Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (371)

Search Parameters:
Keywords = electric ground operations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6893 KiB  
Article
Nose-Wheel Steering Control via Digital Twin and Multi-Disciplinary Co-Simulation
by Wenjie Chen, Luxi Zhang, Zhizhong Tong and Leilei Liu
Machines 2025, 13(8), 677; https://doi.org/10.3390/machines13080677 (registering DOI) - 1 Aug 2025
Abstract
The aircraft nose-wheel steering system serves as a critical component for ensuring ground taxiing safety and maneuvering efficiency. However, its dynamic control stability faces significant challenges under complex operational conditions. Existing research predominantly focuses on single-discipline modeling, with insufficient in-depth analysis of the [...] Read more.
The aircraft nose-wheel steering system serves as a critical component for ensuring ground taxiing safety and maneuvering efficiency. However, its dynamic control stability faces significant challenges under complex operational conditions. Existing research predominantly focuses on single-discipline modeling, with insufficient in-depth analysis of the coupling effects between hydraulic system dynamics and mechanical dynamics. Traditional PID controllers exhibit limitations in scenarios involving nonlinear time-varying conditions caused by normal load fluctuations of the landing gear buffer strut during high-speed landing phases, including increased control overshoot and inadequate adaptability to abrupt load variations. These issues severely compromise the stability of high-speed deviation correction and overall aircraft safety. To address these challenges, this study constructs a digital twin model based on real aircraft data and innovatively implements multidisciplinary co-simulation via Simcenter 3D, AMESim 2021.1, and MATLAB R2020a. A fuzzy adaptive PID controller is specifically designed to achieve adaptive adjustment of control parameters. Comparative analysis through co-simulation demonstrates that the proposed mechanical–electrical–hydraulic collaborative control strategy significantly reduces response delay, effectively minimizes control overshoot, and decreases hydraulic pressure-fluctuation amplitude by over 85.2%. This work provides a novel methodology for optimizing steering stability under nonlinear interference scenarios, offering substantial engineering applicability and promotion value. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

20 pages, 10604 KiB  
Article
A Safety-Based Approach for the Design of an Innovative Microvehicle
by Michelangelo-Santo Gulino, Susanna Papini, Giovanni Zonfrillo, Thomas Unger, Peter Miklis and Dario Vangi
Designs 2025, 9(4), 90; https://doi.org/10.3390/designs9040090 (registering DOI) - 31 Jul 2025
Abstract
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper [...] Read more.
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper presents the design and development of an innovative self-balancing microvehicle under the H2020 LEONARDO project, which aims to address these challenges through advanced engineering and user-centric design. The vehicle combines features of monowheels and e-scooters, integrating cutting-edge technologies to enhance safety, stability, and usability. The design adheres to European regulations, including Germany’s eKFV standards, and incorporates user preferences identified through representative online surveys of 1500 PLEV users. These preferences include improved handling on uneven surfaces, enhanced signaling capabilities, and reduced instability during maneuvers. The prototype features a lightweight composite structure reinforced with carbon fibers, a high-torque motorized front wheel, and multiple speed modes tailored to different conditions, such as travel in pedestrian areas, use by novice riders, and advanced users. Braking tests demonstrate deceleration values of up to 3.5 m/s2, comparable to PLEV market standards and exceeding regulatory minimums, while smooth acceleration ramps ensure rider stability and safety. Additional features, such as identification plates and weight-dependent motor control, enhance compliance with local traffic rules and prevent misuse. The vehicle’s design also addresses common safety concerns, such as curb navigation and signaling, by incorporating large-diameter wheels, increased ground clearance, and electrically operated direction indicators. Future upgrades include the addition of a second rear wheel for enhanced stability, skateboard-like rear axle modifications for improved maneuverability, and hybrid supercapacitors to minimize fire risks and extend battery life. With its focus on safety, regulatory compliance, and rider-friendly innovations, this microvehicle represents a significant advancement in promoting safe and sustainable urban mobility. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

22 pages, 6359 KiB  
Article
Development and Testing of an AI-Based Specific Sound Detection System Integrated on a Fixed-Wing VTOL UAV
by Gabriel-Petre Badea, Mădălin Dombrovschi, Tiberius-Florian Frigioescu, Maria Căldărar and Daniel-Eugeniu Crunteanu
Acoustics 2025, 7(3), 48; https://doi.org/10.3390/acoustics7030048 - 30 Jul 2025
Viewed by 133
Abstract
This study presents the development and validation of an AI-based system for detecting chainsaw sounds, integrated into a fixed-wing VTOL UAV. The system employs a convolutional neural network trained on log-mel spectrograms derived from four sound classes: chainsaw, music, electric drill, and human [...] Read more.
This study presents the development and validation of an AI-based system for detecting chainsaw sounds, integrated into a fixed-wing VTOL UAV. The system employs a convolutional neural network trained on log-mel spectrograms derived from four sound classes: chainsaw, music, electric drill, and human voices. Initial validation was performed through ground testing. Acoustic data acquisition is optimized during cruise flight, when wing-mounted motors are shut down and the rear motor operates at 40–60% capacity, significantly reducing noise interference. To address residual motor noise, a preprocessing module was developed using reference recordings obtained in an anechoic chamber. Two configurations were tested to capture the motor’s acoustic profile by changing the UAV’s orientation relative to the fixed microphone. The embedded system processes incoming audio in real time, enabling low-latency classification without data transmission. Field experiments confirmed the model’s high precision and robustness under varying flight and environmental conditions. Results validate the feasibility of real-time, onboard acoustic event detection using spectrogram-based deep learning on UAV platforms, and support its applicability for scalable aerial monitoring tasks. Full article
Show Figures

Figure 1

15 pages, 4646 KiB  
Article
A Wideband Magneto-Electric (ME) Dipole Antenna Enabled by ME Resonance and Aperture-Coupled Excitation
by Hyojin Jang, Seyeon Park, Junghyeon Kim, Kyounghwan Kim and Sungjoon Lim
Micromachines 2025, 16(8), 853; https://doi.org/10.3390/mi16080853 - 24 Jul 2025
Viewed by 323
Abstract
In this study, we propose a novel wideband aperture-coupled magneto-electric (ME) dipole antenna that achieves enhanced bandwidth by simultaneously leveraging ME resonance and aperture-coupled excitation. Building upon the conventional ME dipole architecture, the antenna integrates a pair of horizontal metal patches forming the [...] Read more.
In this study, we propose a novel wideband aperture-coupled magneto-electric (ME) dipole antenna that achieves enhanced bandwidth by simultaneously leveraging ME resonance and aperture-coupled excitation. Building upon the conventional ME dipole architecture, the antenna integrates a pair of horizontal metal patches forming the electric dipole and a pair of vertical metal patches forming the magnetic dipole. A key innovation is the aperture-coupled feeding mechanism, where electromagnetic energy is transferred from a tapered microstrip line to the dipole structure through a slot etched in the ground plane. This design not only excites the characteristic ME resonances effectively but also significantly improves impedance matching, delivering a markedly broader impedance bandwidth. To validate the proposed concept, a prototype antenna was fabricated and experimentally characterized. Measurements show an impedance bandwidth of 84.48% (3.61–8.89 GHz) for S11 ≤ −10 dB and a maximum in-band gain of 7.88 dBi. The antenna also maintains a stable, unidirectional radiation pattern across the operating band, confirming its potential for wideband applications such as 5G wireless communications. Full article
(This article belongs to the Special Issue RF Devices: Technology and Progress)
Show Figures

Figure 1

25 pages, 1696 KiB  
Article
Dual-Level Electric Submersible Pump (ESP) Failure Classification: A Novel Comprehensive Classification Bridging Failure Modes and Root Cause Analysis
by Mostafa A. Sobhy, Gehad M. Hegazy and Ahmed H. El-Banbi
Energies 2025, 18(15), 3943; https://doi.org/10.3390/en18153943 - 24 Jul 2025
Viewed by 262
Abstract
Electric submersible pumps (ESPs) are critical for artificial lift operations; however, they are prone to frequent failures, often resulting in high operational costs and production downtime. Traditional ESP failure classifications are limited by lack of standardization and the conflation of failure modes with [...] Read more.
Electric submersible pumps (ESPs) are critical for artificial lift operations; however, they are prone to frequent failures, often resulting in high operational costs and production downtime. Traditional ESP failure classifications are limited by lack of standardization and the conflation of failure modes with root causes. To address these limitations, this study proposes a new two-step integrated failure modes and root cause (IFMRC) classification system. The new framework clearly distinguishes between failure modes and root causes, providing a systematic, structured approach that enhances fault diagnosis and failure analysis and can lead to better failure prevention strategies. This methodology was validated using a case study of over 4000 ESP installations. The data came from Egypt’s Western Desert, covering a decade of operational data. The sources included ESP databases, workover records, and detailed failure investigation (DIFA) reports. The failure modes were categorized into electrical, mechanical, hydraulic, chemical, and operational types, while root causes were linked to environmental, design, operational, and equipment factors. Statistical analysis, in this case study, revealed that motor short circuits, low flow conditions, and cable short circuits were the most frequent failure modes, with excessive heat, scale deposition, and electrical grounding faults being the dominant root causes. This study underscores the importance of accurate root cause failure classification, robust data acquisition, and expanded failure diagnostics to improve ESP reliability. The proposed IFMRC framework addresses limitations in conventional taxonomies and facilitates ongoing enhancement of ESP design, operation, and maintenance in complex field conditions. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

15 pages, 2070 KiB  
Article
Synthesis of Vibration Environment Spectra and Fatigue Assessment for Underfloor Equipment in High-Speed EMU Trains
by Can Chen, Lirong Guo, Guoshun Li, Yongheng Li, Yichao Zhang, Hongwei Zhang and Dao Gong
Machines 2025, 13(7), 628; https://doi.org/10.3390/machines13070628 - 21 Jul 2025
Viewed by 167
Abstract
With the continuous development of high-speed electric multiple units (EMUs), vibration issues of vehicles have become increasingly prominent. During operation, the underfloor equipment installed on the carbody is subjected to random multi-point vibrations transmitted from the carbody, inducing significant fatigue damage. This paper [...] Read more.
With the continuous development of high-speed electric multiple units (EMUs), vibration issues of vehicles have become increasingly prominent. During operation, the underfloor equipment installed on the carbody is subjected to random multi-point vibrations transmitted from the carbody, inducing significant fatigue damage. This paper presents a comprehensive analysis of multi-channel vibration environment data for various underfloor equipment across different operating speeds obtained through on-site measurements. A spectral synthetic method grounded in statistical principles is then proposed to generate vibration environment spectra for diverse underfloor equipment. Finally, utilizing fatigue analysis in the frequency domain, the fatigue damage to underfloor equipment is assessed under different operational environments. The research results show that the vibration environment spectrum of the underfloor equipment in high-speed EMU trains differs significantly from the vibration spectrum specified in the IEC 61373 standard, especially at high frequencies. Despite this difference in spectral characteristics, the overall vibration energy values of the two spectra are comparable. Additionally, the vibration spectra of different underfloor equipment exhibit variations that can be attributed to their installation positions. As operational speed increases, the fatigue damage to the underfloor equipment exhibits exponential growth. However, the total accumulated fatigue damage remains relatively low, consistently staying below a value of 1. Full article
(This article belongs to the Special Issue Research and Application of Rail Vehicle Technology)
Show Figures

Figure 1

18 pages, 3631 KiB  
Article
Analysis of Implementing Hydrogen Storage for Surplus Energy from PV Systems in Polish Households
by Piotr Olczak and Dominika Matuszewska
Energies 2025, 18(14), 3674; https://doi.org/10.3390/en18143674 - 11 Jul 2025
Viewed by 276
Abstract
One of the methods for mitigating the duck curve phenomenon in photovoltaic (PV) energy systems is storing surplus energy in the form of hydrogen. However, there is a lack of studies focused on residential PV systems that assess the impact of hydrogen storage [...] Read more.
One of the methods for mitigating the duck curve phenomenon in photovoltaic (PV) energy systems is storing surplus energy in the form of hydrogen. However, there is a lack of studies focused on residential PV systems that assess the impact of hydrogen storage on the reduction of energy flow imbalance to and from the national grid. This study presents an analysis of hydrogen energy storage based on real-world data from a household PV installation. Using simulation methods grounded in actual electricity consumption and hourly PV production data, the research identified the storage requirements, including the required operating hours and the capacity of the hydrogen tank. The analysis was based on a 1 kW electrolyzer and a fuel cell, representing the smallest and most basic commercially available units, and included a sensitivity analysis. At the household level—represented by a single-family home with an annual energy consumption and PV production of approximately 4–5 MWh over a two-year period—hydrogen storage enabled the production of 49.8 kg and 44.6 kg of hydrogen in the first and second years, respectively. This corresponded to the use of 3303 kWh of PV-generated electricity and an increase in self-consumption from 30% to 64%. Hydrogen storage helped to smooth out peak energy flows from the PV system, decreasing the imbalance from 5.73 kWh to 4.42 kWh. However, while it greatly improves self-consumption, its capacity to mitigate power flow imbalance further is constrained; substantial improvements would necessitate a much larger electrolyzer proportional in size to the PV system’s output. Full article
(This article belongs to the Special Issue Challenges and Opportunities in the Global Clean Energy Transition)
Show Figures

Figure 1

14 pages, 806 KiB  
Article
A Bi-Level Demand Response Framework Based on Customer Directrix Load for Power Systems with High Renewable Integration
by Weimin Xi, Qian Chen, Haihua Xu and Qingshan Xu
Energies 2025, 18(14), 3652; https://doi.org/10.3390/en18143652 - 10 Jul 2025
Viewed by 247
Abstract
The growing integration of renewable energy sources (RESs) into modern power systems calls for enhanced flexibility and control mechanisms. Conventional demand response (DR) strategies, such as price-based and incentive-driven methods, often encounter challenges that limit their effectiveness. This paper proposes a novel DR [...] Read more.
The growing integration of renewable energy sources (RESs) into modern power systems calls for enhanced flexibility and control mechanisms. Conventional demand response (DR) strategies, such as price-based and incentive-driven methods, often encounter challenges that limit their effectiveness. This paper proposes a novel DR approach grounded in Customer Directrix Load (CDL) and formulated through Stackelberg game theory. A bilevel optimization framework is established, with air conditioning (AC) systems and electric vehicles (EVs) serving as the main DR participants. The problem is addressed using a genetic algorithm. Simulation studies on a modified IEEE 33-bus distribution system reveal that the proposed strategy significantly improves RES accommodation, reduces power curtailment, and yields mutual benefits for both system operators and end users. The findings highlight the potential of the CDL-based DR mechanism in enhancing operational efficiency and encouraging proactive consumer involvement. Full article
Show Figures

Figure 1

16 pages, 4237 KiB  
Article
Solid-State Circuit Breaker Topology Design Methodology for Smart DC Distribution Grids with Millisecond-Level Self-Healing Capability
by Baoquan Wei, Haoxiang Xiao, Hong Liu, Dongyu Li, Fangming Deng, Benren Pan and Zewen Li
Energies 2025, 18(14), 3613; https://doi.org/10.3390/en18143613 - 9 Jul 2025
Viewed by 314
Abstract
To address the challenges of prolonged current isolation times and high dependency on varistors in traditional flexible short-circuit fault isolation schemes for DC systems, this paper proposes a rapid fault isolation circuit design based on an adaptive solid-state circuit breaker (SSCB). By introducing [...] Read more.
To address the challenges of prolonged current isolation times and high dependency on varistors in traditional flexible short-circuit fault isolation schemes for DC systems, this paper proposes a rapid fault isolation circuit design based on an adaptive solid-state circuit breaker (SSCB). By introducing an adaptive current-limiting branch topology, the proposed solution reduces the risk of system oscillations induced by current-limiting inductors during normal operation and minimizes steady-state losses in the breaker. Upon fault occurrence, the current-limiting inductor is automatically activated to effectively suppress the transient current rise rate. An energy dissipation circuit (EDC) featuring a resistor as the primary energy absorber and an auxiliary varistor (MOV) for voltage clamping, alongside a snubber circuit, provides an independent path for inductor energy release after faults. This design significantly alleviates the impact of MOV capacity constraints on the fault isolation process compared to traditional schemes where the MOV is the primary energy sink. The proposed topology employs a symmetrical bridge structure compatible with both pole-to-pole and pole-to-ground fault scenarios. Parameter optimization ensures the IGBT voltage withstand capability and energy dissipation efficiency. Simulation and experimental results demonstrate that this scheme achieves fault isolation within 0.1 ms, reduces the maximum fault current-to-rated current ratio to 5.8, and exhibits significantly shorter isolation times compared to conventional approaches. This provides an effective solution for segment switches and tie switches in millisecond-level self-healing systems for both low-voltage (LVDC, e.g., 750 V/1500 V DC) and medium-voltage (MVDC, e.g., 10–35 kV DC) smart DC distribution grids, particularly in applications demanding ultra-fast fault isolation such as data centers, electric vehicle (EV) fast-charging parks, and shipboard power systems. Full article
(This article belongs to the Special Issue AI Solutions for Energy Management: Smart Grids and EV Charging)
Show Figures

Figure 1

21 pages, 2973 KiB  
Article
Machine Learning Approach for Ground-Level Estimation of Electromagnetic Radiation in the Near Field of 5G Base Stations
by Oluwole John Famoriji and Thokozani Shongwe
Appl. Sci. 2025, 15(13), 7302; https://doi.org/10.3390/app15137302 - 28 Jun 2025
Viewed by 255
Abstract
Electromagnetic radiation measurement and management emerge as crucial factors in the economical deployment of fifth-generation (5G) infrastructure, as the new 5G network emerges as a network of services. By installing many base stations in strategic locations that operate in the millimeter-wave range, 5G [...] Read more.
Electromagnetic radiation measurement and management emerge as crucial factors in the economical deployment of fifth-generation (5G) infrastructure, as the new 5G network emerges as a network of services. By installing many base stations in strategic locations that operate in the millimeter-wave range, 5G services are able to meet serious demands for bandwidth. To evaluate the ground-plane radiation level of electromagnetics close to 5G base stations, we propose a unique machine-learning-based approach. Because a machine learning algorithm is trained by utilizing data obtained from numerous 5G base stations, it exhibits the capability to estimate the strength of the electric field effectively at every point of arbitrary radiation, while the base station generates a network and serves various numbers of 5G terminals running in different modes of service. The model requires different numbers of inputs, including the antenna’s transmit power, antenna gain, terminal service modes, number of 5G terminals, distance between the 5G terminals and 5G base station, and environmental complexity. Based on experimental data, the estimation method is both feasible and effective; the machine learning model’s mean absolute percentage error is about 5.89%. The degree of correctness shows how dependable the developed technique is. In addition, the developed approach is less expensive when compared to measurements taken on-site. The results of the estimates can be used to save test costs and offer useful guidelines for choosing the best location, which will make 5G base station electromagnetic radiation management or radio wave coverage optimization easier. Full article
(This article belongs to the Special Issue Recent Advances in Antennas and Propagation)
Show Figures

Figure 1

10 pages, 2516 KiB  
Communication
A Design of a Leaf-Shaped Biomimetic Flexible Wideband Antenna
by Siwei Tan, Linsen Zhang, Qiang Sun, Bo Tang and Qiyang Wang
Electronics 2025, 14(13), 2620; https://doi.org/10.3390/electronics14132620 - 28 Jun 2025
Viewed by 245
Abstract
In low-detectability application scenarios such as covert reconnaissance, wildlife behavior observation, and battlefield detection, antennas not only need to have wideband performance but also require good biomimetic camouflage characteristics. To address this issue, this article proposes a leaf-shaped biomimetic flexible wideband antenna. The [...] Read more.
In low-detectability application scenarios such as covert reconnaissance, wildlife behavior observation, and battlefield detection, antennas not only need to have wideband performance but also require good biomimetic camouflage characteristics. To address this issue, this article proposes a leaf-shaped biomimetic flexible wideband antenna. The design concept of the antenna is inspired by the symmetrical vein structure of aquifoliaceae leaves, incorporating vein-like slots into the radiation patch to form multiple inter-slot capacitances, which improves the high-frequency resonance behavior and expands the antenna’s operating bandwidth. In addition, the traditional rectangular grounding plane is replaced with a semi-elliptical shape, optimizing the electric field distribution between the feed line and the radiation part, thereby improving impedance matching. The measured results show that the leaf-shaped antenna achieves a relative bandwidth of 100% (2.4 GHz–7.1 GHz), with its operating frequency bands covering several common communication bands such as n41, n78, n79, and ISM 5.8 GHz, with a maximum gain of 5.4 dBi. Additionally, the leaf-shaped antenna has a good resemblance to the shape of aquifoliaceae leaves. The antenna’s performance remains relatively stable with bending radii of 40 mm, 50 mm, and 60 mm, demonstrating an important role in camouflage application scenarios. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

25 pages, 3362 KiB  
Article
A Fault Direction Discrimination Method for a Two-Terminal Weakly Fed AC System Using the Time-Domain Fault Model for the Difference Discrimination of Composite Electrical Quantities
by Lie Li, Yu Sun, Yifan Zhao, Xiaoqian Zhu, Ping Xiong, Wentao Yang and Junjie Hou
Electronics 2025, 14(13), 2556; https://doi.org/10.3390/electronics14132556 - 24 Jun 2025
Viewed by 216
Abstract
The project of the flexible direct transmission of renewable energy has become an inevitable development trend for the large-scale grid connection of renewable energy. Its two-terminal weakly fed AC system is often composed of 100% power electronic equipment, which leads to an essential [...] Read more.
The project of the flexible direct transmission of renewable energy has become an inevitable development trend for the large-scale grid connection of renewable energy. Its two-terminal weakly fed AC system is often composed of 100% power electronic equipment, which leads to an essential transformation in fault characteristics and protection requirements. At present, in research, the traditional directional elements are limited by the negative-sequence control strategy, resulting in the decline of their sensitivity and reliability. Therefore, this paper proposes a model for identifying directional elements using composite electrical quantities that is not affected by the control strategy of the two-terminal weakly fed AC system and can reliably identify the fault direction. Firstly, the adaptability of traditional directional elements under the negative-sequence current suppression strategy on both sides of the system when faults occur in the AC line was analyzed. Secondly, based on the idea of model recognition, the model relationship of fault voltage and current in the case of ground faults and non-ground faults occurring at different locations was analyzed. Finally, a fitted voltage was constructed and the Kendall correlation coefficient was introduced to achieve fault direction discrimination. Simulation results demonstrate that the proposed pilot protection scheme can operate reliably under conditions of 300 Ω transition resistance and 25 dB noise interference. Full article
(This article belongs to the Special Issue Advanced Online Monitoring and Fault Diagnosis of Power Equipment)
Show Figures

Figure 1

16 pages, 3833 KiB  
Article
Fault-Tolerant Operation of Photovoltaic Systems Using Quasi-Z-Source Boost Converters: A Hardware-in-the-Loop Validation with Typhoon HIL
by Basit Ali, Mothana S. A. Al Sunjury, Adnan Ashraf, Mohammad Meraj and Pietro Tricoli
Electronics 2025, 14(13), 2522; https://doi.org/10.3390/electronics14132522 - 21 Jun 2025
Viewed by 719
Abstract
Photovoltaic (PV) systems are prone to different types of faults, primarily electrical faults such as line-to-ground (L-G) and line-to-line (L-L) faults, which can significantly reduce system performance, efficiency, and lead to increased power losses. Moreover, mechanical damage caused by environmental stressors (such as [...] Read more.
Photovoltaic (PV) systems are prone to different types of faults, primarily electrical faults such as line-to-ground (L-G) and line-to-line (L-L) faults, which can significantly reduce system performance, efficiency, and lead to increased power losses. Moreover, mechanical damage caused by environmental stressors (such as wind, hail, or temperature variations), aging, or improper installation also contribute to system degradation. This study specifically focuses on electrical faults and proposes a method that not only enables the isolation of faulty modules but also ensures the uninterrupted operation of the remaining healthy modules and also assists in the localization of faults. Unlike benchmarked techniques-based boost converters, the Quasi-Z-Source Boost Converter (QZBC) topology offers improved voltage boosting with high gain values, reduced component stress, and enhanced reliability when the PV system is undergoing fault identification and localization algorithms. A 600-watt PV system connected with a Quasi-Z-Source Boost Converter was implemented and tested under different fault conditions using a hardware-in-the-loop (HIL) setup with Typhoon HIL. All the component values of the QZBC were calculated based on the system requirements rather than assumed, ensuring both practical feasibility and design accuracy. The experimental results show that the converter achieved an efficiency of over 96% under electrical-fault conditions, confirming the effectiveness of the quasi-Z-source boost converter in maintaining a stable power output when the PV system is undergoing fault identification and localization algorithms. The study further highlights the benefits of HIL-based testing for evaluating PV-system resilience and fault-handling capabilities in real-time conditions using a Typhoon HIL 404 environment. Full article
(This article belongs to the Special Issue Compatibility, Power Electronics and Power Engineering)
Show Figures

Figure 1

17 pages, 9122 KiB  
Article
A Printed Hybrid-Mode Antenna for Dual-Band Circular Polarization with Flexible Frequency Ratio
by Takafumi Fujimoto and Chai-Eu Guan
Electronics 2025, 14(13), 2504; https://doi.org/10.3390/electronics14132504 - 20 Jun 2025
Cited by 1 | Viewed by 324
Abstract
In this paper, a printed hybrid-mode antenna for dual-band circular polarization (CP) is proposed. In the proposed antenna, one T-shaped element is fed by a coplanar waveguide and one L-shaped element is loaded to the ground plane. The relationship between the antenna’s geometric [...] Read more.
In this paper, a printed hybrid-mode antenna for dual-band circular polarization (CP) is proposed. In the proposed antenna, one T-shaped element is fed by a coplanar waveguide and one L-shaped element is loaded to the ground plane. The relationship between the antenna’s geometric parameters and the circular polarization characteristic (axial ratio) is examined through electric current distribution and radiation field components. In addition, the antenna’s resonant modes are investigated through characteristic mode analysis (CMA). Through parametric studies, the range of two frequency ratios is explored, revealing that the antenna operates as a dual-band single-sense CP antenna, even in ranges where the two frequency ratios (the ratio of high frequency to low frequency) are smaller compared to antennas in other studies. The proposed antenna has a frequency ratio of less than 1.5 between the two frequencies and can be flexibly designed. The proposed antenna is designed for the 2.5 GHz band and 3.5 GHz band. The measured bandwidths of 10 dB impedance with a 3 dB axial ratio are 2.35–2.52 GHz and 3.36–3.71 GHz, respectively. Full article
Show Figures

Figure 1

26 pages, 1398 KiB  
Article
Improving the Reliability of Current Collectors in Electric Vehicles
by Boris V. Malozyomov, Nikita V. Martyushev, Anton Y. Demin, Alexander V. Pogrebnoy, Egor A. Efremenkov, Denis V. Valuev and Aleksandr E. Boltrushevich
Mathematics 2025, 13(12), 2022; https://doi.org/10.3390/math13122022 - 19 Jun 2025
Cited by 1 | Viewed by 671
Abstract
This article presents a mathematically grounded approach to increasing the operational reliability of current collectors in electric transport systems by ensuring a constant contact force between the collector shoe and the power rail. The core objective is achieved through the development and analysis [...] Read more.
This article presents a mathematically grounded approach to increasing the operational reliability of current collectors in electric transport systems by ensuring a constant contact force between the collector shoe and the power rail. The core objective is achieved through the development and analysis of a mechanical system incorporating spring and cam elements, which is specifically designed to provide a nearly invariant contact pressure under varying operating conditions. A set of equilibrium equations was derived to determine the stiffness ratios of the springs and the geometric conditions under which the contact force remains constant despite wear or displacement. Additionally, the paper introduces a method for synthesizing the cam profile that compensates for nonlinear spring deformation, ensuring force constancy over a wide range of movement. The analytical results were validated through parametric simulations, which assessed the influence of wear depth, rail inclination, and external vibrations on the system’s force output. These simulations, executed within a numerical framework using scientific computing tools, demonstrated that the deviation of the contact force does not exceed a few percent under typical disturbances. Experimental verification further confirmed the theoretical predictions. The study exemplifies the effective use of mathematical modeling, nonlinear mechanics, and numerical methods in the design of energy transmission components for transport applications, contributing to the development of robust and maintainable systems. Full article
Show Figures

Figure 1

Back to TopTop