Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (734)

Search Parameters:
Keywords = electric transmission line

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5546 KiB  
Article
Modification of Vegetation Structure and Composition to Reduce Wildfire Risk on a High Voltage Transmission Line
by Tom Lewis, Stephen Martin and Joel James
Fire 2025, 8(8), 309; https://doi.org/10.3390/fire8080309 - 5 Aug 2025
Abstract
The Mapleton Falls National Park transmission line corridor in Queensland, Australia, has received a number of vegetation management treatments over the last decade to maintain and protect the infrastructure and to ensure continuous electricity supply. Recent treatments have included ‘mega-mulching’ (mechanical mastication of [...] Read more.
The Mapleton Falls National Park transmission line corridor in Queensland, Australia, has received a number of vegetation management treatments over the last decade to maintain and protect the infrastructure and to ensure continuous electricity supply. Recent treatments have included ‘mega-mulching’ (mechanical mastication of vegetation to a mulch layer) in 2020 and targeted herbicide treatment of woody vegetation, with the aim of reducing vegetation height by encouraging a native herbaceous groundcover beneath the transmission lines. We measured vegetation structure (cover and height) and composition (species presence in 15 × 2 m plots), at 12 transects, 90 m in length on the transmission line corridor, to determine if management goals were being achieved and to determine how the vegetation and fire hazard (based on the overall fuel hazard assessment method) varied among the treated corridor, the forest edge environment, and the natural forest. The results showed that vegetation structure and composition in the treated zones had been modified to a state where herbaceous plant species were dominant; there was a significantly (p < 0.05) higher native grass cover and cover of herbs, sedges, and ferns in the treated zones, and a lower cover of trees and tall woody plants (>1 m in height) in these areas. For example, mean native grass cover and the cover of herbs and sedges in the treated areas was 10.2 and 2.8 times higher, respectively, than in the natural forest. The changes in the vegetation structure (particularly removal of tall woody vegetation) resulted in a lower overall fuel hazard in the treated zones, relative to the edge zones and natural forest. The overall fuel hazard was classified as ‘high’ in 83% of the transects in the treated areas, but it was classified as ‘extreme’ in 75% of the transects in the adjacent forest zone. Importantly, there were few introduced species recorded. The results suggest that fuel management has been successful in reducing wildfire risk in the transmission corridor. Temporal monitoring is recommended to determine the frequency of ongoing fuel management. Full article
Show Figures

Figure 1

19 pages, 3397 KiB  
Article
Large-Scale Transmission Expansion Planning with Network Synthesis Methods for Renewable-Heavy Synthetic Grids
by Adam B. Birchfield, Jong-oh Baek and Joshua Xia
Energies 2025, 18(14), 3844; https://doi.org/10.3390/en18143844 - 19 Jul 2025
Viewed by 223
Abstract
With increasing electrification and the connection of more renewable resources at the transmission level, bulk interconnected electric grids need to plan network expansion with new transmission facilities. The transmission expansion planning (TEP) problem is particularly challenging because of the combinatorial, integer optimization nature [...] Read more.
With increasing electrification and the connection of more renewable resources at the transmission level, bulk interconnected electric grids need to plan network expansion with new transmission facilities. The transmission expansion planning (TEP) problem is particularly challenging because of the combinatorial, integer optimization nature of the problem and the complexity of engineering analysis for any one possible solution. Network synthesis methods, that is, heuristic-based techniques for building synthetic electric grid models based on complex network properties, have been developed in recent years and have the capability of balancing multiple aspects of power system design while efficiently considering large numbers of candidate lines to add. This paper presents a methodology toward scalability in addressing the large-scale TEP problem by applying network synthesis methods. The algorithm works using a novel heuristic method, inspired by simulated annealing, which alternates probabilistic removal and targeted addition, balancing the fixed cost of transmission investment with objectives of resilience via power flow contingency robustness. The methodology is demonstrated in a test case that expands a 2000-bus interconnected synthetic test case on the footprint of Texas with new transmission to support 2025-level load and generation. Full article
Show Figures

Figure 1

39 pages, 1774 KiB  
Review
FACTS Controllers’ Contribution for Load Frequency Control, Voltage Stability and Congestion Management in Deregulated Power Systems over Time: A Comprehensive Review
by Muhammad Asad, Muhammad Faizan, Pericle Zanchetta and José Ángel Sánchez-Fernández
Appl. Sci. 2025, 15(14), 8039; https://doi.org/10.3390/app15148039 - 18 Jul 2025
Viewed by 396
Abstract
Incremental energy demand, environmental constraints, restrictions in the availability of energy resources, economic conditions, and political impact prompt the power sector toward deregulation. In addition to these impediments, electric power competition for power quality, reliability, availability, and cost forces utilities to maximize utilization [...] Read more.
Incremental energy demand, environmental constraints, restrictions in the availability of energy resources, economic conditions, and political impact prompt the power sector toward deregulation. In addition to these impediments, electric power competition for power quality, reliability, availability, and cost forces utilities to maximize utilization of the existing infrastructure by flowing power on transmission lines near to their thermal limits. All these factors introduce problems related to power network stability, reliability, quality, congestion management, and security in restructured power systems. To overcome these problems, power-electronics-based FACTS devices are one of the beneficial solutions at present. In this review paper, the significant role of FACTS devices in restructured power networks and their technical benefits against various power system problems such as load frequency control, voltage stability, and congestion management will be presented. In addition, an extensive discussion about the comparison between different FACTS devices (series, shunt, and their combination) and comparison between various optimization techniques (classical, analytical, hybrid, and meta-heuristics) that support FACTS devices to achieve their respective benefits is presented in this paper. Generally, it is concluded that third-generation FACTS controllers are more popular to mitigate various power system problems (i.e., load frequency control, voltage stability, and congestion management). Moreover, a combination of multiple FACTS devices, with or without energy storage devices, is more beneficial compared to their individual usage. However, this is not commonly adopted in small power systems due to high installation or maintenance costs. Therefore, there is a trade-off between the selection and cost of FACTS devices to minimize the power system problems. Likewise, meta-heuristics and hybrid optimization techniques are commonly adopted to optimize FACTS devices due to their fast convergence, robustness, higher accuracy, and flexibility. Full article
(This article belongs to the Special Issue State-of-the-Art of Power Systems)
Show Figures

Figure 1

15 pages, 3342 KiB  
Article
Fault-Tolerant Control of the Electro-Mechanical Compound Transmission System of Tracked Vehicles Based on the Anti-Windup PID Algorithm
by Qingkun Xing, Ziao Zhang, Xueliang Li, Datong Qin and Zengxiong Peng
Machines 2025, 13(7), 622; https://doi.org/10.3390/machines13070622 - 18 Jul 2025
Viewed by 234
Abstract
The electromechanical composite transmission technology for tracked vehicles demonstrates excellent performance in energy efficiency, mobility, and ride comfort. However, due to frequent operation under harsh conditions, the components of the electric drive system, such as drive motors, are prone to failures. This paper [...] Read more.
The electromechanical composite transmission technology for tracked vehicles demonstrates excellent performance in energy efficiency, mobility, and ride comfort. However, due to frequent operation under harsh conditions, the components of the electric drive system, such as drive motors, are prone to failures. This paper proposes three fault-tolerant control methods for three typical fault scenarios of the electromechanical composite transmission system (ECTS) to ensure the normal operation of tracked vehicles. Firstly, an ECTS and the electromechanical coupling dynamics model of the tracked vehicle are established. Moreover, a double-layer anti-windup PID control for motors and an instantaneous optimal control strategy for the engine are proposed in the fault-free case. Secondly, an anti-windup PID control law for motors and an engine control strategy considering the state of charge (SOC) and driving demands are developed in the case of single-side drive motor failure. Thirdly, a B4 clutch control strategy during starting and a steering brake control strategy are proposed in the case of electric drive system failure. Finally, in the straight-driving condition of the tracked vehicle, the throttle opening is set as 0.6, and the motor failure is triggered at 15 s during the acceleration process. Numerical simulations verify the fault-tolerant control strategies’ feasibility, using the tracked vehicle’s maximum speed and acceleration at 30 s as indicators for dynamic performance evaluation. The simulation results show that under single-motor fault, its straight-line driving power drops by 33.37%; with electric drive failure, the drop reaches 43.86%. The vehicle can still maintain normal straight-line driving and steering under fault conditions. Full article
(This article belongs to the Topic Vehicle Dynamics and Control, 2nd Edition)
Show Figures

Figure 1

15 pages, 4034 KiB  
Article
Electroluminescent Sensing Coating for On-Line Detection of Zero-Value Insulators in High-Voltage Systems
by Yongjie Nie, Yihang Jiang, Pengju Wang, Daoyuan Chen, Yongsen Han, Jialiang Song, Yuanwei Zhu and Shengtao Li
Appl. Sci. 2025, 15(14), 7965; https://doi.org/10.3390/app15147965 - 17 Jul 2025
Viewed by 246
Abstract
In high-voltage transmission lines, insulators subjected to prolonged electromechanical stress are prone to zero-value defects, leading to insulation failure and posing significant risks to power grid reliability. The conventional detection method of spark gap is vulnerable to environmental interference, while the emerging electric [...] Read more.
In high-voltage transmission lines, insulators subjected to prolonged electromechanical stress are prone to zero-value defects, leading to insulation failure and posing significant risks to power grid reliability. The conventional detection method of spark gap is vulnerable to environmental interference, while the emerging electric field distribution-based techniques require complex instrumentation, limiting its applications in scenes of complex structures and atop tower climbing. To address these challenges, this study proposes an electroluminescent sensing strategy for zero-value insulator identification based on the electroluminescence of ZnS:Cu. Based on the stimulation of electrical stress, real-time monitoring of the health status of insulators was achieved by applying the composite of epoxy and ZnS:Cu onto the connection area between the insulator steel cap and the shed. Experimental results demonstrate that healthy insulators exhibit characteristic luminescence, whereas zero-value insulators show no luminescence due to a reduced drop in electrical potential. Compared with conventional detection methods requiring access of electric signals, such non-contact optical detection method offers high fault-recognition accuracy and real-time response capability within milliseconds. This work establishes a novel intelligent sensing paradigm for visualized condition monitoring of electrical equipment, demonstrating significant potential for fault diagnosis in advanced power systems. Full article
(This article belongs to the Special Issue Advances in Electrical Insulation Systems)
Show Figures

Figure 1

20 pages, 2412 KiB  
Article
Influence of Ion Flow Field on the Design of Hybrid HVAC and HVDC Transmission Lines with Different Configurations
by Jinyuan Xing, Chenze Han, Jun Tian, Hao Wu and Tiebing Lu
Energies 2025, 18(14), 3657; https://doi.org/10.3390/en18143657 - 10 Jul 2025
Viewed by 269
Abstract
Due to the coupling of DC and AC components, the ion flow field of HVDC and HVAC transmission lines in the same corridor or even the same tower is complex and time-dependent. In order to effectively analyze the ground-level electric field of hybrid [...] Read more.
Due to the coupling of DC and AC components, the ion flow field of HVDC and HVAC transmission lines in the same corridor or even the same tower is complex and time-dependent. In order to effectively analyze the ground-level electric field of hybrid transmission lines, the Krylov subspace methods with pre-conditioning treatment are used to solve the discretization equations. By optimizing the coefficient matrix, the calculation efficiency of the iterative process of the electric field in the time domain is greatly increased. Based on the limit of electric field, radio interference and audible noise applied in China, the main factor influencing the design of hybrid transmission lines is determined in terms of electromagnetic environment. After the ground-level electric field of transmission lines with different configurations is analyzed, the minimum height and corridor width of double-circuit 500 kV HVAC lines and one-circuit ±800 kV HVDC lines in the same corridor are obtained. The research provides valuable practical recommendations for optimal tower configurations, minimum heights, and corridor widths under various electromagnetic constraints. Full article
Show Figures

Figure 1

16 pages, 3070 KiB  
Article
Global Sensitivity Analysis of Tie-Line Power on Voltage Stability Margin in Renewable Energy-Integrated System
by Haifeng Zhang, Song Gao, Jiajun Zhang, Yunchang Dong, Han Gao and Deyou Yang
Electronics 2025, 14(14), 2757; https://doi.org/10.3390/electronics14142757 - 9 Jul 2025
Viewed by 219
Abstract
With the increasing load and renewable energy capacity in interconnected power grids, the system voltage stability faces significant challenges. Tie-line transmission power is a critical factor influencing the voltage stability margin. To address this, this paper proposes a fully data-driven global sensitivity calculation [...] Read more.
With the increasing load and renewable energy capacity in interconnected power grids, the system voltage stability faces significant challenges. Tie-line transmission power is a critical factor influencing the voltage stability margin. To address this, this paper proposes a fully data-driven global sensitivity calculation method for the tie-line power-voltage stability margin, aiming to quantify the impact of tie-line power on the voltage stability margin. The method first constructs an online estimation model of the voltage stability margin based on system measurement data under ambient excitation. To adapt to changes in system operating conditions, an online updating strategy for the parameters of the margin estimation model is further proposed, drawing on incremental learning principles. Subsequently, considering the source–load uncertainty of the system, a global sensitivity calculation method based on analysis of variance (ANOVA) is proposed, utilizing online acquired voltage stability margin and tie-line power data, to accurately quantify the impact of tie-lines on the voltage stability margin. The accuracy of the proposed method is verified through the Nordic test system and the China Electric Power Research Institute (CEPRI) standard test case; the results show that the error of the proposed method is less than 0.3%, and the computation time is within 1 s. Full article
Show Figures

Graphical abstract

19 pages, 2199 KiB  
Article
Battery Energy Storage System Strategy for Island System Based on Reliability Assessment
by Nestor Gonzalez Cabrera
Energies 2025, 18(13), 3509; https://doi.org/10.3390/en18133509 - 3 Jul 2025
Viewed by 300
Abstract
To meet the targets of the 2030 agenda of the United Nations (UN) to reduce CO2 emissions, various small-scale renewable generation sources have been integrated into electricity systems to maintain decarbonisation and reduce the use of thermal generation, aiming to achieve the [...] Read more.
To meet the targets of the 2030 agenda of the United Nations (UN) to reduce CO2 emissions, various small-scale renewable generation sources have been integrated into electricity systems to maintain decarbonisation and reduce the use of thermal generation, aiming to achieve the sustainable development of electricity generation. In this context, this paper introduces a battery-based strategy with the integration of small-scale renewable generation sources. This is evaluated through an analysis of the reliability of transmission lines, considering contingencies of the orders of N-1 and N-2 to identify cases where there are isolated nodes and to visualise the cases with maximum load shedding in the system, indirectly affecting nodes close to the isolated nodes. The proposed strategy is analysed in a six-node RBTS and adapted to the IEEE 118-node system, obtaining energy-efficient results and a reduction in reliability indices. Full article
Show Figures

Figure 1

25 pages, 3362 KiB  
Article
A Fault Direction Discrimination Method for a Two-Terminal Weakly Fed AC System Using the Time-Domain Fault Model for the Difference Discrimination of Composite Electrical Quantities
by Lie Li, Yu Sun, Yifan Zhao, Xiaoqian Zhu, Ping Xiong, Wentao Yang and Junjie Hou
Electronics 2025, 14(13), 2556; https://doi.org/10.3390/electronics14132556 - 24 Jun 2025
Viewed by 218
Abstract
The project of the flexible direct transmission of renewable energy has become an inevitable development trend for the large-scale grid connection of renewable energy. Its two-terminal weakly fed AC system is often composed of 100% power electronic equipment, which leads to an essential [...] Read more.
The project of the flexible direct transmission of renewable energy has become an inevitable development trend for the large-scale grid connection of renewable energy. Its two-terminal weakly fed AC system is often composed of 100% power electronic equipment, which leads to an essential transformation in fault characteristics and protection requirements. At present, in research, the traditional directional elements are limited by the negative-sequence control strategy, resulting in the decline of their sensitivity and reliability. Therefore, this paper proposes a model for identifying directional elements using composite electrical quantities that is not affected by the control strategy of the two-terminal weakly fed AC system and can reliably identify the fault direction. Firstly, the adaptability of traditional directional elements under the negative-sequence current suppression strategy on both sides of the system when faults occur in the AC line was analyzed. Secondly, based on the idea of model recognition, the model relationship of fault voltage and current in the case of ground faults and non-ground faults occurring at different locations was analyzed. Finally, a fitted voltage was constructed and the Kendall correlation coefficient was introduced to achieve fault direction discrimination. Simulation results demonstrate that the proposed pilot protection scheme can operate reliably under conditions of 300 Ω transition resistance and 25 dB noise interference. Full article
(This article belongs to the Special Issue Advanced Online Monitoring and Fault Diagnosis of Power Equipment)
Show Figures

Figure 1

20 pages, 6122 KiB  
Article
Surface Charge and Electric Field Distribution of Direct-Current Gas-Insulated Transmission Lines’ Basin-Type Insulators Under Multi-Field Coupling
by Junran Jia, Xin Lin, Zhenxin Geng and Jianyuan Xu
Appl. Sci. 2025, 15(13), 7061; https://doi.org/10.3390/app15137061 - 23 Jun 2025
Viewed by 356
Abstract
In direct-current gas-insulated transmission lines (DC GIL), complex heat transfer processes accelerate surface charge accumulation on insulators, causing local electric field distortion and elevating the risk of surface flashover. This study develops a three-dimensional multi-physics coupled mathematical model for ±200 kV DC GIL [...] Read more.
In direct-current gas-insulated transmission lines (DC GIL), complex heat transfer processes accelerate surface charge accumulation on insulators, causing local electric field distortion and elevating the risk of surface flashover. This study develops a three-dimensional multi-physics coupled mathematical model for ±200 kV DC GIL basin-type insulators. The bulk and surface conductivity of insulator materials were experimentally measured under varying temperature and electric field conditions, with fitting equations derived to describe their behavior. The model investigates surface charge accumulation and electric field distribution under DC voltage and polarity-reversal conditions, incorporating multi-field coupling effects. Results show that, at a 3150 A current in a horizontally arranged DC GIL, insulator temperatures reach approximately 62.8 °C near the conductor and 32 °C near the enclosure, with the convex surface exhibiting higher temperatures than the concave surface and distinct radial variations. Under DC voltage, surface charge accumulates faster in high-temperature regions, with both charge and electric field distributions stabilizing after approximately 300 h, following significant changes within the first 40 h. Following stabilization, the distribution of surface charge and electric field varies across different radial directions. During polarity reversal, residual surface charges cause electric field distortion, increasing maximum field strength by 13.6% and 47.2% on the convex and concave surfaces, respectively, with greater distortion on the concave surface, as calculated from finite element simulations with a numerical accuracy of ±0.5% based on mesh convergence and solver tolerance. These findings offer valuable insights for enhancing DC GIL insulation performance. Full article
(This article belongs to the Special Issue Advances in Electrical Insulation Systems)
Show Figures

Figure 1

17 pages, 6997 KiB  
Article
Wettability’s Challenge to High-Voltage Insulators: Polyurethane as Preventive Coating
by Touqeer Ahmad Raza, Muhammad Kamran, Syed Ahtisham Mehmood Shah and Muhammad Mehran Bashir
Surfaces 2025, 8(2), 40; https://doi.org/10.3390/surfaces8020040 - 19 Jun 2025
Viewed by 476
Abstract
The failure of a porcelain insulator on a transmission line is a crucial cause of power supply interruptions, leading to poor reliability and revenue loss. The insulator’s performance is adversely affected by environmental contaminants, and wettability intensifies this adverse effect by developing a [...] Read more.
The failure of a porcelain insulator on a transmission line is a crucial cause of power supply interruptions, leading to poor reliability and revenue loss. The insulator’s performance is adversely affected by environmental contaminants, and wettability intensifies this adverse effect by developing a conductive path along the insulator’s surface, leading to premature flashover and insulator failure. This work aims to analyze the response of the electric field distribution and current density using the finite element method (FEM) under different wettability conditions. Discrete water droplets were placed along the surface, and the contact angle was varied to represent different levels of surface hydrophobicity. Abrupt rises and spikes were observed on the plots for the electric field and current density distribution, indicating distortion; however, the distortion kept on decreasing with the increase in the contact angle. Overall, the average stress followed a declining pattern, where the values of the electric field were reduced from 2.588 to 2.412 kV/cm, and current the density was reduced from 0.187 to 0.068 nA/cm2 for an increase in the contact angle from 60° to 140°. Simulation results advocate for hydrophobic insulator surfaces. Therefore, a proper coating is necessary to enrich hydrophobicity and mitigate the adversity of wettability. Polyurethane, due to its excellent hydrophobic and insulating properties, offers a potential coating. Flashover voltage tests have been performed for the coated insulator under dry and wet conditions, where the flashover voltage improved from 79.14 kV to 82.04 kV and 48.4 kV to 53.8 kV, respectively, which supports the simulations’ outcomes. Full article
(This article belongs to the Special Issue Surface Science: Polymer Thin Films, Coatings and Adhesives)
Show Figures

Figure 1

15 pages, 7975 KiB  
Article
Microstructural and Mechanical Characterization of Corroded Aluminum Wires from ACSR Strand
by Laurent Gaillet, Alan Rondineau, Sébastien Langlois, Marc Demers and Lamine Dieng
Corros. Mater. Degrad. 2025, 6(2), 25; https://doi.org/10.3390/cmd6020025 - 17 Jun 2025
Viewed by 335
Abstract
Aluminum Conductors Steel-Reinforced (ACSR) conductors are typically used in overhead transmission lines. Corrosion is an important degradation mechanisms that might affect the lifetime of this essential electricity network component. Considering the complexity of conductors, it is difficult to predict the damage of these [...] Read more.
Aluminum Conductors Steel-Reinforced (ACSR) conductors are typically used in overhead transmission lines. Corrosion is an important degradation mechanisms that might affect the lifetime of this essential electricity network component. Considering the complexity of conductors, it is difficult to predict the damage of these conductors in corrosive environments. The objective of this paper is to evaluate the effect of grease and conductor geometry on the mechanical properties of aluminum strand composing the envelope of ASCR conductors. Thus, ACSR wires and strands have been evaluated in corrosion by the mean of accelerated corrosion tests. Tensile, fatigue and torsion test results are presented to examine the effect of corrosion on aluminum strands. The influence of corrosion on mechanical characteristics is established by a decrease in ductility, maximum elongation and tensile strength for the longest exposition (336 days). This significant reduction in the internal layer of ungreased wires confirms the importance of the galvanic corrosion mechanism of aluminum wires. This evolution concerns only aluminum wires of non-greased conductors, confirming the crucial role of grease as protection against corrosion. Full article
Show Figures

Figure 1

41 pages, 4632 KiB  
Article
Assessing the Resilience of Malawi’s Power Grid to the 2022 Tropical Cyclone Ana Using a Combination of the AFLEPT Metric Framework and Resilience Capacities
by Joyce Nyuma Chivunga, Fransisco Gonzalez-Longatt, Zhengyu Lin and Richard Blanchard
Energies 2025, 18(12), 3165; https://doi.org/10.3390/en18123165 - 16 Jun 2025
Viewed by 402
Abstract
While power system resilience studies continue to grow due to the criticality of electrical infrastructures, the challenge of inconsistencies in evaluation frameworks remains. Furthermore, the desire for researchers to contribute towards the development of practical assessment frameworks continues to grow. In addition, the [...] Read more.
While power system resilience studies continue to grow due to the criticality of electrical infrastructures, the challenge of inconsistencies in evaluation frameworks remains. Furthermore, the desire for researchers to contribute towards the development of practical assessment frameworks continues to grow. In addition, the locality of resilience issues has challenged researchers to find context-based resilience solutions. This paper addresses these by proposing an assessment framework, which evaluates the five phases of the resilience trapezoid: preventive, absorptive, adaptive, restorative, and transformative. This framework presents metrics for measuring preventive indicators for the anticipating system status, frequency of functionality degradation, how low functionality drops, extension in a degraded state, the promptness of recovery, and system transformation—the AFLEPT model. The AFLEPT framework is applied, with its resilience indicators and capacities, to evaluate the resilience of Malawi’s transmission network to the 2022 Tropical Cyclone Ana (TCA). DigSILENT PowerFactory 2023 SP5 was utilised to support this research. The results indicate significant resilience challenges, manifested by an inadequate generation reserve, significant decline in grid functionality, extended total grid outage hours, longer restoration times, and a lack of transformation. Eight percent of key transmission lines and eighteen percent of power generation infrastructure were completely damaged by the TCA, which lasted up to 25 days and 16 months to, respectively, before restoration. Thus, the analysis reveals gaps in preventive, absorptive, adaptive, restorative, and transformative resilience capacities. The results underscore the need for context-based infrastructural and operational resilience enhancement measures, which have been discussed in this paper. Directions for further research have been proposed, which include exploring multiple grid improvement measures and an economic modelling of these measures. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

41 pages, 7139 KiB  
Review
Analysis of Failures and Protective Measures for Core Rods in Composite Long-Rod Insulators of Transmission Lines
by Guohui Pang, Zhijin Zhang, Jianlin Hu, Qin Hu, Hualong Zheng and Xingliang Jiang
Energies 2025, 18(12), 3138; https://doi.org/10.3390/en18123138 - 14 Jun 2025
Viewed by 680
Abstract
Composite insulators are deployed globally for outdoor insulation owing to their light weight, excellent pollution resistance, good mechanical strength, ease of installation, and low maintenance costs. The core rod in composite long-rod insulators plays a critical role in both mechanical load-bearing and internal [...] Read more.
Composite insulators are deployed globally for outdoor insulation owing to their light weight, excellent pollution resistance, good mechanical strength, ease of installation, and low maintenance costs. The core rod in composite long-rod insulators plays a critical role in both mechanical load-bearing and internal insulation for overhead transmission lines, and its performance directly affects the overall operational condition of the insulator. However, it remains susceptible to failures induced by complex actions of mechanical, electrical, thermal, and environmental stresses. This paper systematically reviews the major failure modes of core rods, including mechanical failures (normal fracture, brittle fracture, and decay-like fracture) and electrical failures (flashunder and abnormal heating of the core rod). Through analysis of extensive field data and research findings, key failure mechanisms are identified. Preventive strategies encompassing material modification (such as superhydrophobic coatings, self-diagnostic materials, and self-healing epoxy resin), structural optimization (like the optimization of grading rings), and advanced inspection methods (such as IRT detection, Terahertz (THz) detection, X-ray computed tomography (XCT)) are proposed. Furthermore, the limitations of current technologies are discussed, emphasizing the need for in-depth studies on deterioration mechanisms, materials innovation, and defect detection technologies to enhance the long-term reliability of composite insulators in transmission networks. Full article
Show Figures

Figure 1

21 pages, 1523 KiB  
Article
An Ultra-Short-Term Wind Power Prediction Method Based on the Fusion of Multiple Technical Indicators and the XGBoost Algorithm
by Xuehui Wang, Yongsheng Wang, Yongsheng Qi, Jiajing Gao, Fan Yang and Jiaxuan Lu
Energies 2025, 18(12), 3069; https://doi.org/10.3390/en18123069 - 10 Jun 2025
Cited by 1 | Viewed by 413
Abstract
Wind power, as a clean and renewable energy source, plays an increasingly important role in the global transition to low-carbon energy systems. However, its inherent volatility and unpredictability pose challenges for accurate short-term prediction. This study proposes an ultra-short-term wind power prediction framework [...] Read more.
Wind power, as a clean and renewable energy source, plays an increasingly important role in the global transition to low-carbon energy systems. However, its inherent volatility and unpredictability pose challenges for accurate short-term prediction. This study proposes an ultra-short-term wind power prediction framework that integrates multiple technical indicators with the extreme gradient boosting (XGBoost) algorithm. Inspired by financial time series analysis, the model incorporates K-line representations, power fluctuation features, and classical technical indicators, including the moving average convergence divergence (MACD), Bollinger bands (BOLL), and average true range (ATR), to enhance sensitivity to short-term variations. The proposed method is validated on two real-world wind power datasets from Inner Mongolia, China, and Germany, sourced from the European network of transmission system operators for electricity (ENTSO-E). The experimental results show that the model achieves strong performance on both datasets, demonstrating good generalization ability. For instance, on the Inner Mongolia dataset, the proposed model reduces the mean squared error (MSE) by approximately 11.4% compared to the long short-term memory (LSTM) model, significantly improving prediction accuracy. Full article
(This article belongs to the Special Issue Wind Power Generation and Wind Energy Utilization)
Show Figures

Figure 1

Back to TopTop