Effect of Mn Rate on Structural, Optical and Electrical Properties in LiCo1−xMnxO2 (x = 0.5; 0.7) Compounds
Abstract
1. Introduction
2. Result and Discussion
2.1. X-Ray Diffractions and X-Ray Analysis
2.2. Scanning Electron Microscopy
2.3. Optical Study
2.4. Impedance Spectrum Analysis
2.5. Modulus Analysis
2.6. Conductivity Analysis
3. Experiment
3.1. Synthesis
3.2. Equipment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Wei, C.; Deng, J.; Xi, L.; Zhou, H.; Wang, Z.; Chung, C.Y.; Yao, Q.; Rao, G. High Power LiMn2O4 Hollow Microsphere Cathode Materials for Lithium Ion Batteries. Int. J. Electrochem. Sci. 2013, 8, 6775–6783. [Google Scholar] [CrossRef]
- Horiba, T. Lithium-ion battery systems. Proc. IEEE 2014, 102, 939–950. [Google Scholar] [CrossRef]
- Delmas, C.; Fouassier, C.; Hagenmuller, P. Structural classification and properties of the layered oxides. Phys. B+C 1980, 99, 81–85. [Google Scholar] [CrossRef]
- Kim, Y. First-principles investigation of the structural characteristics of LiMO2 cathode materials for lithium secondary batteries. J. Mol. Struct. 2015, 1099, 317–322. [Google Scholar] [CrossRef]
- Obrovac, M.N.; Mao, O.; Dahn, J.R. Structure and electrochemistry of LiMO2 (M = Ti, Mn, Fe, Co, Ni) prepared by mechanochemical synthesis. Solid State Ion. 1998, 112, 9–19. [Google Scholar] [CrossRef]
- Koksbang, R.; Barker, J.; Saidi, M.Y.; West, K.; Zachau-Christiansen, B.; Skaarup, S. Lithium insertion in LixMn2O4, 0 < x < 4. Solid State Ion. 1996, 83, 151–157. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Sun, Y.K.; Adachi, K.; Yoshio, M. Synthesis and electrochemical characterization of orthorhombic LiMnO2 material. Electrochim. Acta 2003, 48, 1031–1039. [Google Scholar] [CrossRef]
- Guo, Z.P.; Konstantinov, K.; Wang, G.X.; Liu, H.K.; Dou, S.X. Preparation of orthorhombic LiMnO2 material via the sol–gel process. J. Power Sources 2003, 119, 221–225. [Google Scholar] [CrossRef]
- Jeong, E.-D.; Won, M.-S.; Shim, Y.-B. Cathodic properties of a lithium-ion secondary battery using LiCoO2 prepared by a complex formation reaction. J. Power Sources 1998, 70, 70–77. [Google Scholar] [CrossRef]
- Mizushima, K.; Jones, P.C.; Wiseman, P.J.; Goodenough, J.B. LixCoO2 (0 < x ≤ 1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, H. Sol–Gel Template Synthesis of Highly Ordered LiCo0.5Mn0.5O2 Nanowire Arrays and Their Structural Properties. J. Solid State Chem. 2002, 165, 247–253. [Google Scholar] [CrossRef]
- Kajiyama, A.; Takada, K.; Inada, T.; Kouguchi, M.; Kondo, S.; Watanabe, M. Synthesis and electrochemical properties of LixCo0.5Mn0.5O2. Solid State Ion. 2002, 149, 39–45. [Google Scholar] [CrossRef]
- Suresh, P.; Rodrigues, S.; Shukla, A.K.; Vasan, H.N.; Munichandraiah, N. Synthesis of LiCo1−xMnxO2 from a low-temperature route and characterization as cathode materials in Li-ion cells. Solid State Ion. 2005, 176, 281–290. [Google Scholar] [CrossRef]
- Liu, Q.; Mao, D.; Chang, C.; Huang, F. Phase conversion and morphology evolution during hydrothermal preparation of orthorhombic LiMnO2 nanorods for lithium ion battery application. J. Power Sources 2007, 173, 538–544. [Google Scholar] [CrossRef]
- Li, X.; Liu, D.; Zhang, D.; Chen, X.; Tian, X. One-step synthesis and electrochemical behavior of LiMnO2 and its composite from MnO2 in the presence of glucose. J. Phys. Chem. Solids 2009, 70, 936–940. [Google Scholar] [CrossRef]
- Bagtache, R.; Brahimi, R.; Abdmeziem, K.; Trari, M. Physical properties of o-LiMnO2. Appl. Phys. A 2019, 125, 606. [Google Scholar] [CrossRef]
- Moufida, K.; Altarifi, M.S.M.; Rhaiem, A.B. Investigation of optical, dielectric properties and conduction mechanism of LiCo0.7Mn0.3O2. Phys. Scr. 2023, 98, 125980. [Google Scholar] [CrossRef]
- Banov, K.; Petkov, T.; Boukoureshtlieva, R.; Ivanova, D.; Fachikov, L.; Kotev, V.; Banov, B. High voltage cathode materials based on lithium cobaltate with nickel and manganese doping. Bulg. Chem. Commun. 2018, 50, 171–176. [Google Scholar]
- Julien, C.; Camacho-Lopez, M.A.; Mohan, T.; Chitra, S.; Kalyani, P.; Gopukumar, S. Combustion synthesis and characterization of substituted lithium cobalt oxides in lithium batteries. Solid State Ion. 2000, 135, 241–248. [Google Scholar] [CrossRef]
- Xu, H.-T.; Zhang, H.; Liu, L.; Feng, Y.; Wang, Y. Fabricating hexagonal Al-doped LiCoO2 nanomeshes based on crystal-mismatch strategy for ultrafast lithium storage. ACS Appl. Mater. Interfaces 2015, 7, 20979–20986. [Google Scholar] [CrossRef] [PubMed]
- Lipton, J.S. Light-Matter Interactions in Multifunctional Materials and Lithium-Ion Battery Cathodes. Doctoral Dissertation, New York University Tandon School of Engineering, New York, NY, USA, 2022. [Google Scholar]
- Boukthir, M.; Chakchouk, N.; Dammak, S.; Altarifi, S.M.; Karoui, K.; Mahmoud, A.; Boschini, F.; Ben Rhaiem, A. Optical and electrical conduction mechanisms of the ceramic LiMnO2 as cathode active materials for lithium-ion batteries. Ionics 2024, 31, 1299–1313. [Google Scholar] [CrossRef]
- Stoyanova, R.; Zhecheva, E.; Zarkova, L. Effect of Mn-substitution for Co on the crystal structure and acid delithiation of LiMnyCo1−yO2 solid solutions. Solid State Ion. 1994, 73, 233–240. [Google Scholar] [CrossRef]
- Jin, Y.; Zhao, Z.; Ren, P.-G.; Zhang, B.; Chen, Z.; Guo, Z.; Ren, F.; Sun, Z.; Liu, S.; Song, P. Recent Advances in Oxygen Redox Activity of Lithium-Rich Manganese-Based Layered Oxides Cathode Materials: Mechanism, Challenges and Strategies. Adv. Energy Mater. 2024, 14, 2402061. [Google Scholar] [CrossRef]
- Missaoui, F.; Krimi, M.; Mahmoud, A.; Boschini, F.; Rhaiem, A.B. Electrical and dielectric study of Na2/3Mn2/3Fe1/3O2 as a cathode active material for sodium-ion batteries. New J. Chem. 2024, 48, 12817–12827. [Google Scholar] [CrossRef]
- Satyavani, T.; Kiran, B.R.; Kumar, V.R.; Kumar, A.S.; Naidu, S.V. Effect of particle size on dc conductivity, activation energy and diffusion coefficient of lithium iron phosphate in Li-ion cells. Eng. Sci. Technol. Int. J. 2016, 19, 40–44. [Google Scholar] [CrossRef]
- Tangra, A.K.; Lotey, G.S. Synthesis and investigation of structural, optical, magnetic, and biocompatibility properties of nanoferritesAFeO2. Curr. Appl. Phys. 2021, 27, 103–116. [Google Scholar] [CrossRef]
- Jellibi, A.; Chaabane, I.; Guidara, K. Spectroscopic ellipsometry and UV–vis studies at room temperature of the novel organic–inorganic hybrid of salt Bis (4-acetylanilinium) tetrachlorocadmiate. Phys. E Low-Dimens. Syst. Nanostruct. 2016, 79, 167–172. [Google Scholar] [CrossRef]
- Kalthoum, R.; Bechir, M.B.; Rhaiem, A.B. CH3NH3CdCl3: A promising new lead-free hybrid organic–inorganic perovskite for photovoltaic applications. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 124, 114235. [Google Scholar] [CrossRef]
- Kubelka, P.; Munk, F. An article on optics of paint layers. Z. Tech. Phys. 1931, 12, 259–274. [Google Scholar]
- Tauc, J.; Menth, A. States in the gap. J. Non-Cryst. Solids 1972, 8, 569–585. [Google Scholar] [CrossRef]
- Polat, O.; Coskun, M.; Coskun, F.M.; Zlamal, J.; Kurt, B.Z.; Durmus, Z.; Caglar, M.; Turut, A. Co doped YbFeO3: Exploring the electrical properties via tuning the doping level. Ionics 2019, 25, 4013–4029. [Google Scholar] [CrossRef]
- Coskun, M.; Polat, O.; Coskun, F.M.; Durmus, Z.; Caglar, M.; Turut, A. Synthesis, characterization and wide range frequency and temperature dependent electrical modulus study of LaCrO3 and cobalt (Co) doped LaCrO3 perovskite compounds. Mater. Sci. Eng. B 2019, 248, 114410. [Google Scholar] [CrossRef]
- Turut, A.; Coșkun, M.; Coșkun, F.M.; Polat, O.; Durmuș, Z.; Çağlar, M.; Efeoğlu, H. The current-voltage characteristics of the ferroelectric p-YMnO3 thin film/bulk p-Si heterojunction over a broad measurement temperature range. J. Alloys Compd. 2019, 782, 566–575. [Google Scholar] [CrossRef]
- Polat, O.; Coskun, M.; Yildirim, Y.; Roupcova, P.; Sobola, D.; Sen, C.; Durmus, Z.; Caglar, M.; Turt, A. Variation in the dielectric and magnetic characteristics of multiferroic LuFeO3 as a result of cobalt substitution at Fe sites. J. Alloys Compd. 2023, 963, 170939. [Google Scholar] [CrossRef]
- Polat, O.; Coskun, M.; Yildirim, Y.; Coskun, F.M.; Durmus, Z.; Sen, C.; Caglar, Y.; Caglar, M.; Turut, A. A comprehensive investigation of the structural, chemical and dielectric properties of co-doped YMnO3 multiferroic component. Appl. Phys. A 2024, 130, 166. [Google Scholar] [CrossRef]
- Polat, O.; Coskun, F.M.; Coskun, M.; Durmus, Z.; Caglar, Y.; Caglar, M.; Turut, A. Tailoring the bandgap of ferroelectric YMnO3 through tuning the Os doping level. J. Mater. Sci. Mater. Electron. 2019, 30, 3443–3451. [Google Scholar] [CrossRef]
- Barhoumi, A.; Leroy, G.; Duponchel, B.; Gest, J.; Guermazi, S. Aluminum doped ZnO thin films deposited by direct current sputtering: Structural and optical properties. Superlattices Microstruct. 2015, 82, 483–498. [Google Scholar] [CrossRef]
- Ajmi, A.; Chemingui, M.; Mahmoud, A.; Boschini, F.; Rhaiem, A.B. Structural, vibrational spectroscopic, and electrical conduction mechanisms of α-NaCoPO4 compound. Ionics 2019, 25, 1091–1103. [Google Scholar] [CrossRef]
- Boukthir, M.; Krimi, M.; Karoui, K.; Altarifi, S.M.; Mahmoud, A.; Boschini, F.; Rhaiem, A.B. Synthesis, optical properties and conduction mechanism study of α- and γ-NaMnO2 materials. New J. Chem. 2023, 47, 21107–21117. [Google Scholar] [CrossRef]
- Znaidia, S.; Bechir, M.B. Investigation of optical, dielectric, and charge transfer properties in lead-free double perovskite Cs2MSbBr6 (M= Cu, Ag). Ionics 2024, 30, 1177–1195. [Google Scholar] [CrossRef]
- Kumar, N.S.; Suvarna, R.P.; Naidu, K.C.B. Grain and grain boundary conduction mechanism in sol-gel synthesized and microwave heated Pb0.8−yLayCo0.2TiO3 (y= 0.2–0.8) nanofibers. Mater. Chem. Phys. 2019, 223, 241–248. [Google Scholar] [CrossRef]
- Omari, L.H.; Hajji, L.; Haddad, M.; Lamhasni, T.; Jama, C. Synthesis, structural, optical and electrical properties of La-modified Lead Iron Titanate ceramics for NTCR thermo-resistance based sensors. Mater. Chem. Phys. 2019, 223, 60–67. [Google Scholar] [CrossRef]
- Maji, P.; Chatterjee, S.; Das, S. Study on charge transportation and scaling behavior of CsPbI3 microwires. Ceram. Int. 2019, 45, 6012–6020. [Google Scholar] [CrossRef]
- Singh, D.N.; Sinha, T.P.; Mahato, D.K. Electric modulus, scaling and ac conductivity of La2CuMnO6 double perovskite. J. Alloys Compd. 2017, 729, 1226–1233. [Google Scholar] [CrossRef]
- Assar, S.T.; El-Ghazzawy, E.H.; Abosheiasha, H.F. Study on dielectric properties, electric modulus, and impedance spectroscopy of Ni–Ca ferrite nanoparticles. Mater. Chem. Phys. 2022, 287, 126336. [Google Scholar] [CrossRef]
- Bergman, R. General susceptibility functions for relaxations in disordered systems. J. Appl. Phys. 2000, 88, 1356–1365. [Google Scholar] [CrossRef]
- Yousefian, P.; Akkopru-Akgun, B.; Randall, C.A.; Trolier-McKinstry, S. Electrical Degradation in Dielectric and Piezoelectric Oxides: Review of Defect Chemistry and Associated Characterization Techniques. arXiv 2024, arXiv:2403.06359. [Google Scholar] [CrossRef]
- Chchiyai, Z.; El Bachraoui, F.; Tamraoui, Y.; Haily, E.M.; Bih, L.; Lahmar, A.; El Marssi, M.; Alami, J.; Manoun, B. Effect of cobalt doping on the crystal structure, magnetic, dielectric, electrical and optical properties of PbTi1−xCoxO3−δ perovskite materials. J. Alloys Compd. 2022, 927, 166979. [Google Scholar] [CrossRef]
- Abdessalem, M.B.; Aydi, A.; Abdelmoula, N. Raman scattering, structural, electrical studies and conduction mechanism of Ba0.9Ca0.1Ti0.95Zr0.05O3 ceramic. J. Alloys Compd. 2019, 774, 685–693. [Google Scholar] [CrossRef]
- Jebli, M.; Rayssi, C.; Dhahri, J.; Henda, M.B.; Zaidi, N. Effect of Nb substitution on the structural, dielectric and modulus character of Ba0.97La0.02TiO3 ceramics. Inorg. Chem. Commun. 2021, 129, 108628. [Google Scholar] [CrossRef]
- Gueye, M.N.; Carella, A.; Faure-Vincent, J.; Demadrille, R.; Simonato, J.-P. Progress in understanding structure and transport properties of PEDOT-based materials: A critical review. Prog. Mater. Sci. 2020, 108, 100616. [Google Scholar] [CrossRef]
- Jia, X.; Xiaa, Q.; Xu, Y.; Feng, H.; Wang, P.; Tan, Q. A review on progress of lithium-rich manganese-based cathodes for lithium ion batteries. J. Power Sources 2021, 487, 229362. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2010, 22, 587–603. [Google Scholar] [CrossRef]
- Zhu, X.; Huang, A.; Martens, I.; Vostrov, N.; Sun, Y.; Richard, M.-I.; Schülli, T.U.; Wang, L. High-Voltage Spinel Cathode Materials: Navigating the Structural Evolution for Lithium-Ion Batteries. Adv. Mater. 2024, 36, 2403482. [Google Scholar] [CrossRef]
- Liu, W.; Geng, X.; Wang, H.; Chen, J.; Wang, C.; Zhang, N.; Hashem, A.M.; Chu, W.; He, X. Enhancement of La–Ti modification on the conductivity and stability of Co-free Li- and Mn-rich layered cathode. J. Power Sources 2024, 613, 234805. [Google Scholar] [CrossRef]
- Kaewmala, S.; Kamma, N.; Buakeaw, S.; Limphirat, W.; Nash, J.; Srilomsak, S.; Limthongkul, P. Impacts of Mg doping on the structural properties and degradation mechanisms of a Li and Mn rich layered oxide cathode for lithium-ion batteries. Sci. Rep. 2023, 13, 4526. [Google Scholar] [CrossRef]
- Slima, I.B.; Karoui, K.; Mahmoud, A.; Boschini, F.; Rhaiem, A.B. Effects of Mn doping on structural properties and conduction mechanism of NaCu0.2Fe0.8−xMnxO2 (x = 0.4; 0.5; 0.6; 0.7) materials. J. Alloys Compd. 2022, 920, 166002. [Google Scholar] [CrossRef]
- Karoui, K.; Rhaiem, A.B. Electrical and dielectric properties of the Li1.5Na0.5WO4 compound. J. Alloys Compd. 2017, 698, 510–517. [Google Scholar]













Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bin Yazeed, M.A.; Krimi, M.; Alsawi, A.; Dhaou, M.H.; Mahmoud, A.; Ben Rhaiem, A. Effect of Mn Rate on Structural, Optical and Electrical Properties in LiCo1−xMnxO2 (x = 0.5; 0.7) Compounds. Inorganics 2026, 14, 19. https://doi.org/10.3390/inorganics14010019
Bin Yazeed MA, Krimi M, Alsawi A, Dhaou MH, Mahmoud A, Ben Rhaiem A. Effect of Mn Rate on Structural, Optical and Electrical Properties in LiCo1−xMnxO2 (x = 0.5; 0.7) Compounds. Inorganics. 2026; 14(1):19. https://doi.org/10.3390/inorganics14010019
Chicago/Turabian StyleBin Yazeed, Miftah Ali, Moufida Krimi, Abdulrahman Alsawi, Mohamed Houcine Dhaou, Abdelfattah Mahmoud, and Abdallah Ben Rhaiem. 2026. "Effect of Mn Rate on Structural, Optical and Electrical Properties in LiCo1−xMnxO2 (x = 0.5; 0.7) Compounds" Inorganics 14, no. 1: 19. https://doi.org/10.3390/inorganics14010019
APA StyleBin Yazeed, M. A., Krimi, M., Alsawi, A., Dhaou, M. H., Mahmoud, A., & Ben Rhaiem, A. (2026). Effect of Mn Rate on Structural, Optical and Electrical Properties in LiCo1−xMnxO2 (x = 0.5; 0.7) Compounds. Inorganics, 14(1), 19. https://doi.org/10.3390/inorganics14010019

