Comparison of Food Compound Intake Between Food-Allergic Individuals and the General Population
Abstract
1. Introduction
2. Methods
2.1. Cohort Data
2.2. Food Compound Databases
2.3. Coupling Food Items from FooDB to NEVO
2.4. Calculation of the Average Daily Intakes
2.5. Removal and Handling of Skewed Data
2.6. Statistical Analysis
3. Results
3.1. Food Item Matches
3.2. Statistical Comparison of Food Compound and Nutrient Group Intakes with FDR Correction
3.3. Statistical Comparison of Food Compound and Nutrient Group Intakes Without FDR Correction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
FA | Food allergy |
FDR | False discovery rate |
MCFA | Medium chain fatty acids |
NEVO | Nederlands Voedingsstoffenbestand |
RIVM | Dutch National Institute for Public Health and the Environment |
SD | Standard deviation |
SCFA | Short-chain fatty acids |
TNO | The Netherlands Organisation for Applied Scientific Research |
UMCU | University Medical Center Utrecht |
VCP | Voedsel Consumptie Peiling |
Appendix A
Appendix B
Compound | p-Value ANOVA | No Allergy | Cow’s Milk or Hen’s Egg Allergy | Peanut or Tree Nut Allergy | Mixed Allergies | |
---|---|---|---|---|---|---|
C10:1 cis | 0.006 | Mean | 20.86 | 10.77 | 19.94 | 7.078 |
SD | 24.05 | 20.32 | 22.82 | 10.34 | ||
Post hoc p-value | 0.626 | 0.022 | 0.016 | |||
Calcium | 0.006 | Mean | 1024 | 824.7 | 952.2 | 718.1 |
SD | 430.0 | 354.9 | 352.4 | 374.6 | ||
Post hoc p-value | 0.077 | 0.572 | 0.002 | |||
Capsaicin | 0.007 | Mean | 75.41 | 216.9 | 104.2 | 137.8 |
SD | 94.37 | 157.7 | 159.0 | 83.69 | ||
Post hoc p-value | 0.010 | 0.472 | 0.006 * | |||
Capsiamide|N-(13-Methyltetradecyl) Acetamide | 0.007 | Mean | 3.959 | 11.39 | 5.471 | 7.231 |
SD | 4.955 | 8.279 | 8.349 | 4.394 | ||
Post hoc p-value | 0.010 | 0.472 | 0.006 * | |||
Capsianoside-A | 0.007 | Mean | 3.139 | 9.030 | 4.338 | 5.735 |
SD | 3.928 | 6.564 | 6.610 | 3.484 | ||
Post hoc p-value | 0.011 | 0.479 | 0.007 * | |||
Capsianoside-B | 0.007 | Mean | 0.189 | 0.542 | 0.261 | 0.344 |
SD | 0.236 | 0.394 | 0.398 | 0.209 | ||
Post hoc p-value | 0.010 | 0.465 | 0.006 * | |||
Capsianoside-C | 0.007 | Mean | 1.301 | 3.742 | 1.798 | 2.377 |
SD | 1.628 | 2.720 | 2.743 | 1.444 | ||
Post hoc p-value | 0.011 | 0.478 | 0.007 * | |||
Capsianoside-D | 0.007 | Mean | 0.556 | 1.600 | 0.769 | 1.016 |
SD | 0.696 | 1.163 | 1.173 | 0.617 | ||
Post hoc p-value | - | 0.010 | 0.473 | 0.006 | ||
Capsianoside-E | 0.007 | Mean | 0.283 | 0.814 | 0.391 | 0.517 |
SD | 0.354 | 0.591 | 0.596 | 0.314 | ||
Post hoc p-value | - | 0.010 | 0.466 | 0.006 * | ||
Capsianoside-F | 0.007 | Mean | 0.094 | 0.271 | 0.130 | 0.172 |
SD | 0.118 | 0.197 | 0.199 | 0.105 | ||
Post hoc p-value | 0.010 | 0.475 | 0.006 | |||
Capsianoside-I | 0.007 | Mean | 0.339 | 0.976 | 0.469 | 0.620 |
SD | 0.425 | 0.710 | 0.716 | 0.377 | ||
Post hoc p-value | 0.010 | 0.479 | 0.006 * | |||
Capsianoside-II | 0.007 | Mean | 1.706 | 4.908 | 2.358 | 3.117 |
SD | 2.135 | 3.568 | 3.598 | 1.893 | ||
Post hoc p-value | 0.010 | 0.470 | 0.006 * | |||
Capsianoside-III | 0.007 | Mean | 1.131 | 3.254 | 1.563 | 2.067 |
SD | 1.416 | 2.365 | 2.385 | 1.255 | ||
Post hoc p-value | 0.010 | 0.462 | 0.006 * | |||
Capsianoside-IV | 0.007 | Mean | 0.170 | 0.488 | 0.234 | 0.310 |
SD | 0.212 | 0.355 | 0.358 | 0.188 | ||
Post hoc p-value | 0.011 | 0.480 | 0.007 * | |||
Capsianoside-V | 0.007 | Mean | 0.038 | 0.108 | 0.052 | 0.069 |
SD | 0.047 | 0.079 | 0.080 | 0.042 | ||
Post hoc p-value | 0.010 | 0.467 | 0.006 * | |||
Capsidiol | 0.007 | Mean | 0.547 | 1.573 | 0.756 | 0.999 |
SD | 0.684 | 1.143 | 1.153 | 0.607 | ||
Post hoc p-value | 0.010 | 0.479 | 0.006 * | |||
Cholesterol | 0.007 | Mean | 190.2 | 205.3 | 188.6 | 132.0 |
SD | 100.8 | 83.08 | 120.9 | 77.03 | ||
Post hoc p-value | 0.437 | 0.670 | 0.005 * | |||
Daidzein | 0.007 | Mean | 0.659 | 3.009 | 1.146 | 1.541 |
SD | 1.640 | 2.986 | 2.711 | 2.371 | ||
Post hoc p-value | 0.001 * | 0.791 | 0.142 | |||
Decanoic Acid-Vanillylamide | 0.007 | Mean | 0.650 | 1.871 | 0.899 | 1.188 |
SD | 0.814 | 1.360 | 1.372 | 0.722 | ||
Post hoc p-value | 0.479 | 0.010 | 0.006 * | |||
Di-N-Propyl-Amine | 0.007 | Mean | 0.006 | 0.016 | 0.008 | 0.010 |
SD | 0.007 | 0.012 | 0.012 | 0.006 | ||
Post hoc p-value | 0.010 | 0.477 | 0.006 * | |||
Dihydrocapsaicin | 0.007 | Mean | 16.05 | 46.18 | 22.18 | 29.33 |
SD | 20.09 | 33.57 | 33.85 | 17.82 | ||
Post hoc p-value | 0.011 | 0.475 | 0.007 * | |||
Fatty Acid 11:0, Undecanoic Acid | 0.009 | Mean | 5.193 | 2.861 | 4.340 | 2.671 |
SD | 7.794 | 6.437 | 4.945 | 3.757 | ||
Post hoc p-value | 0.011 | 0.392 | 0.273 | |||
Fatty Acid 16:1, Trans-9-Hexadecenoic Acid | 0.008 | Mean | 71.23 | 53.41 | 65.98 | 37.09 |
SD | 50.82 | 55.37 | 50.91 | 30.74 | ||
Post hoc p-value | 0.017 | 0.686 | 0.016 | |||
Fatty Acid 18:1, Trans-11-Octadecenoic Acid | 0.006 | Mean | 445.6 | 279.1 | 413.6 | 244.0 |
SD | 301.9 | 226.9 | 307.3 | 212.2 | ||
Post hoc p-value | 0.019 | 0.654 | 0.007 * | |||
Fiber—dietary total | 0.009 | Mean | 16,120 | 20,832 | 16,256 | 19,589 |
SD | 6584 | 4822 | 6751 | 6376 | ||
Post hoc p-value | 0.008 * | 0.645 | 0.027 | |||
Genistein | 0.004 | Mean | 1.203 | 5.679 | 1.209 | 2.964 |
SD | 3.133 | 5.617 | 2.756 | 4.343 | ||
Post hoc p-value | 0.001 * | 0.757 | 0.056 | |||
Homocapsaicin | 0.007 | Mean | 0.867 | 2.495 | 1.198 | 1.584 |
SD | 1.085 | 1.813 | 1.829 | 0.962 | ||
Post hoc p-value | 0.010 | 0.467 | 0.006 * | |||
Homodihydrocapsaicin | 0.006 | Mean | 0.867 | 2.495 | 1.198 | 1.584 |
SD | 1.085 | 1.813 | 1.829 | 0.962 | ||
Post hoc p-value | 0.462 | 0.010 | 0.006 * | |||
L-Dehydroascorbic Acid | 0.009 | Mean | 354.3 | 1085 | 521.0 | 688.8 |
SD | 466.9 | 788.4 | 795.2 | 418.4 | ||
Post hoc p-value | 0.016 | 0.262 | 0.007 * | |||
N-Propyl-Amine | 0.007 | Mean | 0.043 | 0.125 | 0.060 | 0.079 |
SD | 0.054 | 0.091 | 0.091 | 0.048 | ||
Post hoc p-value | 0.010 | 0.475 | 0.006 * | |||
Nonanoic Acid-Vanillylamide | 0.007 | Mean | 0.443 | 1.275 | 0.612 | 0.809 |
SD | 0.554 | 0.926 | 0.934 | 0.492 | ||
Post hoc p-value | 0.010 | 0.463 | 0.006 * | |||
Nordihydrocapsaicin | 0.007 | Mean | 3.299 | 9.491 | 4.559 | 6.027 |
SD | 4.129 | 6.899 | 6.958 | 3.661 | ||
Post hoc p-value | 0.011 | 0.482 | 0.007 * | |||
Piperidine | 0.007 | Mean | 0.098 | 0.282 | 0.135 | 0.179 |
SD | 0.123 | 0.205 | 0.207 | 0.109 | ||
Post hoc p-value | 0.011 | 0.476 | 0.007 * | |||
Protein animal | 0.001 | Mean | 40,758 | 42,234 | 38,914 | 29,015 |
SD | 18,341 | 18,171 | 16,604 | 17,807 | ||
Post hoc p-value | 0.649 | 0.669 | <0.0001 * | |||
Pyrrolidine | 0.007 | Mean | 0.026 | 0.076 | 0.036 | 0.048 |
SD | 0.033 | 0.055 | 0.056 | 0.029 | ||
Post hoc p-value | 0.011 | 0.476 | 0.006 * | |||
Vitamin K2 | 0.001 | Mean | 0.023 | 0.077 | 0.021 | 0.055 |
SD | 0.019 | 0.247 | 0.012 | 0.211 | ||
Post hoc p-value | 0.583 | 0.629 | 0.001 * |
References
- Seth, D.; Poowutikul, P.; Pansare, M.; Kamat, D. Food allergy: A review. Pediatr. Ann. 2020, 49, e50–e58. [Google Scholar] [CrossRef]
- Peters, R.L.; Krawiec, M.; Koplin, J.J.; Santos, A.F. Update on food allergy. Pediatr. Allergy Immunol. 2021, 32, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Dinardo, G.; Fierro, V.; Del Giudice, M.M.; Urbani, S.; Fiocchi, A. Food-labeling issues for severe food-allergic consumers. Curr. Opin. Allergy Clin. Immunol. 2023, 23, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Pineda, M.; Yagüe-Ruiz, C. The risk of undeclared allergens on food labels for pediatric patients in the European Union. Nutrients 2022, 14, 1571. [Google Scholar] [CrossRef] [PubMed]
- Skypala, I.J.; McKenzie, R. Nutritional issues in food allergy. Clin. Rev. Allergy Immunol. 2019, 57, 166–178. [Google Scholar] [CrossRef]
- Kreutz, J.M.; Adriaanse, M.P.M.; van der Ploeg, E.M.C.; Vreugdenhil, A.C.E. Nutrient deficiencies in adults and children with treated and untreated celiac disease. Nutrients 2020, 12, 500. [Google Scholar] [CrossRef]
- D’Auria, E.; Salvatore, S.; Pozzi, E.; Mantegazza, C.; Sartorio, M.U.A.; Pensabene, L.; Baldassarre, M.E.; Agosti, M.; Vandenplas, Y.; Zuccotti, G. Cow’s milk allergy: Immunomodulation by dietary intervention. Nutrients 2019, 11, 1399. [Google Scholar] [CrossRef]
- D’Auria, E.; Pendezza, E.; Leone, A.; Riccaboni, F.; Bosetti, A.; Borsani, B.; Zuccotti, G. Nutrient intake in school-aged children with food allergies: A case-control study. Int. J. Food Sci. Nutr. 2022, 73, 349–356. [Google Scholar] [CrossRef]
- Wang, S.; Meckling, K.A.; Marcone, M.F.; Kakuda, Y.; Tsao, R. Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. J. Agric. Food Chem. 2011, 59, 960–968. [Google Scholar] [CrossRef]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef]
- Barabási, A.L.; Menichetti, G.; Loscalzo, J. The unmapped chemical complexity of our diet. Nat. Food 2020, 1, 33–37. [Google Scholar] [CrossRef]
- Meima, M.Y.; Westerhout, J.; Bijlsma, S.; Meijerink, M.; Houben, G.F. Coupling food compounds data from FooDB and Phenol-Explorer to the Dutch food coding system NEVO: Towards a novel approach to studying the role of food in health and disease. J. Food Compos. Anal. 2023, 123, 105550. [Google Scholar] [CrossRef]
- Blom, W.M.; van Os-Medendorp, H.; Bijlsma, S.; van Dijk, A.; Kruizinga, A.G.; Rubingh, C.; Houben, G.F. Allergen risk assessment: Food intake levels of the general population represent those of food allergic patients. Food Chem. Toxicol. 2020, 146, 111781. [Google Scholar] [CrossRef] [PubMed]
- Van Rossum, C.; Nelis, K.; Wilson, C.; Ocké, M. National dietary survey in 2012–2016 on the general population aged 1–79 years in the Netherlands. EFSA Support. Publ. 2018, 15, EN-1488. [Google Scholar]
- NEVO-Online Versie 2023/8.0. National Institute for Public Health and the Environment (RIVM). 2023. Available online: https://nevo-online.rivm.nl (accessed on 1 December 2024).
- FooDB. 2020. Available online: https://www.foodb.ca (accessed on 1 December 2024).
- OpenAI. OpenAI Platform. 2024. Available online: https://platform.openai.com (accessed on 29 August 2024).
- Han, J.; Kamber, M.; Pei, J. Getting to know your data. In Elsevier eBooks; Elsevier: Amsterdam, The Netherlands, 2012; pp. 39–82. [Google Scholar] [CrossRef]
- Jadhav, H.B.; Annapure, U.S. Triglycerides of medium-chain fatty acids: A concise review. J. Food Sci. Technol. 2022, 60, 2143–2152. [Google Scholar] [CrossRef] [PubMed]
- Fontecha, J.; Calvo, M.V.; Juarez, M.; Gil, A.; Martínez-Vizcaino, V. Milk and dairy product consumption and cardiovascular diseases: An overview of systematic reviews and meta-analyses. Advances in Nutrition 2019, 10 (Suppl. 2), S164–S189. [Google Scholar] [CrossRef]
- Ventura, I.; Chomon-García, M.; Tomás-Aguirre, F.; Palau-Ferré, A.; Legidos-García, M.E.; Murillo-Llorente, M.T.; Pérez-Bermejo, M. Therapeutic and immunologic effects of short-chain fatty acids in inflammatory bowel disease: A systematic review. Int. J. Mol. Sci. 2024, 25, 10879. [Google Scholar] [CrossRef]
- Castro, C.B.; Dias, C.B.; Hillebrandt, H.; Sohrabi, H.R.; Chatterjee, P.; Shah, T.M.; Fuller, S.J.; Garg, M.L.; Martins, R.N. Medium-chain fatty acids for the prevention or treatment of Alzheimer’s disease: A systematic review and meta-analysis. Nutr. Rev. 2023, 81, 1144–1162. [Google Scholar] [CrossRef]
- He, H.; Liu, K.; Liu, M.; Yang, A.J.; Cheng, K.W.; Lu, L.W.; Liu, B.; Chen, J.H. The impact of medium-chain triglycerides on weight loss and metabolic health in individuals with overweight or obesity: A systematic review and meta-analysis. Clin. Nutr. 2024, 43, 1755–1768. [Google Scholar] [CrossRef]
- Carson, J.A.S.; Lichtenstein, A.H.; Anderson, C.A.M.; Appel, L.J.; Kris-Etherton, P.M.; Meyer, K.A.; Petersen, K.; Polonsky, T.; Van Horn, L. Dietary cholesterol and cardiovascular risk: A science advisory from the American Heart Association. Circulation 2020, 141, e39–e53. [Google Scholar] [CrossRef]
- Ahmed, B.; Liu, S.; Si, H. Antiadipogenic effects and mechanisms of combinations of genistein, epigallocatechin-3-gallate, and/or resveratrol in preadipocytes. J. Med. Food 2017, 20, 162–170. [Google Scholar] [CrossRef]
- Laddha, A.P.; Kulkarni, Y.A. Daidzein ameliorates peripheral neuropathy in Sprague Dawley rats. Front. Pharmacol. 2024, 15, 1385419. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Quispe, C.; Imran, M.; Rauf, A.; Nadeem, M.; Gondal, T.A.; Ahmad, B.; Atif, M.; Mubarak, M.S.; Sytar, O.; et al. Genistein: An integrative overview of its mode of action, pharmacological properties, and health benefits. Oxidative Med. Cell. Longev. 2021, 2021, 3268136. [Google Scholar] [CrossRef] [PubMed]
- Ramsing, R.; Santo, R.; Kim, B.F.; Altema-Johnson, D.; Wooden, A.; Chang, K.B.; Semba, R.D.; Love, D.C. Dairy and plant-based milks: Implications for nutrition and planetary health. Curr. Environ. Health Rep. 2023, 10, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Olías, R.; Delgado-Andrade, C.; Padial, M.; Marín-Manzano, M.C.; Clemente, A. An updated review of soy-derived beverages: Nutrition, processing, and bioactivity. Foods 2023, 12, 2665. [Google Scholar] [CrossRef]
- Warren, C.M.; Agrawal, A.; Gandhi, D.; Gupta, R.S. The US population-level burden of cow’s milk allergy. World Allergy Organ. J. 2022, 15, 100644. [Google Scholar] [CrossRef]
- Maslin, K.; Venter, C.; MacKenzie, H.; Vlieg-Boerstra, B.; Dean, T.; Sommer, I. Comparison of nutrient intake in adolescents and adults with and without food allergies. J. Hum. Nutr. Diet. 2018, 31, 209–217. [Google Scholar] [CrossRef]
Allergy Groups n (%) | General Population n (%) | ||
---|---|---|---|
Total | 73 | 415 | |
Allergies | Cow’s milk or hen’s egg | 16 (22) | |
Peanut or tree nut | 35 (48) | ||
Mixed | 22 (30) | ||
Sex | Female | 51 (70) | 265 (64) |
Male | 22 (30) | 150 (36) | |
Age | 19–30 | 21 (29) | 144 (34) |
31–50 | 37 (51) | 202 (49) | |
51–69 | 15 (20) | 69 (17) | |
Education | Low | 4 (5) | 23 (5) |
Middle | 20 (27) | 117 (28) | |
High | 47 (64) | 275 (66) |
General Population | Allergy Groups | |||||
---|---|---|---|---|---|---|
Compound | p-Value ANOVA, FDR Corrected | No Allergy a (n = 415) | Cow’s Milk or Hen’s Egg (n = 16) | Peanut or Tree Nut (n = 35) | Mixed (n = 22) | |
Beta-Lactose | <0.0001 | Mean | 10,463 | 3448 | 7553 | 3860 |
SD | 10,031 | 6221 | 6035 | 8830 | ||
Post hoc p-value | <0.0001 * | 0.558 | <0.0001 * | |||
Fatty Acid 10:0, Capric Acid | <0.0001 | Mean | 663.2 | 375.9 | 714.1 | 415.6 |
SD | 428.8 | 496.3 | 715.0 | 504.0 | ||
Post hoc p-value | <0.0001 * | 0.392 | <0.00010 * | |||
C18:2 cis trans | 0.001 | Mean | 33.40 | 10.45 | 29.56 | 11.64 |
SD | 35.47 | 18.38 | 30.71 | 23.12 | ||
Post hoc p-value | 0.005 * | 0.680 | <0.0001 * | |||
Fatty Acid 12:0, Lauric Acid | 0.016 | Mean | 1272 | 595.1 | 1106 | 963.5 |
SD | 1074 | 370.1 | 815.2 | 1253 | ||
Post hoc p-value | 0.002 * | 0.647 | 0.001 * | |||
Fatty Acid 14:0, Myristic Acid | 0.002 | Mean | 2467 | 1407 | 2455 | 1446 |
SD | 1344 | 1051 | 1457 | 1085 | ||
Post hoc p-value | 0.001 * | 0.662 | <0.0001 * | |||
Fatty Acid 14:1 N-5, Myristoleic Acid | 0.006 | Mean | 219.5 | 134.0 | 203.5 | 96.34 |
SD | 137.5 | 146.6 | 130.9 | 91.17 | ||
Post hoc p-value | 0.002 * | 0.703 | <0.0001 * | |||
Fatty Acid 4:0, Butyric Acid | <0.0001 | Mean | 652.2 | 266.1 | 638.0 | 279.8 |
SD | 418.4 | 324.8 | 508.5 | 381.4 | ||
Post hoc p-value | <0.0001 * | 0.789 | <0.0001 * | |||
Fatty Acid 6:0, Caproic Acid | <0.0001 | Mean | 472.8 | 197.3 | 456.1 | 203.2 |
SD | 418.4 | 324.8 | 508.5 | 381.4 | ||
Post hoc p-value | <0.0001 * | 0.763 | <0.0001 * | |||
Fatty Acid 8:0, Caprylic Acid | 0.001 | Mean | 401.6 | 185.1 | 366.4 | 248.4 |
SD | 274.7 | 166.7 | 276.8 | 292.5 | ||
Post hoc p-value | 0.001 * | 0.679 | <0.0001 * | |||
Fatty acids saturated remainder | 0.001 | Mean | 153.9 | 58.96 | 132.4 | 56.39 |
SD | 173.0 | 104.9 | 130.5 | 96.11 | ||
Post hoc p-value | 0.002 * | 0.672 | <0.0001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vos, M.E.; Meima, M.Y.; Bijlsma, S.; Blom, W.M.; Le, T.-M.; Knulst, A.C.; Houben, G.F. Comparison of Food Compound Intake Between Food-Allergic Individuals and the General Population. Nutrients 2025, 17, 2297. https://doi.org/10.3390/nu17142297
Vos ME, Meima MY, Bijlsma S, Blom WM, Le T-M, Knulst AC, Houben GF. Comparison of Food Compound Intake Between Food-Allergic Individuals and the General Population. Nutrients. 2025; 17(14):2297. https://doi.org/10.3390/nu17142297
Chicago/Turabian StyleVos, Meike E., Marie Y. Meima, Sabina Bijlsma, W. Marty Blom, Thuy-My Le, André C. Knulst, and Geert F. Houben. 2025. "Comparison of Food Compound Intake Between Food-Allergic Individuals and the General Population" Nutrients 17, no. 14: 2297. https://doi.org/10.3390/nu17142297
APA StyleVos, M. E., Meima, M. Y., Bijlsma, S., Blom, W. M., Le, T.-M., Knulst, A. C., & Houben, G. F. (2025). Comparison of Food Compound Intake Between Food-Allergic Individuals and the General Population. Nutrients, 17(14), 2297. https://doi.org/10.3390/nu17142297