Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (327)

Search Parameters:
Keywords = egg fatty acids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 346 KiB  
Review
Dietary Strategies in the Prevention of MASLD: A Comprehensive Review of Dietary Patterns Against Fatty Liver
by Barbara Janota, Karolina Janion, Aneta Buzek and Ewa Janczewska
Metabolites 2025, 15(8), 528; https://doi.org/10.3390/metabo15080528 - 4 Aug 2025
Abstract
Understanding the components of the diet, food groups, and nutritional strategies that help prevent MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease) is essential for identifying dietary behaviors that can stop the progression of this condition, which currently affects over one-quarter of the global population. [...] Read more.
Understanding the components of the diet, food groups, and nutritional strategies that help prevent MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease) is essential for identifying dietary behaviors that can stop the progression of this condition, which currently affects over one-quarter of the global population. This review highlights the importance of including antioxidant nutrients in the diet, such as vitamins C and E, CoQ10, and polyphenolic compounds. It also emphasizes substances that support lipid metabolism, including choline, alpha-lipoic acid, and berberine. Among food groups, it is crucial to choose those that help prevent metabolic disturbances. Among carbohydrate-rich foods, vegetables, fruits, and high-fiber products are recommended. For protein sources, eggs, fish, and white meat are preferred. Among fat sources, plant oils and fatty fish are advised due to their content of omega-3 and omega-6 fatty acids. Various dietary strategies aimed at preventing MASLD should include elements of the Mediterranean diet or be personalized to provide anti-inflammatory compounds and substances that inhibit fat accumulation in liver cells. Other recommended dietary models include the DASH diet, the flexitarian diet, intermittent fasting, and diets that limit fructose and simple sugars. Additionally, supplementing the diet with spirulina or chlorella, berberine, probiotics, or omega-3 fatty acids, as well as drinking several cups of coffee per day, may be beneficial. Full article
(This article belongs to the Special Issue Metabolic Dysregulation in Fatty Liver Disease)
Show Figures

Graphical abstract

14 pages, 1170 KiB  
Article
Egg Quality and Nutritional Profile of Three Sicilian Autochthonous Chicken Breeds: Siciliana, Cornuta di Caltanissetta, and Valplatani
by Vittorio Lo Presti, Francesca Accetta, Maria Elena Furfaro, Antonino Nazareno Virga and Ambra Rita Di Rosa
Foods 2025, 14(15), 2571; https://doi.org/10.3390/foods14152571 - 22 Jul 2025
Viewed by 260
Abstract
The conservation of poultry biodiversity is a growing global priority, yet it necessarily relies on the scientific valorization of specific local breeds. This study aimed to characterize the lipid composition and cholesterol content of eggs from three native Sicilian chicken breeds (Cornuta, Valplatani, [...] Read more.
The conservation of poultry biodiversity is a growing global priority, yet it necessarily relies on the scientific valorization of specific local breeds. This study aimed to characterize the lipid composition and cholesterol content of eggs from three native Sicilian chicken breeds (Cornuta, Valplatani, and Siciliana) reared under semi-extensive conditions, in order to evaluate their nutritional potential and support biodiversity preservation strategies. A total of 170 eggs from 11 farms were analyzed. Fatty acid composition and nutritional indices (atherogenic index, thrombogenic index, n-6/n-3 ratio, HH index) were determined according to ISO and AOAC standards. Results showed that Cornuta eggs exhibited the most favorable lipid profile, with the lowest saturated fatty acid (SFA) content (38.55%), the lowest n-6/n-3 ratio (7.35), and the best values for AI (0.52), TI (1.22), and HH (2.02), compared to Valplatani and Siciliana. Conversely, the lowest cholesterol content was found in Siciliana eggs (1463.58 mg/kg), significantly lower than Cornuta (1789 mg/kg; p < 0.05). Although no commercial hybrids were included, the literature data were used for contextual comparison. These findings suggest that native breeds may produce eggs with functional nutritional properties, supporting both healthier food choices and local genetic conservation. Moreover, this study provides a replicable framework for the nutritional valorization of underutilized poultry breeds, reinforcing the role of biodiversity in sustainable food systems. Full article
(This article belongs to the Special Issue Eggs and Egg Products: Production, Processing, and Safety)
Show Figures

Figure 1

25 pages, 18172 KiB  
Article
Sea Cucumber Egg Oligopeptides Ameliorate Cognitive Impairments and Pathology of Alzheimer’s Disease Through Regulating HDAC3 and BDNF/NT3 via the Microbiota–Gut–Brain Axis
by Guifeng Zhang, Yanjie Dou, Huiwen Xie, Dan Pu, Longxing Wang, Renjun Wang and Xiaofei Han
Nutrients 2025, 17(14), 2312; https://doi.org/10.3390/nu17142312 - 14 Jul 2025
Viewed by 580
Abstract
Background: Oligopeptides from sea cucumber eggs (SCEPs) are rarely studied for their neuroprotective effects. Methods: Therefore, we prepared SCEPs via simulated gastrointestinal digestion and then administered them to an Alzheimer’s disease (AD) mouse model via gavage. Behavior tests, gut–brain histopathology and fecal microbiota [...] Read more.
Background: Oligopeptides from sea cucumber eggs (SCEPs) are rarely studied for their neuroprotective effects. Methods: Therefore, we prepared SCEPs via simulated gastrointestinal digestion and then administered them to an Alzheimer’s disease (AD) mouse model via gavage. Behavior tests, gut–brain histopathology and fecal microbiota transplantation (FMT) experiments were conducted, and gut microbiota and metabolite short-chain fatty acids (SCFAs) were evaluated via 16sRNA gene sequencing and LC-MS. Results: The results showed that both the SCEP and FMT groups experienced improvements in the cognitive impairments of AD and showed reduced levels of Aβ, P-Tau, GFAP, and NFL in the brain, especially in the hippocampus. SCEP remodeled the gut microbiota, increasing the relative abundances of Turicibacter and Lactobacillus by 2.7- and 4.8-fold compared with the model at the genus level. In the SCEP and FMT treatments, four SCFA-producing bacteria obtained from gut microbiota profiling showed consistent trends, indicating that they may be involved in mediating the neuroprotective effects of SCEP. Mechanically, SCEP regulated the SCFA distribution in feces, blood, and the brain, greatly increased the content of SCFAs in the brain up to 2000 μg/mg, eased gut–brain barrier dysfunction, inhibited HDAC3 overexpression, and upregulated BDNF/NT3 levels. Conclusions: This study provides a promising candidate for preventing AD and a reference for applying SCEP. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

15 pages, 757 KiB  
Article
Dietary Hemp (Cannabis sativa L.) Products Enhance Egg Yolk Omega-3 Fatty Acids and Color Without Compromising Laying-Hen Performance: A Meta-Analysis
by Yusup Sopian, Panneepa Sivapirunthep, Anuraga Jayanegara and Chanporn Chaosap
Animals 2025, 15(14), 2062; https://doi.org/10.3390/ani15142062 - 12 Jul 2025
Viewed by 293
Abstract
Hemp (Cannabis sativa L.) products have gained attention in poultry nutrition for their rich content of polyunsaturated fatty acids (PUFAs), bioactive compounds, and potential functional benefits. However, findings on their impact on laying-hen performance, egg quality, and yolk fatty acid profiles have [...] Read more.
Hemp (Cannabis sativa L.) products have gained attention in poultry nutrition for their rich content of polyunsaturated fatty acids (PUFAs), bioactive compounds, and potential functional benefits. However, findings on their impact on laying-hen performance, egg quality, and yolk fatty acid profiles have been inconsistent. This meta-analysis aimed to evaluate the effects of dietary hemp products on laying-hen performance, egg quality traits, and yolk fatty acid composition, while exploring potential sources of heterogeneity across studies. A comprehensive literature search identified 21 studies that met the inclusion criteria. A random-effects model was used to calculate standardized mean differences (SMDs) with 95% confidence intervals (CIs) for various outcomes, including production performance, egg quality, and yolk fatty acid profiles. Subgroup and meta-regression analyses assessed the influence of factors such as inclusion level, hen age, and hemp product type. The results showed that hemp supplementation had no significant effect on hen-day production, egg mass, feed conversion ratio, or feed intake. However, yolk redness (SMD = 4.40; 95% CI: 2.46, 6.33; p < 0.001) and yellowness (SMD = 4.45; 95% CI: 2.75, 6.16; p < 0.001) were significantly enhanced. Hemp feeding also increased n-3 PUFA levels in egg yolk, including C18:3n3, C20:5n3, and C22:6n3, while reducing saturated and monounsaturated fatty acids. Subgroup analysis indicated that inclusion levels > 10% and hen age ≤ 25 weeks were associated with slight reductions in hen-day production, whereas older hens (>25 weeks) showed increased egg weight. In conclusion, hemp products can enrich yolk pigmentation and n-3 PUFA content in eggs, supporting the production of functional, value-added eggs without compromising the laying-hen performance. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

16 pages, 609 KiB  
Article
Comparison of Food Compound Intake Between Food-Allergic Individuals and the General Population
by Meike E. Vos, Marie Y. Meima, Sabina Bijlsma, W. Marty Blom, Thuy-My Le, André C. Knulst and Geert F. Houben
Nutrients 2025, 17(14), 2297; https://doi.org/10.3390/nu17142297 - 11 Jul 2025
Viewed by 375
Abstract
Background: Individuals with food allergies typically need to avoid specific allergens, leading to distinct dietary choices. Their food product intake may therefore vary from that of the general population, potentially leading to differences in their intake of nutrients and other food compounds. Methods: [...] Read more.
Background: Individuals with food allergies typically need to avoid specific allergens, leading to distinct dietary choices. Their food product intake may therefore vary from that of the general population, potentially leading to differences in their intake of nutrients and other food compounds. Methods: We compared food compound and nutrient group intakes between the general Dutch adult population (n = 415) and food allergic Dutch adult patients with either milk and/or egg allergies (n = 16), peanut and/or tree nut allergies (n = 35) or a combination of milk/egg and peanut/tree nut allergies (n = 22). We translated 24-hour dietary recall data into food compound intake values. We used a mixed effects ANOVA model and considered compound intakes statistically significantly different at FDR-corrected p < 0.05. Additionally, compounds with uncorrected p < 0.01 were explored for potential relevance. Results: A total of 489 compounds or nutrient groups were included in the statistical analysis. Milk/egg and mixed allergic patients had significantly lower intakes of beta-lactose, butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, myristoleic acid, conjugated linoleic acid, and remainder saturated fatty acids (p < 0.05, FDR corrected), with mean intake factors of 1.6–3.2 and 1.3–2.9 lower, respectively, than the general population. In addition, 36 other compounds showed intake differences with a p < 0.01 without FDR correction. There were no statistically significant differences between the peanut/tree nut allergy group and the general population. Conclusions: Our study shows significantly lower intakes of 10 mainly dairy-derived compounds by the milk/egg and mixed-allergic patients, presenting the potential for long-term health consequences and the need for supplementation a relevant consideration, warranting further research. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Figure A1

12 pages, 216 KiB  
Article
Effects of Dietary Additives on Nitrogen Balance, Odor Emissions, and Yolk Corticosterone in Laying Hens Fed Low-Protein Diets
by Ju-Yong Song, Yun-Ji Heo, Jina Park, Hyun-Kwan Lee, Yoo Bhin Kim, Byung-Yeon Kwon, Da-Hye Kim and Kyung-Woo Lee
Animals 2025, 15(14), 2021; https://doi.org/10.3390/ani15142021 - 9 Jul 2025
Viewed by 300
Abstract
The objective of this study was to evaluate the effects of various feed additives on odor emissions, gut health, and stress responses in laying hens fed low-protein diets. Four commercially available functional feed additives (Bacillus subtilis, protease, saponin, and thyme-based essential [...] Read more.
The objective of this study was to evaluate the effects of various feed additives on odor emissions, gut health, and stress responses in laying hens fed low-protein diets. Four commercially available functional feed additives (Bacillus subtilis, protease, saponin, and thyme-based essential oil) were selected for this study. A total of 288 Hy-Line brown laying hens aged 49 weeks were randomly fed on one of six experiment diets: a 16% standard crude protein diet, a 12% low-crude-protein (LCP) diet, and LCP diets supplemented with Bacillus-based probiotic, protease, saponin, or thyme-based essential oils prepared for 8 weeks. Each treatment had eight replicates with six birds per replicate. Lowering crude protein levels affected the laying performance, nitrogen balance, odor production (i.e., ammonia), and nutrient digestibility but did not alter eggshell quality or fecal short-chain fatty acids. Dietary additives added into the LCP diet did not affect the laying performance, egg qualities, and nitrogen balance but increased crude ash digestibility compared with the LCP-diet-fed laying hens. Branched-chain fatty acids tended to be higher in all laying hens fed low-CP diets, irrespective of feed additives. Notably, low vs. standard protein diets tended to increase yolk corticosterone levels, which is an indicator of stress responses in chickens. This low-CP-mediated increase in yolk corticosterone was partially decreased by 20.8–48.6% on average, depending on the additives used. Our study suggests that low-protein diets could effectively lower nitrogen excretion and odor emissions. However, adding dietary additives into low-protein diets has minimal effects on low-CP-diet-fed laying hens, which needs further studies to clarify the role of low-crude-protein diets and dietary additives in modulating hindgut fermentation via shaping the gut microbiota and stress responses of laying hens. Full article
(This article belongs to the Section Poultry)
13 pages, 1208 KiB  
Article
Acaricidal Activity of Biosurfactants Produced by Serratia ureilytica on Tetranychus urticae and Their Compatibility with the Predatory Mite Amblyseius swirskii
by Arnoldo Wong-Villareal, Esaú Ruiz-Sánchez, Marcos Cua-Basulto, Saúl Espinosa-Zaragoza, Avel A. González-Sánchez, Ernesto Ramos-Carbajal, Cristian Góngora-Gamboa, René Garruña-Hernández, Rodrigo Romero-Tirado, Guillermo Moreno-Basurto and Erika P. Pinson-Rincón
Microbiol. Res. 2025, 16(7), 150; https://doi.org/10.3390/microbiolres16070150 - 4 Jul 2025
Viewed by 346
Abstract
This study evaluated the acaricidal effects of biosurfactants produced by Serratia ureilytica against the two-spotted spider mite Tetranychus urticae and their compatibility with the predatory mite Ambliseus swirski. The biosurfactants were obtained via liquid cultures of the bacterial strains. In the laboratory, [...] Read more.
This study evaluated the acaricidal effects of biosurfactants produced by Serratia ureilytica against the two-spotted spider mite Tetranychus urticae and their compatibility with the predatory mite Ambliseus swirski. The biosurfactants were obtained via liquid cultures of the bacterial strains. In the laboratory, T. urticae was exposed via acaricide-immersed leaves and A. swirskii via acaricide-coated glass vials. In the greenhouse, mite-infested plants were sprayed with the biosurfactants. In the laboratory, biosurfactants produced by S. ureilytica NOD-3 and UTS exhibited strong acaricidal activity, causing 95% mortality in adults and reducing egg viability by more than 60%. In the greenhouse trial, all biosurfactants significantly suppressed T. urticae populations at all evaluated periods (7, 14, and 21 days post-application). Gas chromatography–mass spectrometry (GC-MS) analysis of the biosurfactants identified several fatty acids, including hexadecanoic acid, pentanoic acid, octadecanoic acid, decanoic acid, and tetradecanoic acid, as well as the amino acids L-proline, L-lysine, L-valine, and glutamic acid. These fatty acids and amino acids are known structural components of lipopeptides. Furthermore, the bioinformatic analysis of the genomes of the three S. ureilytica strains revealed nonribosomal peptide synthetase (NRPS) gene clusters homologous to those involved in the biosynthesis of lipopeptides. These findings demonstrate that S. ureilytica biosurfactants are promising eco-friendly acaricides, reducing T. urticae populations by >95% while partially sparing A. swirskii. Full article
Show Figures

Figure 1

27 pages, 520 KiB  
Review
Sustainable Plant-Based Diets and Food Allergies: A Scoping Review Inspired by EAT-Lancet
by Giuseppe Mazzola, Carlo Cattaneo, Eleonora Patta, Tariq A. Alalwan, Domenico Azzolino, Simone Perna and Mariangela Rondanelli
Appl. Sci. 2025, 15(13), 7296; https://doi.org/10.3390/app15137296 - 28 Jun 2025
Cited by 1 | Viewed by 419
Abstract
Background: The escalating prevalence of food allergies, alongside the global call for environmentally sustainable dietary transitions, has drawn attention to plant-based dietary models—particularly those inspired by the EAT-Lancet Commission. These frameworks not only reduce reliance on animal-sourced foods, benefiting planetary health, but [...] Read more.
Background: The escalating prevalence of food allergies, alongside the global call for environmentally sustainable dietary transitions, has drawn attention to plant-based dietary models—particularly those inspired by the EAT-Lancet Commission. These frameworks not only reduce reliance on animal-sourced foods, benefiting planetary health, but may also play a role in modulating immune tolerance and allergic responses. Methods: This scoping review followed PRISMA guidelines and included 53 peer-reviewed studies published between 2000 and 2024, retrieved from PubMed, Scopus, and Google Scholar. Eligible articles were classified into two thematic domains: prevention of food allergy onset (n = 31) and modulation of allergic symptoms in sensitized individuals (n = 22). Included studies comprised randomized controlled trials (n = 6), observational studies (n = 17), systematic reviews and meta-analyses (n = 11), and narrative/scoping reviews (n = 19). Results: Sustainable plant-based diets were consistently associated with a lower incidence of allergic sensitization and reduced symptom severity. These effects were partly due to the exclusion of common allergens (e.g., dairy, eggs, and shellfish) but more importantly due to immunomodulatory mechanisms. Fermentable fibers can enhance short-chain fatty acid (SCFA)-producing bacteria (e.g., Faecalibacterium prausnitzii), elevating butyrate and acetate levels, which interact with G-protein-coupled receptors 43 and 109A (GPR43 and GPR109A) to induce regulatory T cells (Tregs) and reinforce epithelial integrity via tight junction proteins such as occludin and claudin-1. Polyphenols (e.g., quercetin and luteolin) can inhibit Th2-driven inflammation by stabilizing mast cells and downregulating IL-4 and IL-1. Conclusions: Following sustainable dietary guidelines such as those proposed by the EAT-Lancet Commission may confer dual benefits: promoting environmental health and reducing the burden of allergic diseases. By emphasizing plant-based patterns rich in fiber and polyphenols, these diets support microbiota-mediated immune education, mucosal barrier function, and immunological tolerance. When properly supervised, they represent a promising tool for allergy prevention and symptom management. Larger randomized trials and long-term population studies are needed to confirm and operationalize these findings in clinical and public health contexts. Full article
(This article belongs to the Special Issue New Diagnostic and Therapeutic Approaches in Food Allergy)
Show Figures

Figure 1

11 pages, 238 KiB  
Article
Egg Quality and Laying Performance of Rhode Island Red Hens Fed with Black Soldier Fly Larvae and Microalgae Meal as an Alternative Diet
by Marta Montserrat Tovar-Ramírez, Mónica Vanessa Oviedo-Olvera, Maria Isabel Nieto-Ramirez, Benito Parra-Pacheco, Ana Angelica Feregrino-Pérez and Juan Fernando Garcia-Trejo
Animals 2025, 15(11), 1540; https://doi.org/10.3390/ani15111540 - 24 May 2025
Viewed by 455
Abstract
The potential of black soldier fly larvae (BSFL) and microalgae (MA) in poultry diets has garnered increasing interest due to their high nutritional value and reduced environmental footprint. BSFL represent a sustainable alternative to conventional protein sources such as soybean meal, whereas MA [...] Read more.
The potential of black soldier fly larvae (BSFL) and microalgae (MA) in poultry diets has garnered increasing interest due to their high nutritional value and reduced environmental footprint. BSFL represent a sustainable alternative to conventional protein sources such as soybean meal, whereas MA contributes to improved egg quality, particularly through its enrichment with polyunsaturated fatty acids. This study assessed the effects of BSFL and MA inclusion on the growth performance and egg quality of Rhode Island Red (RIR) laying hens. Three diets were formulated: Diet A (10% BSFL), Diet B (10% BSFL + 2% MA), and Diet C (commercial control). The diets were formulated to meet the age-specific nutrient requirements of RIR hens, according to the National Research Council (NRC, 1994) guidelines. A total of 96 four-week-old chicks were randomly allocated to six pens (n = 16 per pen) and provided ad libitum access to feed and water throughout the trial. The results demonstrated that the inclusion of BSFL and MA significantly influenced the growth rate, onset of lay, and egg characteristics. Hens fed Diet B exhibited the highest average weekly body weight gain (0.034 ± 0.001 kg/week); initiated laying at 20 weeks of age, three weeks earlier than hens on Diets B and C; and produced significantly heavier eggs (51.208 ± 0.511 g). Enhanced eggshell quality and yolk pigmentation were also observed. In addition, Diet B enhanced the nutritional profile of the eggs, yielding a higher albumen protein content (76.546 ± 1.382%DM) and lower lipid concentrations (0.451 ± 0.128%DM). These findings underscore the potential of BSFL and MA as functional feed ingredients for improving poultry performance and egg quality in a sustainable production system. Full article
(This article belongs to the Special Issue Alternative Protein Sources for Animal Feeds)
13 pages, 5120 KiB  
Article
Hepcidin Deficiency Disrupts Iron Homeostasis and Induces Ferroptosis in Zebrafish Liver
by Mingli Liu, Mingjian Peng, Jingwen Ma, Ruiqin Hu, Qianghua Xu, Peng Hu and Liangbiao Chen
Fishes 2025, 10(5), 243; https://doi.org/10.3390/fishes10050243 - 21 May 2025
Viewed by 553
Abstract
Hepcidin is a key regulator of systemic iron homeostasis, which is essential for maintaining iron balance and cellular health. To investigate its role in zebrafish, we empolyed a hepcidin knockout model. Morphological and histological analyses revealed pale livers and significant iron accumulation in [...] Read more.
Hepcidin is a key regulator of systemic iron homeostasis, which is essential for maintaining iron balance and cellular health. To investigate its role in zebrafish, we empolyed a hepcidin knockout model. Morphological and histological analyses revealed pale livers and significant iron accumulation in hep−/− zebrafish, particularly in liver, skin, and egg tissues. RNA sequencing identified 1,424 differentially expressed genes (DEGs) between wild-type (WT) and hep−/− zebrafish, with significant enrichment in pathways related to ferroptosis, fatty acid degradation, and heme binding. Western blot analysis showed reduced levels of key iron-related proteins, including GPX4, Fth1, and ferroportin (FPN), indicating impaired iron transport and increased oxidative stress. Gene Ontology (GO) and KEGG analyses highlighted disruptions in iron metabolism and lipid oxidation, linking iron overload to ferroptosis in the absence of hepcidin. These findings demonstrate that hepcidin deficiency leads to profound dysregulation of iron homeostasis, driving lipid peroxidation and ferroptosis in the zebrafish liver. Our study provides mechanistic insights into the molecular consequences of hepcidin loss, advancing our understanding of iron-related oxidative damage and its physiological impacts. Full article
(This article belongs to the Special Issue Genomics Applied to Fish Health)
Show Figures

Figure 1

13 pages, 3346 KiB  
Article
Integrative Transcriptomic and Metabolomic Analysis of Muscle and Liver Reveals Key Molecular Pathways Influencing Growth Traits in Zhedong White Geese
by Kai Shi, Xiao Zhou, Jiuli Dai, Yuefeng Gao, Linna Gao, Yangyang Shen and Shufang Chen
Animals 2025, 15(9), 1341; https://doi.org/10.3390/ani15091341 - 6 May 2025
Viewed by 655
Abstract
Geese (Anser cygnoides) are popular worldwide with consumers for their unique meat quality, egg production, foie gras, and goose down; however, the key genes that influence geese growth remain elusive. To explore the mechanism of geese growth, a total of 500 [...] Read more.
Geese (Anser cygnoides) are popular worldwide with consumers for their unique meat quality, egg production, foie gras, and goose down; however, the key genes that influence geese growth remain elusive. To explore the mechanism of geese growth, a total of 500 Zhedong White geese were raised; four high-weight (HW) and four low-weight (LW) male geese were selected to collect carcass traits and for further transcriptomic and metabolomic analysis. The body weight and average daily gain of HW geese were significantly higher than those of the LW geese (p-value < 0.05), and the yields of the liver, gizzard, glandular stomach, and pancreas showed no significant difference between the HW and the LW group (p-value > 0.05). Compared with the LW geese, 19 differentially expressed genes (DEGs) (i.e., COL11A2, COL22A1, and TF) were detected in the breast muscle from the HW geese, which were involved in the PPAR signaling pathway, adipocytokine signaling pathway, fatty acid biosynthesis, and ferroptosis. A total of 59 differential accumulation metabolites (DAMs), which influence the pathways of glutathione metabolism and vitamin B6 metabolism, were detected in the breast muscle between the HW and LW geese. In the liver, 106 DEGs (i.e., THSD4, CREB3L3, and CNST) and 202 DAMs were found in the livers of the HW and LW groups, respectively. DEGs regulated the pathways of the TGF-beta signaling pathway, pyruvate metabolism, and adipocytokine signaling pathway; DAMs were involved in pyrimidine metabolism, nitrogen metabolism, and phenylalanine metabolism. Correlation analysis between the top DEGs and DAMs revealed that in the breast muscle, the expression levels of COL11A2 and COL22A1 were positively correlated with the content of S-(2-Hydroxy-3-buten-1-yl)glutathione. In the liver, the expression of THSD4 was positively correlated with the content of 2-Hydroxyhexadecanoic acid. In addition, one DEG (LOC106049048) and four DAMs (mogrol, brassidic acid, flabelline, and L-Leucyl-L-alanine) were shared in the breast muscle and liver. These important results contribute to improving the knowledge of goose growth and exploring the effective molecular markers that could be adopted for Zhedong White goose breeding. Full article
(This article belongs to the Special Issue Advances in Genetic Analysis of Important Traits in Poultry)
Show Figures

Figure 1

15 pages, 3692 KiB  
Article
Comparative Transcriptome Profiling of Ileal and Cecal Tissues Between Pekin Ducks and Shaoxing Ducks
by Dandan Wang, Zhengyu Hu, Ayong Zhao, Tao Zeng, Tiantian Gu, Wenwu Xu, Yong Tian, Lizhi Lu and Li Chen
Genes 2025, 16(5), 488; https://doi.org/10.3390/genes16050488 - 25 Apr 2025
Viewed by 432
Abstract
Background: Pekin ducks are well-known meat-type ducks, whereas Shaoxing ducks are bred for their egg-laying abilities. Growth and development of poultry species is well studied; however, very little is known regarding differences in intestinal gene expression between Pekin and Shaoxing ducks. Methods [...] Read more.
Background: Pekin ducks are well-known meat-type ducks, whereas Shaoxing ducks are bred for their egg-laying abilities. Growth and development of poultry species is well studied; however, very little is known regarding differences in intestinal gene expression between Pekin and Shaoxing ducks. Methods: To investigate intestinal differences between Pekin and Shaoxing ducks, we conducted transcriptome analysis on ileal and cecal tissues from five 42-day-old ducks per breed, raised under identical housing and feeding conditions to minimize environmental influences. Results: The results showed that a total of 379 differentially expressed genes (DEGs) with p < 0.05 and |log2FoldChange| > 1 were identified in the ileum when Pekin ducks were compared to Shaoxing ducks, among which 158 were upregulated and 221 were downregulated. Compared to Shaoxing ducks, a total of 367 DEGs with p < 0.05 and |log2FoldChange| > 1 were identified in the ceca of Pekin ducks, among which 204 were upregulated and 163 were downregulated. Among these DEGs, nine genes were reported to be associated with growth and metabolism, namely, P2RX6, KCNJ6, CASQ2, EHHADH, ACSBG1, ELOVL4, AIF1L, VILL, and FABP1. Functional enrichment analyses using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases indicated that the DEGs were significantly involved in pathways such as calcium signaling, unsaturated fatty acid biosynthesis, fatty acid degradation, and tryptophan metabolism. Conclusions: In conclusion, our study identified transcriptome differences in the intestines of meat-type and laying-type ducks, offering insights into the genetic basis of their growth and metabolic differences. Future studies should validate key genes and explore environmental influences on gene expression. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 3323 KiB  
Article
The Impact of the Desugarization Process on the Physiochemical Properties of Duck Egg Mélange Powders
by Svetlana Kamanova, Bakhyt Shaimenova, Linara Murat, Saule Saduakhasova, Dina Khamitova, Marat Muratkhan, Baltash Tarabayev and Gulnazym Ospankulova
Foods 2025, 14(9), 1469; https://doi.org/10.3390/foods14091469 - 23 Apr 2025
Viewed by 623
Abstract
Duck eggs are rich in essential nutrients, such as amino acids, vitamins, and polyunsaturated fatty acids. However, their application in the food industry is hindered by glucose, which contributes to undesirable darkening during the Maillard reaction in processing. The present study examined the [...] Read more.
Duck eggs are rich in essential nutrients, such as amino acids, vitamins, and polyunsaturated fatty acids. However, their application in the food industry is hindered by glucose, which contributes to undesirable darkening during the Maillard reaction in processing. The present study examined the effect of the desugarization of duck eggs using baker’s yeast on their chemical composition. The results showed that the desugarization process reduces the content of glucose and minerals (Cu, Fe, and Zn) and alters the vitamin composition depending on the treatment conditions. Changes were also observed in the fatty acid profile, including increased levels of oleic acid (C18:1), palmitoleic acid (C16:1), and linoleic acid (C18:2, ω − 6). A high intragroup correlation among saturated fatty acids indicates the stability of their distribution. An increase in the content of essential amino acids—glycine, leucine, valine, and phenylalanine—was also recorded. Correlation analysis of the amino acid composition revealed significant relationships among both essential and non-essential amino acids. Overall, the desugarization process using baker’s yeast not only improves the nutritional profile of duck egg powder but also enhances its functional properties, positioning it as a promising ingredient for the food processing industry. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

12 pages, 254 KiB  
Article
Utilization of Wheat with Enhanced Carotenoid Levels and Various Fat Sources in Hen Diets
by Michaela Englmaierová, Jan Szmek, Miloš Skřivan, Pavel Horčička, Tomáš Taubner and Věra Skřivanová
Animals 2025, 15(9), 1195; https://doi.org/10.3390/ani15091195 - 23 Apr 2025
Viewed by 539
Abstract
In this study, we evaluated the effects of two wheat varieties with different carotenoid concentrations (Pexeso and Tercie) and two fat sources with contrasting fatty acid profiles (rapeseed oil and lard) on hen performance, egg quality, and egg yolk retention of carotenoids. The [...] Read more.
In this study, we evaluated the effects of two wheat varieties with different carotenoid concentrations (Pexeso and Tercie) and two fat sources with contrasting fatty acid profiles (rapeseed oil and lard) on hen performance, egg quality, and egg yolk retention of carotenoids. The feed conversion ratio of hens that received Tercie wheat and lard in their diet were greater than those of hens that received other diets (p = 0.002). Greater (p ˂ 0.001) eggshell thickness and strength occurred when hens were fed a Pexeso wheat diet. Moreover, Pexeso wheat and lard increased lutein (p ˂ 0.001 and p = 0.001) and zeaxanthin (p ˂ 0.001 and p = 0.001) contents in egg yolks. The highest lutein retention (p = 0.010) occurred in the groups that received Pexeso wheat (46.4 and 47.4%), and the highest zeaxanthin retention (p = 0.011) occurred with a Pexeso wheat and lard diet (59.5%). The lowest lutein and zeaxanthin retention occurred in hens fed a Tercie wheat and rapeseed oil diet (23.6% for lutein retention and 24.1% for zeaxanthin retention). The Pexeso wheat and rapeseed oil diet increased the concentrations of α- and γ-tocopherol (p ˂ 0.001 and p ˂ 0.001) in egg yolks, which influenced the oxidative stability of the eggs. Compared with other diets, a Tercie wheat and rapeseed oil diet led to the lowest oxidative stability in fresh eggs (p = 0.041). In conclusion, Pexeso wheat had greater retention of biologically active substances and higher mineral contents than Tercie wheat, which was reflected in the performance of hens and the quality of eggs. The combination of Pexeso wheat with rapeseed oil, which is rich in tocopherols and polyunsaturated fatty acids and has a favorable n-6/n-3 ratio, increased the tocopherol content and the oxidative stability of egg yolk fats. Full article
(This article belongs to the Section Poultry)
18 pages, 400 KiB  
Article
From Hen Nutrition to Baking: Effects of Pomegranate Seed and Linseed Oils on Egg White Foam Stability and Sponge Cake Quality
by Marcin Lukasiewicz, Maja Dymińska-Czyż, Beata Szymczyk, Magdalena Franczyk-Żarów, Renata Kostogrys, Adam Florkiewicz, Paweł Ptaszek, Gabriela Zięć and Agnieszka Filipiak-Florkiewicz
Foods 2025, 14(8), 1417; https://doi.org/10.3390/foods14081417 - 20 Apr 2025
Viewed by 543
Abstract
This study aimed to verify that enriching hens’ diets with pomegranate seed (PSO) and linseed oils (LSO) would maintain egg foaming and leavening capacity and improve the nutritional profile of egg-based products without compromising technological properties. It was shown in the previous studies [...] Read more.
This study aimed to verify that enriching hens’ diets with pomegranate seed (PSO) and linseed oils (LSO) would maintain egg foaming and leavening capacity and improve the nutritional profile of egg-based products without compromising technological properties. It was shown in the previous studies that fortifying hen feed with PSO increased CLnA and CLA concentrations in raw eggs. In this study, two experiments with 25-week-old Hy-Line Brown laying hens have been carried out. Experiment 1 modified hens’ feed by incorporating PSO (0.5–1.5%) and 1.5% LSO. In Experiment 2, hens received feed containing PSO (0.5–1.5%). This research involved cake preparation, quality evaluation, and the assessment of egg white foam properties (stability, density, and gas bubble distribution). The chemical composition of sponge cake was determined. Results showed that PSO and LSO in hen feed enhanced egg leavening properties, while egg white-based foam properties matched the control group. The cakes showed improved health-promoting properties due to CLA and CLnA presence. The research confirmed that these beneficial acids were retained in the final sponge cake. Full article
(This article belongs to the Topic Food Security and Healthy Nutrition)
Show Figures

Figure 1

Back to TopTop