Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,009)

Search Parameters:
Keywords = electrical and optical properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 2294 KB  
Review
From SiGe Solidification to Flexible Photovoltaic Fibers for Military Applications: Current Status and Development Prospects
by Witalis Pellowski, Agnieszka Gonciarz, Jacek Miedziak, Krzysztof A. Bogdanowicz, Piotr Krysiak, Maciej Śliwakowski, Marcin Szczepaniak, Wojciech Przybyl, Monika Marzec and Agnieszka Iwan
Energies 2026, 19(3), 654; https://doi.org/10.3390/en19030654 - 27 Jan 2026
Abstract
The main goal of this review is to comprehensively present the properties of silicon, germanium, and silicon-germanium systems and analyze current possibilities of producing fibers based on them for applications as a photovoltaic fabric for a future soldier. The vision of the future [...] Read more.
The main goal of this review is to comprehensively present the properties of silicon, germanium, and silicon-germanium systems and analyze current possibilities of producing fibers based on them for applications as a photovoltaic fabric for a future soldier. The vision of the future is to produce a feather-light photovoltaic optic fiber, exhibiting mechanical properties typical of Kevlar, enabling power/recharging of portable electric devices while simultaneously protecting against mechanical damage and explosions. This article analyzes, in detail, issues such as the occurrence and mobility of germanium in the environment, the life cycle of SiGe photovoltaic fabrics, ecotoxicological and human health implications, sustainable development strategies and policy implications, and analytical challenges due to low concentrations in the environment. Moreover, the advantages and disadvantages of silicon-based solar cells are analyzed, taking into account various factors, including environmental factors. Finally, the soldier of the future is analyzed. Full article
(This article belongs to the Special Issue Power Electronics Technology and Application)
Show Figures

Figure 1

14 pages, 3858 KB  
Article
Talking with a Ghost: Semi-Virtual Coupled Levitated Oscillators
by Ronghao Yin, Yugang Ren, Deok Young Seo, Anoushka Sinha, Jonathan D. Pritchett, Qiongyuan Wu and James Millen
Photonics 2026, 13(2), 117; https://doi.org/10.3390/photonics13020117 - 27 Jan 2026
Abstract
Mesoscopic particles levitated by optical, electrical or magnetic fields act as mechanical oscillators with a range of surprising properties, such as tuneable oscillation frequencies, access to rotational motion, and remarkable quality factors. Coupled levitated particles display rich dynamics and non-reciprocal interactions, with applications [...] Read more.
Mesoscopic particles levitated by optical, electrical or magnetic fields act as mechanical oscillators with a range of surprising properties, such as tuneable oscillation frequencies, access to rotational motion, and remarkable quality factors. Coupled levitated particles display rich dynamics and non-reciprocal interactions, with applications in sensing and the exploration of non-equilibrium and quantum physics. In this work, we present a single levitated particle displaying coupled-oscillator dynamics by generating an interaction with a virtual or “ghost” particle. This ghost levitated particle is simulated on an analogue computer, and its properties can thus be dynamically varied. Our work represents a new angle on measurement-based bath engineering and physical simulation and, in the future, could lead to the generation of novel cooling mechanisms and complex physical simulation. Full article
(This article belongs to the Special Issue Advances in Levitated Optomechanics)
Show Figures

Graphical abstract

12 pages, 3471 KB  
Article
Water-Stable Perovskite Quantum Dots for Wide-Color-Gamut White-Light-Emitting Diodes
by Chenyang Fan, Chengzhao Luo, Yanhui Ding, Siwen Xia, Junlong Wu, Yunpeng Xiao and Yu Chen
Photonics 2026, 13(2), 108; https://doi.org/10.3390/photonics13020108 - 25 Jan 2026
Viewed by 127
Abstract
Perovskite quantum dots (PQDs) based on CsPbX3 (X = Cl, Br, I) have attracted extensive attention due to their outstanding optoelectronic properties; however, their practical applications are hindered by poor environmental stability. In this work, a sequential surface-modification strategy is developed to [...] Read more.
Perovskite quantum dots (PQDs) based on CsPbX3 (X = Cl, Br, I) have attracted extensive attention due to their outstanding optoelectronic properties; however, their practical applications are hindered by poor environmental stability. In this work, a sequential surface-modification strategy is developed to address these limitations. First, CsPbBr3 PQDs are passivated with (3-aminopropyl) triethoxysilane (APTES), which reduces surface defects and enhances the photoluminescence quantum yield (PLQY) from 38.5% to 74.4%. Subsequently, a dense silica shell is constructed via in situ hydrolysis of tetramethyl orthosilicate (TMOS), further improving the PLQY to 95.6% and significantly boosting environmental stability. Structural and optical characterizations confirm effective defect passivation and suppress non-radiative recombination, with carrier lifetimes extended from 2.5 ns to 36.9 ns. Remarkably, the silica-coated PQDs retain over 50% of their initial emission intensity after 100 min of water immersion, far exceeding the stability of uncoated counterparts. Furthermore, when integrated with a commercial K2SiF6: Mn4+ red phosphor and a blue light-emitting diode (LED) chip, the resulting white LED (WLED) exhibits a wide color gamut covering 104% of the National Television System Committee (NTSC) standard and Commission Internationale de l’Éclairage (CIE) coordinates of (0.323, 0.331), closely matching standard white light. Importantly, only the silica-coated PQDs maintain a stable electrically driven device emission spectrum after water exposure. Full article
(This article belongs to the Special Issue Quantum Dot Light-Emitting Diodes: Innovations and Applications)
Show Figures

Figure 1

15 pages, 4990 KB  
Article
Multiscale Structural Modulation and Synergistic Enhancement of Transparency and Relaxor Behavior in La3+-Doped KNN Lead-Free Ceramics
by Xu Yang, Lingzhi Wang, Li Luo, Wenjuan Wu, Bo Wu, Junjie Li, Jie Li, Tixian Zeng and Gengpei Xia
Nanomaterials 2026, 16(2), 149; https://doi.org/10.3390/nano16020149 - 22 Jan 2026
Viewed by 116
Abstract
Lead-free transparent ferroelectric ceramics with integrated opto-electro-mechanical functionalities are pivotal for next-generation multifunctional devices. In this study, K0.48Na0.52NbO3-xLa2O3 (KNN-xLa, x = 0.005 − 0.04) ceramics were fabricated via a conventional [...] Read more.
Lead-free transparent ferroelectric ceramics with integrated opto-electro-mechanical functionalities are pivotal for next-generation multifunctional devices. In this study, K0.48Na0.52NbO3-xLa2O3 (KNN-xLa, x = 0.005 − 0.04) ceramics were fabricated via a conventional solid-state route to investigate the La3+-induced multiscale structural evolution and its modulation of optical and electrical properties. La3+ substitution drives a critical structural transition from an anisotropic orthorhombic phase (Amm2) to a high-symmetry pseudocubic-like tetragonal phase (P4mm) for x ≥ 0.025, characterized by minimal lattice distortion (c/a = 1.0052). This enhanced structural isotropy, coupled with submicron grain refinement (<1 μm) driven by VA-mediated solute drag, effectively suppresses light scattering. Consequently, a high-transparency plateau (T780 ≈ 53–58%, T1700 ≈ 70–72%) is achieved for 0.025 ≤ x ≤ 0.035. Simultaneously, the system undergoes a crossover from normal ferroelectric (FE) to relaxor (RF) state, governed by an FE–RF boundary at x = 0.015. While x = 0.005 exhibits robust piezoelectricity (d33 ≈ 92 pC/N), the x = 0.015 composition facilitates a transitional polar state with large strain (0.179%) and high polarization (Pm ≈ 33.3 μC/cm2, Pr ≈ 15.8 μC/cm2). Piezoresponse force microscopy (PFM) confirms the domain evolution from lamellar macro-domains to speckle-like polar nanoregions (PNRs), elucidating the intrinsic trade-off between optical transparency and piezoelectricity. This work underscores La3+ as a potent structural modifier for tailoring phase boundaries and defect chemistry, providing a cost-effective framework for developing high-performance transparent electromechanical materials. Full article
(This article belongs to the Special Issue Nanostructured Materials for Electric Applications)
Show Figures

Figure 1

19 pages, 3518 KB  
Article
Al/Graphene Co-Doped ZnO Electrodes: Impact on CTS Thin-Film Solar Cell Efficiency
by Done Ozbek, Meryem Cam, Guldone Toplu, Sevde Erkan, Serkan Erkan, Ali Altuntepe, Kasim Ocakoglu, Sakir Aydogan, Yavuz Atasoy, Mehmet Ali Olgar and Recep Zan
Crystals 2026, 16(1), 64; https://doi.org/10.3390/cryst16010064 - 17 Jan 2026
Viewed by 133
Abstract
This study investigates pristine and doped ZnO thin films fabricated via the sol-gel technique, aiming to address efficiency challenges when used as transparent conductive oxide (TCO) layers in thin-film solar cells. ZnO was first doped with aluminum (Al), and subsequently with both Al [...] Read more.
This study investigates pristine and doped ZnO thin films fabricated via the sol-gel technique, aiming to address efficiency challenges when used as transparent conductive oxide (TCO) layers in thin-film solar cells. ZnO was first doped with aluminum (Al), and subsequently with both Al and reduced graphene oxide (rGO), to evaluate the individual and combined effects of these dopants. The optimal pH value for the ZnO structure was initially determined, with the film produced at pH 9 exhibiting the most favorable characteristics. Al doping was then optimized at a ratio of Al/(Al + Zn) = 0.2, followed by optimization of the graphene content at 1.5 wt%. In this context, the structural, optical, and electrical properties of pristine ZnO, Al-doped ZnO (AZO), and Al and graphene co-doped ZnO (Gr:AZO) thin films were systematically investigated. These films were integrated as TCO layers into Cu2SnS3 (CTS)-based thin-film solar cells fabricated via physical vapor deposition (PVD). The cell architecture employed an 80 nm pristine ZnO window layer, while the doped ZnO films (300 nm) served as TCO layers. To assess the influence of the chemically deposited top layers, device performance was compared against a reference cell in which all layers were fabricated entirely using PVD. As expected, the reference cell exhibited superior performance compared to the cell whose AZO layer deposited chemically; however, the incorporation of both Al and graphene significantly enhanced the efficiency of the chemically modified cell, outperforming devices using only pristine or singly doped ZnO films. These results demonstrate the promising potential of co-doped solution-processed ZnO films as an alternative TCO layer in improving the performance of thin-film solar cell technologies. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

17 pages, 15287 KB  
Article
Tuning Optical Absorption and Device Performance in P3HT:PCBM Organic Solar Cells Using Annealed Silver Thin Films
by Alaa Y. Mahmoud
Polymers 2026, 18(2), 254; https://doi.org/10.3390/polym18020254 - 17 Jan 2026
Viewed by 210
Abstract
In this study, we investigated the effect of annealing ultrathin silver (Ag) films of varying thicknesses (1–6 nm) on both their optical absorption and the performance of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) organic solar cells (OSCs). The Ag [...] Read more.
In this study, we investigated the effect of annealing ultrathin silver (Ag) films of varying thicknesses (1–6 nm) on both their optical absorption and the performance of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) organic solar cells (OSCs). The Ag films were deposited on indium tin oxide (ITO) anodes and annealed at 300 °C for 1–2 h to modify the anodic interface. The optical and electrical properties of the resulting devices were systematically characterized and optimized. The results revealed that a 1 nm AgO layer annealed for 2 h significantly enhanced the device performance, yielding a 6% increase in power conversion efficiency compared to the standard configuration. This improvement is attributed to two main factors: (i) a 25% increase in light absorption of the AgO/P3HT:PCBM film due to localized surface plasmon resonance of Ag nanoparticles and (ii) an 11% reduction in series resistance resulting from the favorable alignment of the Ag work function with the ITO anode and the polymer HOMO, which facilitates efficient hole extraction. These findings highlight the potential of ultrathin, annealed Ag/AgO interfacial layers as an effective strategy to enhance light absorption and charge transport in OSCs. Full article
(This article belongs to the Special Issue Advances in Polymeric Organic Optoelectronic Materials and Devices)
Show Figures

Graphical abstract

14 pages, 2026 KB  
Article
Effect of Microresistor Topology on the Sensing Characteristics of MoS2-Based Chemoresistive Cortisol Sensors
by Mariya Aleksandrova, Rade Tomov, Boriana Tzaneva and Ivo Iliev
Sensors 2026, 26(2), 551; https://doi.org/10.3390/s26020551 - 14 Jan 2026
Viewed by 150
Abstract
This study investigates the impact of microresistor topology on the sensing characteristics of MoS2-based chemoresistive cortisol sensors. It is done to address the critical need for robust, non-invasive cortisol monitoring in wearable applications, where mechanical stability under strain is paramount, and [...] Read more.
This study investigates the impact of microresistor topology on the sensing characteristics of MoS2-based chemoresistive cortisol sensors. It is done to address the critical need for robust, non-invasive cortisol monitoring in wearable applications, where mechanical stability under strain is paramount, and to explore underexplored topological effects on sensor performance. The research is conducted by fabricating MoS2-based meander structures on flexible PDMS substrates, featuring various microresistor designs, including long-shoulder and short-shoulder topologies, both with and without integrated mechanical ribs. Sensor performance is evaluated in resistance change mode across a range of cortisol concentrations (2.5 to 500 ng/mL) and subjected to significant mechanical bending stress. Electrical parameters such as contact resistance and parasitic capacitance, as well as temperature dependence, are also analyzed. The results demonstrate that the incorporation of ribs significantly enhances the mechanical stability and preserves the reliable sensing function of the long-shoulder topology under bending stress, improving sensitivity from 0.9 kΩ/ng/mL (without ribs) to 130.6 kΩ/ng/mL (with ribs) after bending. While temperature influences baseline resistance and response magnitude consistent with MoS2 semiconductor properties and aptamer binding kinetics, the short-shoulder design, even with ribs, showed less optimal performance. The primary advantage of the proposed device lies in its enhanced mechanical reliability under continuous strain, crucial for wearable electronics, alongside a simpler design compared to complex microfluidic or optical systems, thus enabling lower manufacturing costs and easier mass production. Full article
Show Figures

Figure 1

15 pages, 2248 KB  
Article
Bandgap Engineering of Ga2O3 by MOCVD Through Alloying with Indium
by Md Minhazul Islam, A. Hernandez, H. Appuhami, A. Banerjee, Blas Pedro Uberuaga and F. A. Selim
Nanomaterials 2026, 16(2), 93; https://doi.org/10.3390/nano16020093 - 12 Jan 2026
Viewed by 289
Abstract
Ga2O3 and In2O3 are vital semiconductors with current and future electronic device applications. Here, we study the alloying of In2O3 and Ga2O3 (IGO) and the associated changes in structure, morphology, band [...] Read more.
Ga2O3 and In2O3 are vital semiconductors with current and future electronic device applications. Here, we study the alloying of In2O3 and Ga2O3 (IGO) and the associated changes in structure, morphology, band gap, and electrical transport properties. Undoped films of IGO were deposited on sapphire substrates with varying indium (In) percentage from zero to 100% by metal-organic chemical vapor deposition (MOCVD). Some films were annealed in H2 to induce electrical conductivity. The measurements showed the optical band gap decreased by adding In; this was confirmed by density functional (DFT) calculations, which revealed that the nature of the valence band maximum and conduction band minimum strongly relate to the chemistry and that the band gap drops by adding In. The as-grown films were highly resistive except for pure In2O3, which possesses p-type conductivity, likely arising from In vacancy-related acceptor states. N-type conductivity was induced in all films after H-anneal. DFT calculations revealed that the presence of In decreases the electron effective mass, which is consistent with the electrical transport measurements that showed higher electron mobility for higher In percentage. The work revealed the successful band gap engineering of IGO and the modification of its band structure while maintaining high-quality films by MOCVD. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

8 pages, 2265 KB  
Proceeding Paper
Single-Source Facile Synthesis of Phase-Pure Na+- and Sr2+-Modified Bismuth Titanate—Structural, Optical, and Electrical Properties for Energy Storage Application
by Anitha Gnanasekar, Pavithra Gurusamy and Geetha Deivasigamani
Mater. Proc. 2025, 25(1), 18; https://doi.org/10.3390/materproc2025025018 - 7 Jan 2026
Viewed by 95
Abstract
In this present study, sodium- and strontium-modified bismuth titanate—Bi0.5Na0.5TiO3 (BNT) and Bi0.5Sr0.5TiO3 (BST)—were synthesized using the auto-combustion technique with citric acid (C6H8O7) and glycine (C2H [...] Read more.
In this present study, sodium- and strontium-modified bismuth titanate—Bi0.5Na0.5TiO3 (BNT) and Bi0.5Sr0.5TiO3 (BST)—were synthesized using the auto-combustion technique with citric acid (C6H8O7) and glycine (C2H5NO2) as fuels in an optimized ratio of 1.5:1. The resulting powders were characterized using X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, UV–Visible diffuse reflectance spectroscopy (DRS), and Fourier-transform infrared (FT-IR) spectroscopy. The electrical behavior of the samples was studied using an LCR meter. XRD analysis confirmed the formation of a single-phase perovskite structure with average crystallite sizes of 18.60 nm for BNT and 22.03 nm for BST, attributed to the difference in ionic radii between Na+ and Sr2+. An increase in crystallite size was accompanied by a corresponding increase in lattice parameters and unit-cell volume. The Williamson–Hall analysis further validated the strain-size contributions. EDX (Energy-Dispersive X-ray analysis) results confirmed successful incorporation of Na+ and Sr2+ without detectable impurity phases. Optical studies revealed distinct absorption peaks at 341 nm for BNT and 374 nm for BST, and the optical bandgap (Eg), calculated using Tauc’s relation, was found to be 2.6 eV and 2.0 eV, respectively. FT-IR spectra exhibited characteristic Ti-O vibrational bands in the range of 420–720 cm−1, consistent with the perovskite structure. For electrical characterization, the powders were pelletized under 3-ton pressure and sintered at 1000 °C for 3 h. The dielectric constant (εr), dielectric loss (tan δ), and ac conductivity (σ) of both samples increased with frequency. The combined structural, optical, and electrical results indicate that the optimized compositions of BNT and BST possess properties suitable for use in capacitors and other energy-storage applications. Full article
(This article belongs to the Proceedings of The 5th International Online Conference on Nanomaterials)
Show Figures

Figure 1

20 pages, 5179 KB  
Article
P–N Nanoporous Silicon Fabrication Using Photoelectrochemical Etching and Ultrasonic Vibration and Liquid-Phase Bonding for Optoelectronic Applications
by Chao-Ching Chiang and Philip Nathaniel Immanuel
Micromachines 2026, 17(1), 73; https://doi.org/10.3390/mi17010073 - 4 Jan 2026
Viewed by 610
Abstract
We systematically investigated the optical properties of P-N nanoporous silicon (NPS) diodes fabricated using photoelectrochemical etching and ultrasonic vibration (PEEU), followed by liquid-phase bonding and thermal treatment. Ultrasonic vibration during etching promoted uniform pore formation by enhancing reactant diffusion and suppressing hydrogen bubble [...] Read more.
We systematically investigated the optical properties of P-N nanoporous silicon (NPS) diodes fabricated using photoelectrochemical etching and ultrasonic vibration (PEEU), followed by liquid-phase bonding and thermal treatment. Ultrasonic vibration during etching promoted uniform pore formation by enhancing reactant diffusion and suppressing hydrogen bubble accumulation, while laser-induced photocarriers improved etching selectivity, facilitating the formation of NPS with pronounced quantum confinement. The fabricated NPS devices exhibited significantly enhanced photoluminescence (PL) and electroluminescence (EL) properties, with an average external quantum efficiency of 7.3% at a bias of 10 V. Subsequent liquid-phase bonding and thermal annealing further enhanced structural stability and interface quality, resulting in an 180% increase in PL intensity. These results demonstrate that the combination of PEEU with liquid-phase bonding and thermal annealing yields a versatile approach to tailor the optical and electrical properties of P–N porous silicon nanostructures for high-performance light-emitting diodes and quantum-confined silicon photonics, highlighting the critical role of process-induced nanostructures and thermal modifications in device performance. Full article
(This article belongs to the Special Issue Two-Dimensional Materials for Electronic and Optoelectronic Devices)
Show Figures

Figure 1

16 pages, 2859 KB  
Article
Graphene-Based Nanostructures Produced by Laser Ablation Assisted by Electric Field
by Mariapompea Cutroneo, Vaclav Holy, Petr Malinsky, Petr Slepicka, Alena Michalcova and Lorenzo Torrisi
Nanomaterials 2026, 16(1), 72; https://doi.org/10.3390/nano16010072 - 4 Jan 2026
Viewed by 376
Abstract
The properties of carbon-based materials with nanometric size support their use in numerous applications, such as optoelectronics and energy devices, bioimaging, photodetectors, and sensors. Among the various nanostructure fabrication methods, pulsed laser ablation in liquids (PLA) is widely recognized for its simplicity and [...] Read more.
The properties of carbon-based materials with nanometric size support their use in numerous applications, such as optoelectronics and energy devices, bioimaging, photodetectors, and sensors. Among the various nanostructure fabrication methods, pulsed laser ablation in liquids (PLA) is widely recognized for its simplicity and rapid processing. It is considered an environmentally friendly synthesis, as it enables nanostructure fabrication in pure liquids without chemical reagents, activators, or vacuum systems, in line with the increasing interest in sustainable and green nanotechnologies. A great challenge of PLA is the reproducibility of the size and shape of the produced structure. This can be accomplished by selection of the proper laser parameters and characteristics of the used liquid. This study is focused on the comparison of the synthesis of graphene-based nanostructures by electric-field-assisted pulsed laser ablation of a graphite target immersed in distilled water and deionized water, used as separate liquid media, without the use of chemical reagents. This is an innovative and environmentally friendly approach for the production of graphene nanoparticles. The laser parameters were kept constant throughout the experiments, while different voltage values were applied between the electrodes immersed in the liquid medium. The applied electric field significantly influences plasma dynamics, cavitation bubble evolution, and post-ablation nanoparticle growth processes, enabling controlled tuning of nanoparticle size and morphology. The optical properties of the obtained suspensions were evaluated by UV–Vis and FTIR spectroscopies. Atomic force microscopy revealed the composition, morphology, and quality of the formed structures. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

22 pages, 1625 KB  
Review
Recycled Electric and Electronic Waste in Concrete: A Review of Mechanical Performance and Sustainability Potential with a Case Study in Romania
by Cristian Georgeoi, Ioan Petran, Camelia Maria Negrutiu and Pavel Ioan Sosa
CivilEng 2026, 7(1), 2; https://doi.org/10.3390/civileng7010002 - 31 Dec 2025
Viewed by 307
Abstract
This study examines the use of electronic waste (e-waste) as an alternative material in concrete for sustainability and natural resource conservation. Various e-wastes, such as Polyvinyl Chloride (PVC), Glass-Reinforced Plastic (GRP), Glass Fiber-Reinforced Polymer (GFRP), cross-linked polyethylene (XLPE), polyethylene (PE), electronic cable waste [...] Read more.
This study examines the use of electronic waste (e-waste) as an alternative material in concrete for sustainability and natural resource conservation. Various e-wastes, such as Polyvinyl Chloride (PVC), Glass-Reinforced Plastic (GRP), Glass Fiber-Reinforced Polymer (GFRP), cross-linked polyethylene (XLPE), polyethylene (PE), electronic cable waste (ECW), Waste Electrical Cable Rubber (WECR), copper fiber (Cu Fib.), aluminum Fibers (Al fib.), steel fibers, basalt fibers, glass fibers, aramid−carbon fibers, Kevlar fibers, jute fibers, and optical fibers, were tested for influence on compressive, flexural, tensile strength, modulus of elasticity, and water absorption. Outcomes show that fine particle waste at low levels (0.2–1.5%) can improve mechanical performance, while higher levels of replacement or coarse particles generally reduce performance. Mechanical and physical properties are highly sensitive to material type, particle size, and dose. Life cycle assessment (LCA) and predictive modeling are recommended as validation for sustainability benefits. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

19 pages, 3156 KB  
Article
Effect of Mn Rate on Structural, Optical and Electrical Properties in LiCo1−xMnxO2 (x = 0.5; 0.7) Compounds
by Miftah Ali Bin Yazeed, Moufida Krimi, Abdulrahman Alsawi, Mohamed Houcine Dhaou, Abdelfattah Mahmoud and Abdallah Ben Rhaiem
Inorganics 2026, 14(1), 19; https://doi.org/10.3390/inorganics14010019 - 30 Dec 2025
Viewed by 329
Abstract
The compounds LiCo1−xMnxO2 (x = 0.5, 0.7) were synthesized via the solid-state method and exhibited crystallization in the cubic spinel structure (space group Fd-3m). UV–Vis spectroscopy reveals strong visible-light absorption and a reduction in the indirect optical band [...] Read more.
The compounds LiCo1−xMnxO2 (x = 0.5, 0.7) were synthesized via the solid-state method and exhibited crystallization in the cubic spinel structure (space group Fd-3m). UV–Vis spectroscopy reveals strong visible-light absorption and a reduction in the indirect optical band gap from 1.85 eV (x = 0.5) to 1.60 eV (x = 0.7) with increasing Mn content, which is consistent with semiconducting behavior. This narrowing arises from Mn3+/Mn4+ mixed valence, which introduces mid-gap states and enhances Co/Mn 3d–O 2p orbital hybridization within the spinel framework. In contrast, the Urbach energy increases from 0.55 eV to 0.65 eV, indicating greater structural and energetic disorder in the Mn-rich composition which is attributed to the Jahn–Teller distortions and valence heterogeneity associated with Mn3+. Impedance and dielectric modulus analyses confirm two distinct non-Debye relaxation processes related to grains and grain boundaries. AC conductivity is governed by the Correlated Barrier Hopping (CBH) model, with bipolaron hopping identified as the dominant conduction mechanism. The x = 0.7 sample displays significantly enhanced conductivity due to increased Mn3+/Mn4+ mixed valence, lattice expansion, efficient 3D electronic connectivity of the spinel lattice, and reduced interfacial resistance. These findings highlight the potential of these two spinels compounds as narrow-gap semiconductors for optoelectronic applications including visible-light photodetectors, photocatalysts, and solar absorber layers extending their utility beyond conventional battery cathodes. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 4th Edition)
Show Figures

Figure 1

19 pages, 777 KB  
Article
Enhanced Quantum Dot Emission in Fibonacci Photonic Crystal Cavities Optimized for PECVD-Compatible Porous Silicon: A Computational Study
by J. E. Mastache-Mastache, M. C. González, H. Martínez and B. Reyes-Ramírez
Plasma 2026, 9(1), 1; https://doi.org/10.3390/plasma9010001 - 26 Dec 2025
Viewed by 255
Abstract
This computational study investigates the optical properties of a sixth-order Fibonacci quasi-periodic photonic crystal cavity designed for the infiltration of near-infrared colloidal quantum dots (QDs, e.g., InAs/ZnSe or PbS) and fully compatible with plasma-enhanced chemical vapor deposition (PECVD) using porous silicon layers. Using [...] Read more.
This computational study investigates the optical properties of a sixth-order Fibonacci quasi-periodic photonic crystal cavity designed for the infiltration of near-infrared colloidal quantum dots (QDs, e.g., InAs/ZnSe or PbS) and fully compatible with plasma-enhanced chemical vapor deposition (PECVD) using porous silicon layers. Using the transfer matrix method (TMM), we simulate transmission (T), reflection, absorption, electric field distributions and Purcell factors (F) for both TE and TM polarizations, incorporating the wavelength-dependent absorption of porous silicon. A multi-objective figure-of-merit is defined to simultaneously maximize transmission (T>95% at 800 nm) and the one-dimensional Purcell factor. The optimized structure (PH=0416) yields a quality factor Q4300, a 1D Purcell factor F1D3.6 and a realistic 3D Purcell enhancement estimated between 4 and 8 (under lateral confinement assumptions). This conservative estimate, derived via the effective index method to account for 3D effects, aligns with the detailed discussion within the article and is lower than the ideal upper bound of the 1D model. The integrated emission enhancement is approximately 3.0-fold. Monte Carlo simulations demonstrate remarkable robustness to fabrication tolerances (±10 nm thickness variations result in a <5% reduction in transmission), highlighting the structure’s scalability for PECVD-based processing. Comparison with periodic Bragg structures reveals superior angular stability and disorder tolerance in the Fibonacci design, positioning it as a promising platform for robust QD-based light sources and integrated refractive index sensors. Full article
Show Figures

Figure 1

11 pages, 2082 KB  
Article
Highly Efficient and Stable Quantum Dot Light-Emitting Diodes Employing Sputtered SnO2 Layer as Electron Transport Layers
by Jaehwi Choi and Jiwan Kim
Nanomaterials 2026, 16(1), 31; https://doi.org/10.3390/nano16010031 - 25 Dec 2025
Viewed by 438
Abstract
We report a novel approach to fabricating high-performance and robust quantum dot light-emitting diodes (QLEDs) utilizing sputtered SnO2 thin films as the electron transport layer (ETL). While conventional solution-processed ZnMgO NP ETLs face limitations in mass production, the sputtering process offers advantages [...] Read more.
We report a novel approach to fabricating high-performance and robust quantum dot light-emitting diodes (QLEDs) utilizing sputtered SnO2 thin films as the electron transport layer (ETL). While conventional solution-processed ZnMgO NP ETLs face limitations in mass production, the sputtering process offers advantages for uniform and reproducible thin film deposition. Herein, the structural, optical, and electrical properties of SnO2 thin films were optimized by controlling the Ar/O2 ratio and substrate heating temperature during sputtering. SnO2 thin films with O2 gas improve charge balancing in QLEDs by lowering the conduction band minimum. Furthermore, it was observed that oxygen vacancies in SnO2 function as exciton quenching sites, which directly impacts the long-term stability of the device. QLEDs fabricated under optimal conditions (Ar/O2 = 35:5, 200 °C heating) achieved a peak luminance of 99,212 cd/m2 and a current efficiency of 21.17 cd/A with excellent device stability. The findings suggest that sputtered SnO2 ETLs are a highly promising technology for the commercial production of QLEDs. Full article
(This article belongs to the Special Issue Light-Emitting-Diodes Based on Quantum Dots)
Show Figures

Figure 1

Back to TopTop