Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (56,320)

Search Parameters:
Keywords = electrical engineering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1972 KB  
Article
Few-Shot Identification of Individuals in Sports: The Case of Darts
by Val Vec, Anton Kos, Rongfang Bie, Libin Jiao, Haodi Wang, Zheng Zhang, Sašo Tomažič and Anton Umek
Information 2025, 16(10), 865; https://doi.org/10.3390/info16100865 (registering DOI) - 5 Oct 2025
Abstract
This paper contains an analysis of methods for person classification based on signals from wearable IMU sensors during sports. While this problem has been investigated in prior work, existing approaches have not addressed it within the context of few-shot or minimal-data scenarios. A [...] Read more.
This paper contains an analysis of methods for person classification based on signals from wearable IMU sensors during sports. While this problem has been investigated in prior work, existing approaches have not addressed it within the context of few-shot or minimal-data scenarios. A few-shot scenario is especially useful as the main use case for person identification in sports systems is to be integrated into personalised biofeedback systems in sports. Such systems should provide personalised feedback that helps athletes learn faster. When introducing a new user, it is impractical to expect them to first collect many recordings. We demonstrate that the problem can be solved with over 90% accuracy in both open-set and closed-set scenarios using established methods. However, the challenge arises when applying few-shot methods, which do not require retraining the model to recognise new people. Most few-shot methods perform poorly due to feature extractors that learn dataset-specific representations, limiting their generalizability. To overcome this, we propose a combination of an unsupervised feature extractor and a prototypical network. This approach achieves 91.8% accuracy in the five-shot closed-set setting and 81.5% accuracy in the open-set setting, with a 99.6% rejection rate for unknown athletes. Full article
(This article belongs to the Special Issue Machine Learning and Data Mining for User Classification)
Show Figures

Figure 1

24 pages, 3320 KB  
Article
Three-Dimensional Trajectory Tracking for Underactuated Quadrotor-Like Autonomous Underwater Vehicles Subject to Input Saturation
by Chunchun Cheng, Xing Han, Pengfei Xu, Yi Huang, Liwei Kou and Yang Ou
J. Mar. Sci. Eng. 2025, 13(10), 1915; https://doi.org/10.3390/jmse13101915 (registering DOI) - 5 Oct 2025
Abstract
This paper focuses on the design of a three-dimensional trajectory tracking controller for underactuated quadrotor-like autonomous underwater vehicles (QAUVs) subject to actuator saturation. A hand position method with a signum function is proposed to handle the under-actuation of QAUVs, while avoiding trajectory tracking [...] Read more.
This paper focuses on the design of a three-dimensional trajectory tracking controller for underactuated quadrotor-like autonomous underwater vehicles (QAUVs) subject to actuator saturation. A hand position method with a signum function is proposed to handle the under-actuation of QAUVs, while avoiding trajectory tracking in the opposite direction. The dynamic surface control (DSC) technique is integrated to eliminates the complexity explosion problem of standard backstepping. An auxiliary dynamic system is employed to handle input saturation. By using Lyapunov stability theory and phase plane analysis, it is proved that the proposed control law ensures that the QAUVs converge to the desired position with arbitrarily small errors, while guaranteeing the uniform ultimate boundedness of the whole closed-loop system. Comparative simulation results verify the effectiveness of the proposed control law. Full article
24 pages, 13326 KB  
Review
Applications of Heat Pipes in Thermal Management
by Milan Malcho, Jozef Jandačka, Richard Lenhard, Katarína Kaduchová and Patrik Nemec
Energies 2025, 18(19), 5282; https://doi.org/10.3390/en18195282 (registering DOI) - 5 Oct 2025
Abstract
The paper explores the application of heat pipes in thermal management for efficient heat dissipation, particularly in electrical equipment with high heat loads. Heat pipes are devices that transfer heat with high efficiency through the phase transition of the working medium (e.g., water, [...] Read more.
The paper explores the application of heat pipes in thermal management for efficient heat dissipation, particularly in electrical equipment with high heat loads. Heat pipes are devices that transfer heat with high efficiency through the phase transition of the working medium (e.g., water, alcohol, ammonia) between the evaporator and the condenser, while they have no moving parts and are distinguished by their simplicity of construction. Different types of heat pipes—gravity, capillary, and closed loop (thermosiphon loop)—are suitable according to specific applications and requirements for the working position, temperature range, and condensate return transport. An example of an effective application is the removal of heat from the internal winding of a static energy converter transformer, where the use of a gravity heat pipe has enabled effective cooling even through epoxy insulation and kept the winding temperature below 80 °C. Other applications include the cooling of mounting plates, power transistors, and airtight cooling of electrical enclosures with the ability to dissipate lost thermal power in the order of 102 to 103 W. A significant advantage of heat pipes is also the ability to dust-tightly seal equipment and prevent the build-up of dirt, thereby increasing the reliability of the electronics. In the field of environmental technology, systems have been designed to reduce the radiant power of fireplace inserts by up to 40%, or to divert their heat output of up to about 3 kW into hot water storage tanks, thus optimising the use of the heat produced and preventing overheating of the living space. The use of nanoparticles in the working substances (e.g., Al2O3 in water) makes it possible to intensify the boiling process and thus increase the heat transfer intensity by up to 30% compared to pure water. The results of the presented research confirm the versatility and high efficiency of the use of heat pipes for modern cooling requirements in electronics and environmental engineering. Full article
(This article belongs to the Special Issue Advances in Numerical and Experimental Heat Transfer)
Show Figures

Figure 1

23 pages, 24211 KB  
Article
BMDNet-YOLO: A Lightweight and Robust Model for High-Precision Real-Time Recognition of Blueberry Maturity
by Huihui Sun and Rui-Feng Wang
Horticulturae 2025, 11(10), 1202; https://doi.org/10.3390/horticulturae11101202 (registering DOI) - 5 Oct 2025
Abstract
Accurate real-time detection of blueberry maturity is vital for automated harvesting. However, existing methods often fail under occlusion, variable lighting, and dense fruit distribution, leading to reduced accuracy and efficiency. To address these challenges, we designed a lightweight deep learning framework that integrates [...] Read more.
Accurate real-time detection of blueberry maturity is vital for automated harvesting. However, existing methods often fail under occlusion, variable lighting, and dense fruit distribution, leading to reduced accuracy and efficiency. To address these challenges, we designed a lightweight deep learning framework that integrates improved feature extraction, attention-based fusion, and progressive transfer learning to enhance robustness and adaptability To overcome these challenges, we propose BMDNet-YOLO, a lightweight model based on an enhanced YOLOv8n. The backbone incorporates a FasterPW module with parallel convolution and point-wise weighting to improve feature extraction efficiency and robustness. A coordinate attention (CA) mechanism in the neck enhances spatial-channel feature selection, while adaptive weighted concatenation ensures efficient multi-scale fusion. The detection head employs a heterogeneous lightweight structure combining group and depthwise separable convolutions to minimize parameter redundancy and boost inference speed. Additionally, a three-stage transfer learning framework (source-domain pretraining, cross-domain adaptation, and target-domain fine-tuning) improves generalization. Experiments on 8,250 field-collected and augmented images show BMDNet-YOLO achieves 95.6% mAP@0.5, 98.27% precision, and 94.36% recall, surpassing existing baselines. This work offers a robust solution for deploying automated blueberry harvesting systems. Full article
21 pages, 1699 KB  
Article
LSTM-Based Predefined-Time Model Predictive Tracking Control for Unmanned Surface Vehicles with Disturbance and Actuator Faults
by Yuxing Zhou, Li-Ying Hao and Hudayberenov Atajan
J. Mar. Sci. Eng. 2025, 13(10), 1914; https://doi.org/10.3390/jmse13101914 (registering DOI) - 5 Oct 2025
Abstract
Predefined-time control has been extensively implemented in marine control systems due to its capability to enhance transient performance and achieve superior control specifications. However, inaccurate control execution resulting from faulty actuators can compromise this control strategy and critically undermine system performance. To address [...] Read more.
Predefined-time control has been extensively implemented in marine control systems due to its capability to enhance transient performance and achieve superior control specifications. However, inaccurate control execution resulting from faulty actuators can compromise this control strategy and critically undermine system performance. To address this challenge, this paper propose a predefined-time model predictive fault-tolerant control strategy for unmanned surface vessels (USVs) while considering actuator failures and ocean disturbances. Firstly, a novel predefined-time model predictive control (PTMPC) strategy is designed by incorporating contraction constraints derived from an auxiliary predefined-time control system into the proposed optimization framework. This ensures that the resulting control variables guarantee predefined-time convergence of tracking errors when applied to the USV system. Furthermore, a long short-term memory-based neural network for disturbance prediction is integrated into the control strategy, leveraging its exceptional capability in modeling temporal sequences to achieve accurate forecasting of ocean disturbances. Thirdly, the proposed control scheme utilizes its integrated fault observation mechanism to actively compensate for actuator failures through real-time fault estimation, ensuring predefined-time convergence performance while providing rigorous guarantees of closed-loop stability and feasibility. Finally, simulation results demonstrate the efficacy and superiority of the proposed algorithm. Full article
(This article belongs to the Special Issue The Control and Navigation of Autonomous Surface Vehicles)
27 pages, 13025 KB  
Article
Threshold Adaptation for Improved Wrapper-Based Evolutionary Feature Selection
by Uroš Mlakar, Iztok Fister and Iztok Fister
Biomimetics 2025, 10(10), 670; https://doi.org/10.3390/biomimetics10100670 (registering DOI) - 5 Oct 2025
Abstract
Feature selection is essential for enhancing classification accuracy, reducing overfitting, and improving interpretability in high-dimensional datasets. Evolutionary Feature Selection (EFS) methods employ a threshold parameter θ to decide feature inclusion, yet the widely used static setting θ=0.5 may not [...] Read more.
Feature selection is essential for enhancing classification accuracy, reducing overfitting, and improving interpretability in high-dimensional datasets. Evolutionary Feature Selection (EFS) methods employ a threshold parameter θ to decide feature inclusion, yet the widely used static setting θ=0.5 may not yield optimal results. This paper presents the first large-scale, systematic evaluation of threshold adaptation mechanisms in wrapper-based EFS across a diverse number of benchmark datasets. We examine deterministic, adaptive, and self-adaptive threshold parameter control under a unified framework, which can be used in an arbitrary bio-inspired algorithm. Extensive experiments and statistical analyses of classification accuracy, feature subset size, and convergence properties demonstrate that adaptive mechanisms outperform the static threshold parameter control significantly. In particular, they not only provide superior tradeoffs between accuracy and subset size but also surpass the state-of-the-art feature selection methods on multiple benchmarks. Our findings highlight the critical role of threshold adaptation in EFS and establish practical guidelines for its effective application. Full article
(This article belongs to the Section Biological Optimisation and Management)
14 pages, 2623 KB  
Article
Improving the Corrosion Resistance and Blood Compatibility of Magnesium Alloy via Fe-Based Amorphous Composite Coating Prepared by Magnetron Sputtering
by Guizhong Guo, Shusen Hou, Bing Liu, Xingzhu Du and Dunwen Zuo
Coatings 2025, 15(10), 1167; https://doi.org/10.3390/coatings15101167 (registering DOI) - 5 Oct 2025
Abstract
Magnesium alloy represents a typical category of biodegradable medical materials. However, the poor corrosion resistance and rapid degradation have significantly hindered the clinical adoption of magnesium alloy implants. This paper puts forward a method to improve the corrosion resistance of magnesium alloy by [...] Read more.
Magnesium alloy represents a typical category of biodegradable medical materials. However, the poor corrosion resistance and rapid degradation have significantly hindered the clinical adoption of magnesium alloy implants. This paper puts forward a method to improve the corrosion resistance of magnesium alloy by using an Fe-based composite coating. The microstructure and composition of the coating were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive spectroscopy (EDS). The corrosion resistance was evaluated through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements conducted in simulated body fluid, while the degradation behavior of the samples was evaluated by examining the hydrogen evolution volume and corrosion morphology during immersion tests. The results indicate that the composite coating exhibits a dual-layer structure, consisting of an amorphous carbon–fluorine transition layer and an iron-rich surface layer. After coating treatment, the corrosion current density of magnesium alloy decreased from 1.38 × 10−4 to 3.41 × 10−6 A/cm2. Throughout a 28-day immersion period, the composite-coated sample demonstrated a remarkably low hydrogen evolution rate and maintained a smooth, intact surface. Furthermore, hemolysis and platelet adhesion tests confirmed the outstanding blood compatibility of the composite-coated magnesium alloy, showing an ultralow hemolysis rate of 0.1% and minimal platelet adhesion with well-preserved morphology. Full article
(This article belongs to the Section Bioactive Coatings and Biointerfaces)
Show Figures

Figure 1

30 pages, 1606 KB  
Article
Thermal Entropy Generation in Magnetized Radiative Flow Through Porous Media Over a Stretching Cylinder: An RSM-Based Study
by Shobha Visweswara, Baskar Palani, Fatemah H. H. Al Mukahal, S. Suresh Kumar Raju, Basma Souayeh and Sibyala Vijayakumar Varma
Mathematics 2025, 13(19), 3189; https://doi.org/10.3390/math13193189 (registering DOI) - 5 Oct 2025
Abstract
Magnetohydrodynamic (MHD) flow and heat transfer in porous media are central to many engineering applications, including heat exchangers, MHD generators, and polymer processing. This study examines the boundary layer flow and thermal behavior of an electrically conducting viscous fluid over a porous stretching [...] Read more.
Magnetohydrodynamic (MHD) flow and heat transfer in porous media are central to many engineering applications, including heat exchangers, MHD generators, and polymer processing. This study examines the boundary layer flow and thermal behavior of an electrically conducting viscous fluid over a porous stretching tube. The model accounts for nonlinear thermal radiation, internal heat generation/absorption, and Darcy–Forchheimer drag to capture porous medium resistance. Similarity transformations reduce the governing equations to a system of coupled nonlinear ordinary differential equations, which are solved numerically using the BVP4C technique with Response Surface Methodology (RSM) and sensitivity analysis. The effects of dimensionless parameters magnetic field strength (M), Reynolds number (Re), Darcy–Forchheimer parameter (Df), Brinkman number (Br), Prandtl number (Pr), nonlinear radiation parameter (Rd), wall-to-ambient temperature ratio (rw), and heat source/sink parameter (Q) are investigated. Results show that increasing M, Df, and Q suppresses velocity and enhances temperature due to Lorentz and porous drag effects. Higher Re raises pressure but reduces near-wall velocity, while rw, Rd, and internal heating intensify thermal layers. The entropy generation analysis highlights the competing roles of viscous, magnetic, and thermal irreversibility, while the Bejan number trends distinctly indicate which mechanism dominates under different parameter conditions. The RSM findings highlight that rw and Rd consistently reduce the Nusselt number (Nu), lowering thermal efficiency. These results provide practical guidance for optimizing energy efficiency and thermal management in MHD and porous media-based systems.: Full article
(This article belongs to the Special Issue Advances and Applications in Computational Fluid Dynamics)
20 pages, 7975 KB  
Article
Trunk Detection in Complex Forest Environments Using a Lightweight YOLOv11-TrunkLight Algorithm
by Siqi Zhang, Yubi Zheng, Rengui Bi, Yu Chen, Cong Chen, Xiaowen Tian and Bolin Liao
Sensors 2025, 25(19), 6170; https://doi.org/10.3390/s25196170 (registering DOI) - 5 Oct 2025
Abstract
The autonomous navigation of inspection robots in complex forest environments heavily relies on accurate trunk detection. However, existing detection models struggle to achieve both high accuracy and real-time performance on resource-constrained edge devices. To address this challenge, this study proposes a lightweight algorithm [...] Read more.
The autonomous navigation of inspection robots in complex forest environments heavily relies on accurate trunk detection. However, existing detection models struggle to achieve both high accuracy and real-time performance on resource-constrained edge devices. To address this challenge, this study proposes a lightweight algorithm named YOLOv11-TrunkLight. The core innovations of the algorithm include (1) a novel StarNet_Trunk backbone network, which replaces traditional residual connections with element-wise multiplication and incorporates depthwise separable convolutions, significantly reducing computational complexity while maintaining a large receptive field; (2) the C2DA deformable attention module, which effectively handles the geometric deformation of tree trunks through dynamic relative position bias encoding; and (3) the EffiDet detection head, which improves detection speed and reduces the number of parameters through dual-path feature decoupling and a dynamic anchor mechanism. Experimental results demonstrate that compared to the baseline YOLOv11 model, our method improves detection speed by 13.5%, reduces the number of parameters by 34.6%, and decreases computational load (FLOPs) by 39.7%, while the average precision (mAP) is only marginally reduced by 0.1%. These advancements make the algorithm particularly suitable for deployment on resource-constrained edge devices of inspection robots, providing reliable technical support for intelligent forestry management. Full article
Show Figures

Figure 1

27 pages, 1664 KB  
Review
Actomyosin-Based Nanodevices for Sensing and Actuation: Bridging Biology and Bioengineering
by Nicolas M. Brunet, Peng Xiong and Prescott Bryant Chase
Biosensors 2025, 15(10), 672; https://doi.org/10.3390/bios15100672 (registering DOI) - 4 Oct 2025
Abstract
The actomyosin complex—nature’s dynamic engine composed of actin filaments and myosin motors—is emerging as a versatile tool for bio-integrated nanotechnology. This review explores the growing potential of actomyosin-powered systems in biosensing and actuation applications, highlighting their compatibility with physiological conditions, responsiveness to biochemical [...] Read more.
The actomyosin complex—nature’s dynamic engine composed of actin filaments and myosin motors—is emerging as a versatile tool for bio-integrated nanotechnology. This review explores the growing potential of actomyosin-powered systems in biosensing and actuation applications, highlighting their compatibility with physiological conditions, responsiveness to biochemical and physical cues and modular adaptability. We begin with a comparative overview of natural and synthetic nanomachines, positioning actomyosin as a uniquely scalable and biocompatible platform. We then discuss experimental advances in controlling actomyosin activity through ATP, calcium, heat, light and electric fields, as well as their integration into in vitro motility assays, soft robotics and neural interface systems. Emphasis is placed on longstanding efforts to harness actomyosin as a biosensing element—capable of converting chemical or environmental signals into measurable mechanical or electrical outputs that can be used to provide valuable clinical and basic science information such as functional consequences of disease-associated genetic variants in cardiovascular genes. We also highlight engineering challenges such as stability, spatial control and upscaling, and examine speculative future directions, including emotion-responsive nanodevices. By bridging cell biology and bioengineering, actomyosin-based systems offer promising avenues for real-time sensing, diagnostics and therapeutic feedback in next-generation biosensors. Full article
(This article belongs to the Special Issue Biosensors for Personalized Treatment)
Show Figures

Figure 1

17 pages, 1613 KB  
Article
Superimposed CSI Feedback Assisted by Inactive Sensing Information
by Mintao Zhang, Haowen Jiang, Zilong Wang, Linsi He, Yuqiao Yang, Mian Ye and Chaojin Qing
Sensors 2025, 25(19), 6156; https://doi.org/10.3390/s25196156 (registering DOI) - 4 Oct 2025
Abstract
In massive multiple-input and multiple-output (mMIMO) systems, superimposed channel state information (CSI) feedback is developed to improve the occupation of uplink bandwidth resources. Nevertheless, the interference from this superimposed mode degrades the recovery performance of both downlink CSI and uplink data sequences. Although [...] Read more.
In massive multiple-input and multiple-output (mMIMO) systems, superimposed channel state information (CSI) feedback is developed to improve the occupation of uplink bandwidth resources. Nevertheless, the interference from this superimposed mode degrades the recovery performance of both downlink CSI and uplink data sequences. Although machine learning (ML)-based methods effectively mitigate superimposed interference by leveraging the multi-domain features of downlink CSI, the complex interactions among network model parameters cause a significant burden on system resources. To address these issues, inspired by sensing-assisted communication, we propose a novel superimposed CSI feedback method assisted by inactive sensing information that previously existed but was not utilized at the base station (BS). To the best of our knowledge, this is the first time that inactive sensing information is utilized to enhance superimposed CSI feedback. In this method, a new type of modal data, different from communication data, is developed to aid in interference suppression without requiring additional hardware at the BS. Specifically, the proposed method utilizes location, speed, and path information extracted from sensing devices to derive prior information. Then, based on the derived prior information, denoising processing is applied to both the delay and Doppler dimensions of downlink CSI in the delay—Doppler (DD) domain, significantly enhancing the recovery accuracy. Simulation results demonstrate the performance improvement of downlink CSI and uplink data sequences when compared to both classic and novel superimposed CSI feedback methods. Moreover, against parameter variations, simulation results also validate the robustness of the proposed method. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

18 pages, 6931 KB  
Article
Research on Multi-Sensor Data Fusion Based Real-Scene 3D Reconstruction and Digital Twin Visualization Methodology for Coal Mine Tunnels
by Hongda Zhu, Jingjing Jin and Sihai Zhao
Sensors 2025, 25(19), 6153; https://doi.org/10.3390/s25196153 (registering DOI) - 4 Oct 2025
Abstract
This paper proposes a multi-sensor data-fusion-based method for real-scene 3D reconstruction and digital twin visualization of coal mine tunnels, aiming to address issues such as low accuracy in non-photorealistic modeling and difficulties in feature object recognition during traditional coal mine digitization processes. The [...] Read more.
This paper proposes a multi-sensor data-fusion-based method for real-scene 3D reconstruction and digital twin visualization of coal mine tunnels, aiming to address issues such as low accuracy in non-photorealistic modeling and difficulties in feature object recognition during traditional coal mine digitization processes. The research employs cubemap-based mapping technology to project acquired real-time tunnel images onto six faces of a cube, combined with navigation information, pose data, and synchronously acquired point cloud data to achieve spatial alignment and data fusion. On this basis, inner/outer corner detection algorithms are utilized for precise image segmentation, and a point cloud region growing algorithm integrated with information entropy optimization is proposed to realize complete recognition and segmentation of tunnel planes (e.g., roof, floor, left/right sidewalls) and high-curvature feature objects (e.g., ventilation ducts). Furthermore, geometric dimensions extracted from segmentation results are used to construct 3D models, and real-scene images are mapped onto model surfaces via UV (U and V axes of texture coordinate) texture mapping technology, generating digital twin models with authentic texture details. Experimental validation demonstrates that the method performs excellently in both simulated and real coal mine environments, with models capable of faithfully reproducing tunnel spatial layouts and detailed features while supporting multi-view visualization (e.g., bottom view, left/right rotated views, front view). This approach provides efficient and precise technical support for digital twin construction, fine-grained structural modeling, and safety monitoring of coal mine tunnels, significantly enhancing the accuracy and practicality of photorealistic 3D modeling in intelligent mining applications. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

18 pages, 4299 KB  
Article
Unique Dielectric Protection for Microwave and Millimeter-Wave Antenna Applications
by Hafiz Usman Tahseen, Luca Francioso, Syed Shah Irfan Hussain and Luca Catarinucci
Telecom 2025, 6(4), 74; https://doi.org/10.3390/telecom6040074 (registering DOI) - 4 Oct 2025
Abstract
Dielectric covers are generally used to provide external protection to antenna systems by providing electromagnetic transparency. They are utilized in ground applications as well as for protecting airborne, Sat Com, terrestrial and underwater antenna installations. This paper presents a unique and universal design [...] Read more.
Dielectric covers are generally used to provide external protection to antenna systems by providing electromagnetic transparency. They are utilized in ground applications as well as for protecting airborne, Sat Com, terrestrial and underwater antenna installations. This paper presents a unique and universal design of dielectric sandwich-layered cover that can effectively protect antennas operating in a large frequency band from 1 GHz to 28 GHz, including millimeter-wave and microwave ranges, with minimum insertion loss for various incident angles. The proposed single dielectric cover may give sufficient protection for an entire tower or chimney housing multiple antennas, ranging from first-generation to fifth-generation microwave base-station antennas, as well as other wireless/broadcast antennas in millimeter or lower frequency ranges. In the first step, optimum dielectric constant and thickness of the dielectric cover are calculated numerically through a MATLAB (R2015a) code. In the second step, a floquet port analysis is performed to observe the insertion loss through the transmission coefficient against various frequency band-spectrums in microwave and millimeter-wave ranges for validation of the proposed synthesis. The ANSYS 18.2 HFSS tool is used for the purpose. In the third step, fabrication of the dielectric-layered structure is completed with the optimum design parameters. In the final step, the dielectric package is tested under various fabricated antennas in different frequency ranges. Full article
Show Figures

Figure 1

15 pages, 12325 KB  
Article
Failure Analysis of Effects of Multiple Impact Conditions on Cylindrical Lithium-Ion Batteries
by Jianying Li, Bingsen Wen, Yinghong Xie, Hao Wen, Di Cao, Chaoming Cai and Hai Wang
Eng 2025, 6(10), 266; https://doi.org/10.3390/eng6100266 (registering DOI) - 4 Oct 2025
Abstract
This study systematically investigated the structural damage and electrochemical performance changes in 18650 cylindrical lithium-ion batteries under multiple impacts through a 10 kg drop-hammer impact test. The experimental results showed that as the state of charge (SOC) increased from 25% to 75%, the [...] Read more.
This study systematically investigated the structural damage and electrochemical performance changes in 18650 cylindrical lithium-ion batteries under multiple impacts through a 10 kg drop-hammer impact test. The experimental results showed that as the state of charge (SOC) increased from 25% to 75%, the battery’s stiffness increased and its impact resistance improved, but the electrolyte leakage intensified, with a higher risk of leakage at high SOCs. An increase in the impact force led to enhanced voltage fluctuations and a continuous increase in deformation. After an impact of 500 mm, the voltage decreased about 0.02 V, while after an impact of 1000 mm, it dropped about 0.04 V. Axial impacts caused a sudden voltage drop to 1.96 V, resulting in permanent failure; compared with planar impacts, cylindrical surface impacts are more likely to cause compression in the middle and warping at both ends, significantly increasing the risk of internal short circuits. CT scans revealed that the battery porosity can reach up to 3.09% under high impact energy, and the deformation rate can reach 28.39%. The research results provide a quantitative experimental basis for the impact-resistant design and safety assessment of power batteries. Full article
Show Figures

Figure 1

22 pages, 2587 KB  
Article
Self-Energy-Harvesting Pacemakers: An Example of Symbiotic Synthetic Biology
by Kuntal Kumar Das, Ashutosh Kumar Dubey, Bikramjit Basu and Yogendra Narain Srivastava
SynBio 2025, 3(4), 15; https://doi.org/10.3390/synbio3040015 (registering DOI) - 4 Oct 2025
Abstract
While synthetic biology has traditionally focused on creating biological systems often through genetic engineering, emerging technologies, for example, implantable pacemakers with integrated piezo-electric and tribo-electric materials are beginning to enlarge the classical domain into what we call symbiotic synthetic biology. These devices are [...] Read more.
While synthetic biology has traditionally focused on creating biological systems often through genetic engineering, emerging technologies, for example, implantable pacemakers with integrated piezo-electric and tribo-electric materials are beginning to enlarge the classical domain into what we call symbiotic synthetic biology. These devices are permanently attached to a body, although non-living or genetically unaltered, and closely mimic biological behavior by harvesting biomechanical energy and providing functions, such as autonomous heart pacing. They form active interfaces with human tissues and operate as hybrid systems, similar to synthetic organs. In this context, the present paper first presents a short summary of previous in vivo studies on piezo-electric composites in relation to their deployment as battery-less pacemakers. This is then followed by a summary of a recent theoretical work using a damped harmonic resonance model, which is being extended to mimic the functioning of such devices. We then extend the theoretical study further to include new solutions and obtain a sum rule for the power output per cycle in such systems. In closing, we present our quantitative understanding to explore the modulation of the quantum vacuum energy (Casimir effect) by periodic body movements to power pacemakers. Taken together, the present work provides the scientific foundation of the next generation bio-integrated intelligent implementation. Full article
Back to TopTop