrid power system enhances the overall flight endurance of vertical take-off and landing compound-wing aircraft. [...] Read more.
A composite strategy is proposed to address the optimal power management for a hybrid powered compound-wing aircraft, which integrates bang–bang regulation with optimal demand chasing regulation. The electro-gasoline hybrid power system enhances the overall flight endurance of vertical take-off and landing compound-wing aircraft. The power consumption in level flight appears to be much lower than that in hovering, enabling the hybrid power system to simultaneously energize and charge the battery pack. In order to minimize fuel consumption and battery pack degradation during level cruise flight, a power management strategy that serves for both battery charging and thrust energizing is worthy of careful consideration. To obtain the desired features and design the regularity strategy of the power system, linear and nonlinear models are established based on the configuration of an electro-gasoline series hybrid power system installed in the proposed aircraft, with mathematical modelling of key components and units. A notable feature of semi-fixing for battery voltage and engine rotational speed has been qualitatively identified and subsequently quantitatively validated on the testbench. After conducting simulations and comparing with other strategies, the composite strategy demonstrates appropriate fuel consumption and battery degradation, effectively achieving cost minimization. Testbench evaluation confirms the effectiveness of this proposed power management strategy. Furthermore, the practicality of the hybrid power system and its associated level flight composite power management strategy are validated by tests conducted on a 30 kg aircraft prototype, thereby showcasing the potential to enhance flight performance. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

12 pages, 1747 KB  
Article
Study of the Current–Voltage Characteristics of Membrane Systems Using Neural Networks
by Evgenia Kirillova, Anna Kovalenko and Makhamet Urtenov
AppliedMath 2025, 5(1), 10; https://doi.org/10.3390/appliedmath5010010 - 5 Feb 2025
Cited by 1 | Viewed by 810
Abstract
This article is dedicated to the construction of neural networks for the prediction of the current–voltage characteristic (CVC). CVC is the most important characteristic of the mass transfer process in electro-membrane systems (EMS). CVC is used to evaluate and select the optimal design [...] Read more.
This article is dedicated to the construction of neural networks for the prediction of the current–voltage characteristic (CVC). CVC is the most important characteristic of the mass transfer process in electro-membrane systems (EMS). CVC is used to evaluate and select the optimal design and effective operating modes of EMS. Each calculation of the CVC at the given values of the input parameters, using developed analytical-numerical models, takes a lot of time, so the CVC is calculated in a limited range of parameter changes. The creation of neural networks allowed for the use of prediction to obtain the CVC for a wider range of input parameter values and much faster, saving computing resources. The regularities of the behavior of CVC for various values of input parameters were revealed. During this work, several different neural network architectures were developed and tested. The best predictive results on test samples are given by the neural network consisting of convolutional and LSTM (Long Short-Term Memory) layers. Full article
Show Figures

Figure 1

18 pages, 688 KB  
Review
Moving Mesh Partial Differential Equation Modelling of a 5CB Nematic Liquid Crystal Confined in Symmetric and Asymmetric Pi-Cells: A Review
by Antonino Amoddeo
Symmetry 2025, 17(1), 30; https://doi.org/10.3390/sym17010030 - 27 Dec 2024
Viewed by 994
Abstract
The switching properties of nematic liquid crystals under electrical and mechanical stresses play a fundamental role in the design and fabrication of electro-optical devices. Depending on the stress applied to a nematic texture confined in a pi-cell, different nematic configurations are allowed inside [...] Read more.
The switching properties of nematic liquid crystals under electrical and mechanical stresses play a fundamental role in the design and fabrication of electro-optical devices. Depending on the stress applied to a nematic texture confined in a pi-cell, different nematic configurations are allowed inside the cell, while the induced distortion is relaxed by means of growing biaxial domains which can end with the order reconstruction phenomenon, a transition connecting two topologically different nematic textures which can occur in different regions of the pi-cell. Due to the different space and time scales involved, modelling in the frame of the Landau–de Gennes order tensor theory is mandatory to correctly describe the fast-switching mechanisms involved, while from a computational point of view, sophisticated numerical techniques are required to grasp tiny and fast features which can be predicted by the mathematical modelling. In this paper, we review the results obtained from the mathematical and numerical modelling of a 5CB liquid crystal confined in a pi-cell performed by using a numerical technique based on the equidistribution principle, tailored for the description of a complex physical system in which fast switching phenomena are coupled with strong distortions. After a recap on the underneath theory and on the numerical method, we focus on the switching properties of the nematic material when subjected to variable mechanical and electrical stresses in both symmetric and asymmetric conditions. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

Back to TopTop