Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (622)

Search Parameters:
Keywords = electric vehicle sharing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
50 pages, 1100 KiB  
Article
The Impact of Renewable Generation Variability on Volatility and Negative Electricity Prices: Implications for the Grid Integration of EVs
by Marek Pavlík, Martin Vojtek and Kamil Ševc
World Electr. Veh. J. 2025, 16(8), 438; https://doi.org/10.3390/wevj16080438 - 4 Aug 2025
Abstract
The introduction of Renewable Energy Sources (RESs) into the electricity grid is changing the price dynamics of the electricity market and creating room for flexibility on the consumption side. This paper investigates different aspects of the interaction between the RES share, electricity spot [...] Read more.
The introduction of Renewable Energy Sources (RESs) into the electricity grid is changing the price dynamics of the electricity market and creating room for flexibility on the consumption side. This paper investigates different aspects of the interaction between the RES share, electricity spot prices, and electric vehicle (EV) charging strategies. Based on empirical data from Germany, France, and the Czech Republic for the period 2015–2025, four research hypotheses are tested using correlation and regression analysis, cost simulations, and classification algorithms. The results confirm a negative correlation between the RES share and electricity prices, as well as the effectiveness of smart charging in reducing costs. At the same time, it is shown that the occurrence of negative prices is significantly affected by a high RES share. The correlation analysis further suggests that higher production from RESs increases the potential for price optimisation through smart charging. The findings have implications for policymaking aimed at flexible consumption and efficient RES integration. Full article
Show Figures

Graphical abstract

33 pages, 1698 KiB  
Article
Green Energy Fuelling Stations in Road Transport: Poland in the European and Global Context
by Tomasz Neumann
Energies 2025, 18(15), 4110; https://doi.org/10.3390/en18154110 - 2 Aug 2025
Viewed by 145
Abstract
The transition to green energy in the transport sector is becoming a priority in the context of global climate challenges and the European Green Deal. This paper investigates the development of alternative fuelling stations, particularly electric vehicle (EV) charging infrastructure and hydrogen stations, [...] Read more.
The transition to green energy in the transport sector is becoming a priority in the context of global climate challenges and the European Green Deal. This paper investigates the development of alternative fuelling stations, particularly electric vehicle (EV) charging infrastructure and hydrogen stations, across EU countries with a focus on Poland. It combines a policy and technology overview with a quantitative scientific analysis, offering a multidimensional perspective on green infrastructure deployment. A Pearson correlation analysis reveals significant links between charging station density and both GDP per capita and the share of renewable energy. The study introduces an original Infrastructure Accessibility Index (IAI) to compare infrastructure availability across EU member states and models Poland’s EV charging station demand up to 2030 under multiple growth scenarios. Furthermore, the article provides a comprehensive overview of biofuels, including first-, second-, and third-generation technologies, and highlights recent advances in hydrogen and renewable electricity integration. Emphasis is placed on life cycle considerations, energy source sustainability, and economic implications. The findings support policy development toward zero-emission mobility and the decarbonisation of transport systems, offering recommendations for infrastructure expansion and energy diversification strategies. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

26 pages, 3405 KiB  
Article
Digital Twins for Intelligent Vehicle-to-Grid Systems: A Multi-Physics EV Model for AI-Based Energy Management
by Michela Costa and Gianluca Del Papa
Appl. Sci. 2025, 15(15), 8214; https://doi.org/10.3390/app15158214 - 23 Jul 2025
Viewed by 285
Abstract
This paper presents a high-fidelity multi-physics dynamic model for electric vehicles, serving as a fundamental building block for intelligent vehicle-to-grid (V2G) integration systems. The model accurately captures complex vehicle dynamics of the powertrain, battery, and regenerative braking, enabling precise energy consumption evaluation, including [...] Read more.
This paper presents a high-fidelity multi-physics dynamic model for electric vehicles, serving as a fundamental building block for intelligent vehicle-to-grid (V2G) integration systems. The model accurately captures complex vehicle dynamics of the powertrain, battery, and regenerative braking, enabling precise energy consumption evaluation, including in AI-driven V2G scenarios. Validated using real-world data from a Citroën Ami operating on urban routes in Naples, Italy, it achieved exceptional accuracy with a root mean square error (RMSE) of 1.28% for dynamic state of charge prediction. This robust framework provides an essential foundation for AI-driven digital twin technologies in V2G applications, significantly advancing sustainable transportation and smart grid integration through predictive simulation. Its versatility supports diverse fleet applications, from residential energy management and coordinated charging optimization to commercial car sharing operations, leveraging backup power during peak demand or grid outages, so to maximize distributed battery storage utilization. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in the Novel Power System)
Show Figures

Figure 1

23 pages, 1958 KiB  
Article
A Comparative Life Cycle Assessment of End-of-Life Scenarios for Light Electric Vehicles: A Case Study of an Electric Moped
by Santiago Eduardo, Erik Alexander Recklies, Malina Nikolic and Semih Severengiz
Sustainability 2025, 17(15), 6681; https://doi.org/10.3390/su17156681 - 22 Jul 2025
Viewed by 368
Abstract
This study analyses the greenhouse gas reduction potential of different end-of-life (EoL) strategies based on a case study of light electric vehicles (LEVs). Using a shared electric moped scooter as a reference, four EoL scenarios are evaluated in a comparative life cycle assessment [...] Read more.
This study analyses the greenhouse gas reduction potential of different end-of-life (EoL) strategies based on a case study of light electric vehicles (LEVs). Using a shared electric moped scooter as a reference, four EoL scenarios are evaluated in a comparative life cycle assessment (LCA). The modelling of the scenarios combines different R-strategies (e.g., recycling, reusing, and repurposing) regarding both the vehicle itself and the battery. German and EU regulations for vehicle and battery disposal are incorporated, as well as EU directives such as the Battery Product Pass. The global warming potential (GWP100) of the production and EoL life cycle stages ranges from 644 to 1025 kg CO2 eq among the four analysed scenarios. Landfill treatment led to the highest GWP100, with 1.47 times higher emissions than those of the base scenario (status quo treatment following EU directives), while increasing component reuse and repurposing the battery cells achieved GWP100 reductions of 2.8% and 7.8%, respectively. Overall, the importance of implementing sustainable EoL strategies for LEVs is apparent. To achieve this, a product design that facilitates EoL material and component separation is essential as well as the development of political and economic frameworks. This paper promotes enhancing the circularity of LEVs by combining the LCA of EoL strategies with eco-design considerations. Full article
Show Figures

Figure 1

28 pages, 2701 KiB  
Article
Optimal Scheduling of Hybrid Games Considering Renewable Energy Uncertainty
by Haihong Bian, Kai Ji, Yifan Zhang, Xin Tang, Yongqing Xie and Cheng Chen
World Electr. Veh. J. 2025, 16(7), 401; https://doi.org/10.3390/wevj16070401 - 17 Jul 2025
Viewed by 192
Abstract
As the integration of renewable energy sources into microgrid operations deepens, their inherent uncertainty poses significant challenges for dispatch scheduling. This paper proposes a hybrid game-theoretic optimization strategy to address the uncertainty of renewable energy in microgrid scheduling. An energy trading framework is [...] Read more.
As the integration of renewable energy sources into microgrid operations deepens, their inherent uncertainty poses significant challenges for dispatch scheduling. This paper proposes a hybrid game-theoretic optimization strategy to address the uncertainty of renewable energy in microgrid scheduling. An energy trading framework is developed, involving integrated energy microgrids (IEMS), shared energy storage operators (ESOS), and user aggregators (UAS). A mixed game model combining master–slave and cooperative game theory is constructed in which the ESO acts as the leader by setting electricity prices to maximize its own profit, while guiding the IEMs and UAs—as followers—to optimize their respective operations. Cooperative decisions within the IEM coalition are coordinated using Nash bargaining theory. To enhance the generality of the user aggregator model, both electric vehicle (EV) users and demand response (DR) users are considered. Additionally, the model incorporates renewable energy output uncertainty through distributionally robust chance constraints (DRCCs). The resulting two-level optimization problem is solved using Karush–Kuhn–Tucker (KKT) conditions and the Alternating Direction Method of Multipliers (ADMM). Simulation results verify the effectiveness and robustness of the proposed model in enhancing operational efficiency under conditions of uncertainty. Full article
Show Figures

Figure 1

21 pages, 2201 KiB  
Article
Evaluating China’s Electric Vehicle Adoption with PESTLE: Stakeholder Perspectives on Sustainability and Adoption Barriers
by Daniyal Irfan and Xuan Tang
Sustainability 2025, 17(14), 6258; https://doi.org/10.3390/su17146258 - 8 Jul 2025
Viewed by 528
Abstract
The electric vehicle (EV) business model integrates advanced battery technology, dynamic power train architectures, and intelligent energy management systems with ecosystem strategies and digital services. It incorporates environmental sustainability through lifecycle analysis and renewable energy integration. China, with 9.49 million EV sales in [...] Read more.
The electric vehicle (EV) business model integrates advanced battery technology, dynamic power train architectures, and intelligent energy management systems with ecosystem strategies and digital services. It incorporates environmental sustainability through lifecycle analysis and renewable energy integration. China, with 9.49 million EV sales in 2023 (33% market share), faces infrastructure gaps constraining further growth. China is strategically mitigating CO2 emissions while fostering economic expansion, notwithstanding constraints such as suboptimal battery technology advancements, elevated production expenditure, and enduring ecological impacts. This Political, Economic, Social, Technological, Legal, Environmental (PESTLE) assessment, operationalized through a survey of 800 stakeholders and Statistical Package for the Social Sciences IBM SPSS SPSS (Version 28) quantitative analysis (factor loading = 0.73 for Technology; eigenvalue = 4.12), identifies infrastructure gaps as the dominant barrier (72% of stakeholders). Political factors (β = 0.82) emerged as the strongest adoption predictor, outweighing economic subsidies in significance. The adoption of EVs in China presents a significant prospect for reducing CO2 emissions and advancing technology. However, economic barriers, market dynamics, inadequate infrastructure, regulatory uncertainty, and social acceptance issues are addressed in the assessment. The study recommends prioritizing infrastructure investment (e.g., 500 K fast-charging stations by 2027) and policy stability to overcome adoption barriers. This study provides three key advances: (1) quantification of PESTLE factor weights via factor analysis, revealing technological (infrastructure) and political factors as dominant; (2) identification of infrastructure gaps, not subsidies, as the primary adoption barrier; and (3) demonstration of infrastructure’s persistence post-subsidy cuts. These insights redefine EV adoption priorities in China. Full article
Show Figures

Figure 1

18 pages, 1520 KiB  
Article
Transitioning to Cleaner Transport: Evaluating the Environmental and Economic Performance of ICE, HEVs, and PHEVs in Bangladesh
by MD Shiyan Sadik, Md Ishmam Labib and Asma Safia Disha
World Electr. Veh. J. 2025, 16(7), 380; https://doi.org/10.3390/wevj16070380 - 6 Jul 2025
Viewed by 537
Abstract
The transportation sector in South Asia largely depends on internal combustion engine (ICE) vehicles, which are responsible for a large share of greenhouse gas (GHG) emissions, air pollution, and the increase in fuel prices. Although hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles [...] Read more.
The transportation sector in South Asia largely depends on internal combustion engine (ICE) vehicles, which are responsible for a large share of greenhouse gas (GHG) emissions, air pollution, and the increase in fuel prices. Although hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and fully electric vehicles (EVs) constitute promising alternatives, the rate of their implementation is low due to factors such as the high initial investment, the absence of the required infrastructure, and the reliance on fossil fuel-based electricity. This study is the first of its kind to examine Bangladesh’s drivetrain options in a comprehensive way, with in-depth real-world emission testing and economic analysis as the main tools of investigation into the environmental and economic feasibility of different technologies used in the vehicles available in Bangladesh, including lifecycle costs and infrastructure constraints. The study findings have shown that hybrid and plug-in hybrid vehicles are the best options, since they have moderate emissions and cost efficiency, respectively. Fully electric vehicles, however, face two main challenges: the overall lack of charging infrastructure and the overall high purchase prices. Among the evaluated technologies, PHEVs exhibited the lowest environmental and economic burden. The Toyota Prius PHEV emitted 98% less NOx compared to the diesel-powered Pajero Sport and maintained the lowest per-kilometer cost at BDT 6.39. In contrast, diesel SUVs emitted 178 ppm NOx and cost 22.62 BDT/km, reinforcing the transitional advantage of plug-in hybrid technology in Bangladesh’s context. Full article
Show Figures

Figure 1

30 pages, 5576 KiB  
Article
A Spatio-Temporal Microsimulation Framework for Charging Impact Analysis of Electric Vehicles in Residential Areas: Sensitivity Analysis and Benefits of Model Complexity
by Stefan Schmalzl, Michael Frey and Frank Gauterin
Energies 2025, 18(13), 3530; https://doi.org/10.3390/en18133530 - 4 Jul 2025
Viewed by 373
Abstract
The increasing share of electric vehicles (EVs) offers many advantages, including a reduced CO2 footprint over the vehicles’ lifetime and improved resource efficiency through the recycling of high-voltage batteries. At the same time, the growing EV share presents challenges, such as ensuring [...] Read more.
The increasing share of electric vehicles (EVs) offers many advantages, including a reduced CO2 footprint over the vehicles’ lifetime and improved resource efficiency through the recycling of high-voltage batteries. At the same time, the growing EV share presents challenges, such as ensuring sufficient power supply for the simultaneous charging of EVs within existing distribution grids. The scientific community has conducted numerous studies on the interaction between EVs and distribution grids, employing increasingly complex modeling techniques. However, the benefits of more complex modeling are rarely quantified. This study aims to address this gap by evaluating the impact of modeling complexity on transformer peak loads and busbar voltage for three communities with real-world distribution grid data. Since numerous stochastic factors influence EV charging patterns, this paper introduces a modular framework that accounts for the interconnection of these factors through microsimulation. The framework models charging events of battery electric vehicles (BEVs) and comprises modules for synthetic population generation, weekly mobility pattern assignment, and energy demand modeling based on vehicle class and ambient conditions. The findings reveal that cost-optimized charging strategies and seasonal factors, such as cold weather, have a significantly greater impact on the distribution grid than the detailed modeling of sociodemographic mobility patterns or detailed modeling of a diversified vehicle fleet. Full article
Show Figures

Figure 1

25 pages, 9001 KiB  
Article
Analysis of the Impact of Electromobility on the Distribution Grid
by Tomislav Kovačević, Ružica Kljajić, Hrvoje Glavaš and Milan Kljajin
World Electr. Veh. J. 2025, 16(7), 358; https://doi.org/10.3390/wevj16070358 - 27 Jun 2025
Viewed by 318
Abstract
This paper analyzes the impact of electromobility on distribution grids and voltage stability. In line with current legislation and the European Commission’s plans for the future of electromobility, the aim is to increase the share of electric vehicles to 50% by 2050. However, [...] Read more.
This paper analyzes the impact of electromobility on distribution grids and voltage stability. In line with current legislation and the European Commission’s plans for the future of electromobility, the aim is to increase the share of electric vehicles to 50% by 2050. However, achieving this target can be challenging due to the characteristics and features of the electric vehicle charging stations and the associated charging methods, which can lead to constraints within the network. The analysis includes the integration of single-phase and three-phase chargers on a radial feeder, as well as the determination of the maximum number of vehicles that can be accommodated on a given feeder without compromising voltage stability. Five scenarios are evaluated using the DigSilent software package to gain a better understanding of the impact of electromobility on the distribution grid. Full article
Show Figures

Figure 1

19 pages, 1089 KiB  
Article
Sustainable Mobility and Emissions: The Role of the Sale Structure in the Automotive Energy Transition
by Olga Orynycz, Ondrej Stopka, Anna Borucka, Ewa Kulesza, Jerzy Merkisz and Petr Kolařík
Energies 2025, 18(13), 3313; https://doi.org/10.3390/en18133313 - 24 Jun 2025
Viewed by 472
Abstract
The aim of this article is to assess the sale structure impact of selected, popular brands of passenger vehicles on total CO2 emissions in the context of the energy transition in the transport sector. A detailed analysis was conducted of the projected [...] Read more.
The aim of this article is to assess the sale structure impact of selected, popular brands of passenger vehicles on total CO2 emissions in the context of the energy transition in the transport sector. A detailed analysis was conducted of the projected sales of gasoline-, diesel-, hybrid-, as well as electric-powered vehicles over the years 2021–2028. Based on the available empirical data, a mathematical model was developed to estimate emissions over the entire life cycle of vehicles, taking into account the unit carbon footprint of each type of drivetrain and the expected number of vehicles sold. The results indicate a gradual decline in total CO2 emissions during the analyzed period, mainly due to the increasing share of alternative drivetrains. Despite the growth in electric vehicle sales, their impact on emission reductions remains limited due to the long lifespan of conventional vehicle fleets. The article concludes with a proposal to expand the LCA model to include regional, energy, and recycling components, which could help in formulating more effective climate policies. Full article
(This article belongs to the Special Issue Environmental Sustainability and Energy Economy)
Show Figures

Figure 1

26 pages, 6623 KiB  
Article
Optimal Allocation of Shared Energy Storage in Low-Carbon Parks Taking into Account the Uncertainty of Photovoltaic Output and Electric Vehicle Charging
by Shang Jiang, Jiacheng Li, Wenlong Shen, Lu Liang and Jinfeng Wu
Energies 2025, 18(13), 3280; https://doi.org/10.3390/en18133280 - 23 Jun 2025
Viewed by 253
Abstract
The growing integration of renewable energy and electric vehicle loads in parks has intensified the intermittency of photovoltaic (PV) output and demand-side uncertainty, complicating energy storage system design and operation. Meanwhile, under carbon neutrality goals, the energy system must balance economic efficiency with [...] Read more.
The growing integration of renewable energy and electric vehicle loads in parks has intensified the intermittency of photovoltaic (PV) output and demand-side uncertainty, complicating energy storage system design and operation. Meanwhile, under carbon neutrality goals, the energy system must balance economic efficiency with emission reductions, raising the bar for storage planning. To address these challenges, this study proposes a two-stage robust optimization method for shared energy storage configuration in a park-level integrated PV–storage–charging system (PV-SESS-CS). The method considers the uncertainties of PV and electric vehicle (EV) loads and incorporates carbon emission reduction benefits. First, a configuration model for shared energy storage that accounts for carbon emission reduction is established. Then, a two-stage robust optimization model is developed to characterize the uncertainties of PV output and EV charging demand. Typical PV output scenarios are generated using Latin Hypercube Sampling, and representative PV profiles are extracted via K-means clustering. For EV charging loads, uncertainty scenarios are generated using Monte Carlo Sampling. Finally, simulations are conducted based on real-world industrial park data. The results demonstrate that the proposed method can effectively mitigate the negative impact of source-load fluctuations, significantly reduce operating costs, and enhance carbon emission reductions. This study provides strong methodological support for optimal energy storage planning and low-carbon operation in park-level PV-SESS-CS. Full article
Show Figures

Figure 1

27 pages, 5522 KiB  
Article
Integrated Vehicle-to-Building and Vehicle-to-Home Services for Residential and Worksite Microgrids
by Andrea Bonfiglio, Manuela Minetti, Riccardo Loggia, Lorenzo Frattale Mascioli, Andrea Golino, Cristina Moscatiello and Luigi Martirano
Smart Cities 2025, 8(3), 101; https://doi.org/10.3390/smartcities8030101 - 19 Jun 2025
Viewed by 447
Abstract
The development of electric mobility offers new perspectives in the energy sector and improves resource efficiency and sustainability. This paper proposes a new strategy for synchronizing the energy requirements of home, commercial, and vehicle mobility, with a focus on the batteries of electric [...] Read more.
The development of electric mobility offers new perspectives in the energy sector and improves resource efficiency and sustainability. This paper proposes a new strategy for synchronizing the energy requirements of home, commercial, and vehicle mobility, with a focus on the batteries of electric cars. In particular, this paper describes the coordination between a battery management algorithm that optimally assigns its capacity so that at least a part is reserved for mobility and a vehicle-to-building (V2B) service algorithm that uses a share of EV battery energy to improve user participation in renewable energy exploitation at home and at work. The system offers the user the choice of always maintaining a minimum charge for mobility or providing more flexible use of energy for business needs while maintaining established vehicle autonomy. Suitable management at home and at work allows always charging the vehicle to the required level of charge with renewable power excess, highlighting how the cooperation of home and work charging may provide novel frameworks for a smarter and more sustainable integration of electric mobility, reducing energy consumption and providing more effective energy management. The effectiveness of the proposed solution is demonstrated in a realistic configuration with real data and an experimental setup. Full article
Show Figures

Figure 1

34 pages, 1789 KiB  
Article
Bridging Policy, Infrastructure, and Innovation: A Causal and Predictive Analysis of Electric Vehicle Integration Across Africa, China, and the EU
by Nhoyidi Nsan, Chinemerem Obi and Emmanuel Etuk
Sustainability 2025, 17(12), 5449; https://doi.org/10.3390/su17125449 - 13 Jun 2025
Viewed by 668
Abstract
Electric vehicles (EVs) are central to the decarbonisation of transport systems and achievement of the Sustainable Development Goals (such as SDGs 7 and 13, affordable and clean energy and climate action, respectively). This study adopts a hybrid methodological framework, merging panel econometric models [...] Read more.
Electric vehicles (EVs) are central to the decarbonisation of transport systems and achievement of the Sustainable Development Goals (such as SDGs 7 and 13, affordable and clean energy and climate action, respectively). This study adopts a hybrid methodological framework, merging panel econometric models with machine learning (ML), to examine the drivers of EV adoption across Africa, China, and the European Union between 2015 and 2023. We analyse the influence of charging station density (CSD), GDP per capita, renewable energy share (RES), urbanisation, and electricity access using both first-difference and fixed-effects models for causal insight and Random Forest, XGBoost, and neural network algorithms for predictive analytics. While CSD emerges as the most significant driver across models, results reveal a paradox—GDP per capita demonstrates a negative relationship with EV adoption in econometric models yet ranks among the top predictive features in ML models. This divergence highlights the limitations of assuming linear causality in high-income settings and underscores the value of combining causal and predictive approaches. SHAP and PCA analyses further illustrate regional disparities, with Africa showing low feasibility scores due to infrastructure and grid limitations. Sub-regional case studies (Kenya, South Africa, Morocco, Nigeria) emphasise the need for tailored, integrated policies that address both energy infrastructure and transport equity. Findings highlight the value of combining interpretable models with predictive algorithms to inform inclusive and region-specific EV transition strategies. Full article
Show Figures

Figure 1

24 pages, 6185 KiB  
Article
Decentralized Energy Management for Efficient Electric Vehicle Charging in DC Microgrids: A Piece-Wise Droop Control Approach
by Mallareddy Mounica, Bhooshan Avinash Rajpathak, Mohan Lal Kolhe, K. Raghavendra Naik, Janardhan Rao Moparthi, Sravan Kumar Kotha and Devasuth Govind
Processes 2025, 13(6), 1748; https://doi.org/10.3390/pr13061748 - 2 Jun 2025
Viewed by 810
Abstract
This paper addresses the challenges of efficient electric vehicle (EV) charging integration in Direct Current (DC) microgrids (MGs), particularly the impact of intermittent EV loads on power sharing and voltage regulation. Traditional droop control methods suffer from inherent trade-offs between performance indices of [...] Read more.
This paper addresses the challenges of efficient electric vehicle (EV) charging integration in Direct Current (DC) microgrids (MGs), particularly the impact of intermittent EV loads on power sharing and voltage regulation. Traditional droop control methods suffer from inherent trade-offs between performance indices of parallel distributed energy resources (DERs), which in turn results in improper source utilization. We propose a novel decentralized piece-wise droop control (PDC) approach with voltage compensation for EV charging to overcome this limitation and to minimize the unequal cable resistance effect on power sharing. This strategy dynamically optimises the droop characteristics based on EV charging load profiles, partitioning the droop curve to optimize power sharing accuracy and voltage stability considering the constraints of maximum allowable voltage deviation and loading. Simulation and experimental results demonstrate significant improvements in power sharing, enhanced DER utilization, and voltage deviations consistently within 2.5% when compared with traditional strategies. PDC offers a robust solution for enabling efficient and reliable EV charging in MGs, as it is not sensitive for EV load prediction errors and measurement noise. Full article
Show Figures

Figure 1

23 pages, 2876 KiB  
Article
Pyrometallurgical Recycling of Electric Motors for Sustainability in End-of-Life Vehicle Metal Separation Planning
by Erdenebold Urtnasan, Jeong-Hoon Park, Yeon-Jun Chung and Jei-Pil Wang
Processes 2025, 13(6), 1729; https://doi.org/10.3390/pr13061729 - 31 May 2025
Viewed by 875
Abstract
Rapid progress in lithium-ion batteries and AI-powered autonomous driving is poised to propel electric vehicles to a 50% share of the global automotive market by the year 2035. Today, there is a major focus on recycling electric vehicle motors, particularly on extracting rare [...] Read more.
Rapid progress in lithium-ion batteries and AI-powered autonomous driving is poised to propel electric vehicles to a 50% share of the global automotive market by the year 2035. Today, there is a major focus on recycling electric vehicle motors, particularly on extracting rare earth elements (REEs) from NdFeB permanent magnets (PMs). This research is based on a single-furnace process concept designed to separate metal components within PM motors by exploiting the varying melting points of the constituent materials, simultaneously extracting REEs present within the PMs and transferring them into the slag phase. Thermodynamic modeling, via Factsage Equilib stream calculations, optimized the experimental process. Simulated materials substituted the PM motor, which optimized modeling-directed melting within an induction furnace. The 2FeO·SiO2 fayalite flux can oxidize rare earth elements, resulting in slag. The neodymium oxidation reaction by fayalite exhibits a ΔG° of −427 kJ when subjected to an oxygen partial pressure (PO2) of 1.8 × 10−9, which is lower than that required for FeO decomposition. Concerning the FeO–SiO2 system, neodymium, in Nd3+, exhibits a strong bonding with the SiO44 matrix, leading to its incorporation within the slag as the silicate compound, Nd2Si2O7. When 30 wt.% fayalite flux was added, the resulting experiment yielded a neodymium extraction degree of 91%, showcasing the effectiveness of this fluxing agent in the extraction process. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

Back to TopTop