Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,367)

Search Parameters:
Keywords = efficient CO formation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10502 KiB  
Article
Strengthening Mechanism of Char in Thermal Reduction Process of Silicon Dioxide
by Xiuli Xu, Peng Yu, Jinxiao Dou and Jianglong Yu
Materials 2025, 18(15), 3651; https://doi.org/10.3390/ma18153651 (registering DOI) - 3 Aug 2025
Abstract
This study investigates the strengthening mechanisms of char in silicon dioxide thermal reduction through systematic high-temperature experiments using three char types (YQ1, CW1, HY1) characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and scanning electron microscopy. HY1 char demonstrated superior reactivity due [...] Read more.
This study investigates the strengthening mechanisms of char in silicon dioxide thermal reduction through systematic high-temperature experiments using three char types (YQ1, CW1, HY1) characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and scanning electron microscopy. HY1 char demonstrated superior reactivity due to its highly ordered microcrystalline structure, characterized by the largest aromatic cluster size (La) and lowest defect ratio (ID/IG = 0.37), which directly correlated with enhanced reaction completeness. The carbon–silicon reaction reactivity increased progressively with temperature, achieving optimal performance at 1550 °C. Addition of Fe and Fe2O3 significantly accelerated the reduction process, with Fe2O3 exhibiting superior catalytic performance by reducing activation energy and optimizing reaction kinetics. The ferrosilicon formation mechanism proceeds through a two-stage pathway: initial char-SiO2 reaction producing SiC and CO, followed by SiC–iron interaction generating FeSi, which catalytically promotes further reduction. These findings establish critical structure–performance relationships for char selection in industrial silicon production, where microcrystalline ordering emerges as the primary performance determinant. The identification of optimal temperature and additive conditions provides practical pathways to enhance energy efficiency and product quality in silicon metallurgy, enabling informed raw material selection and process optimization to reduce energy consumption and improve operational stability. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

14 pages, 4475 KiB  
Article
DFT Investigation into Adsorption–Desorption Properties of Mg/Ni-Doped Calcium-Based Materials
by Wei Shi, Renwei Li, Xin Bao, Haifeng Yang and Dehao Kong
Crystals 2025, 15(8), 711; https://doi.org/10.3390/cryst15080711 (registering DOI) - 3 Aug 2025
Abstract
Although concentrated solar power (CSP) coupled with calcium looping (CaL) offers a promising avenue for efficient thermal chemical energy storage, calcium-based sorbents suffer from accelerated structural degradation and decreased CO2 capture capacity during multiple cycles. This study used Density Functional Theory (DFT) [...] Read more.
Although concentrated solar power (CSP) coupled with calcium looping (CaL) offers a promising avenue for efficient thermal chemical energy storage, calcium-based sorbents suffer from accelerated structural degradation and decreased CO2 capture capacity during multiple cycles. This study used Density Functional Theory (DFT) calculations to investigate the mechanism by which Mg and Ni doping improves the adsorption/desorption performance of CaO. The DFT results indicate that Mg and Ni doping can effectively reduce the formation energy of oxygen vacancies on the CaO surface. Mg–Ni co-doping exhibits a significant synergistic effect, with the formation energy of oxygen vacancies reduced to 5.072 eV. Meanwhile, the O2− diffusion energy barrier in the co-doped system was reduced to 2.692 eV, significantly improving the ion transport efficiency. In terms of CO2 adsorption, Mg and Ni co-doping enhances the interaction between surface O atoms and CO2, increasing the adsorption energy to −1.703 eV and forming a more stable CO32− structure. For the desorption process, Mg and Ni co-doping restructured the CaCO3 surface structure, reducing the CO2 desorption energy barrier to 3.922 eV and significantly promoting carbonate decomposition. This work reveals, at the molecular level, how Mg and Ni doping optimizes adsorption–desorption in calcium-based materials, providing theoretical guidance for designing high-performance sorbents. Full article
(This article belongs to the Special Issue Performance and Processing of Metal Materials)
Show Figures

Figure 1

17 pages, 3389 KiB  
Article
Enhanced OH Transport Properties of Bio-Based Anion-Exchange Membranes for Different Applications
by Suer Kurklu-Kocaoglu, Daniela Ramírez-Espinosa and Clara Casado-Coterillo
Membranes 2025, 15(8), 229; https://doi.org/10.3390/membranes15080229 - 31 Jul 2025
Viewed by 287
Abstract
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current [...] Read more.
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current AEMs still face challenges, such as insufficient permeability and stability in strongly acidic or alkaline media, which limit their durability and the sustainability of membrane fabrication. In this study, polyvinyl alcohol (PVA) and chitosan (CS) biopolymers are selected for membrane preparation. Zinc oxide (ZnO) and porous organic polymer (POP) nanoparticles are also introduced within the PVA-CS polymer blends to make mixed-matrix membranes (MMMs) with increased OH transport sites. The membranes are characterized based on typical properties for AEM applications, such as thickness, water uptake, KOH uptake, Cl and OH permeability and ion exchange capacity (IEC). The OH transport of the PVA-CS blend is increased by at least 94.2% compared with commercial membranes. The incorporation of non-porous ZnO and porous POP nanoparticles into the polymer blend does not compromise the OH transport properties. On the contrary, ZnO nanoparticles enhance the membrane’s water retention capacity, provide basic surface sites that facilitate hydroxide ion conduction and reinforce the mechanical and thermal stability. In parallel, POPs introduce a highly porous architecture that increases the internal surface area and promotes the formation of continuous hydrated pathways, essential to efficient OH mobility. Furthermore, the presence of POPs also contributes to reinforcing the mechanical integrity of the membrane. Thus, PVA-CS bio-based membranes are a promising alternative to conventional ion exchange membranes for various applications. Full article
(This article belongs to the Special Issue Membrane Technologies for Water Purification)
Show Figures

Figure 1

13 pages, 3341 KiB  
Article
Regulation of Electrochemical Activity via Controlled Integration of NiS2 over Co3O4 Nanomaterials for Hydrogen Evolution Reaction
by Mrunal Bhosale, Rutuja U. Amate, Pritam J. Morankar and Chan-Wook Jeon
Coatings 2025, 15(8), 887; https://doi.org/10.3390/coatings15080887 - 30 Jul 2025
Viewed by 181
Abstract
Electrochemical water splitting represents a sustainable approach for hydrogen production, yet efficient hydrogen evolution reaction (HER) catalysts operating in alkaline environments remain critically needed. Herein, we report the fabrication of Co3O4–NiS2 nanocomposites synthesized through a facile coprecipitation and [...] Read more.
Electrochemical water splitting represents a sustainable approach for hydrogen production, yet efficient hydrogen evolution reaction (HER) catalysts operating in alkaline environments remain critically needed. Herein, we report the fabrication of Co3O4–NiS2 nanocomposites synthesized through a facile coprecipitation and subsequent thermal treatment method. Detailed characterization via physicochemical techniques confirmed the successful formation of a hybrid Co3O4–NiS2 heterostructure with tunable compositional and morphological characteristics. Among the synthesized catalysts (Co–Ni–1, Co–Ni–2, and Co–Ni–3), the Co–Ni–2 sample demonstrated optimal structural integration, displaying interconnected nanosheet morphologies and balanced elemental distribution. Remarkably, Co–Ni–2 achieved exceptional HER performance in 1 M KOH electrolyte, requiring an ultralow overpotential of only 84 mV at 10 mA cm−2 and exhibiting a favorable Tafel slope of 67.5 mV dec−1. Electrochemical impedance spectroscopy and electrochemical surface area measurements further substantiated the superior electrocatalytic kinetics, rapid charge transport, and abundant active site accessibility in the optimized Co–Ni–2 composite. Additionally, Co–Ni–2 demonstrated outstanding durability with negligible activity decay over 5000 cycles. This study not only highlights the strategic synthesis of Co3O4–NiS2 nanostructures but also provides valuable insights for designing advanced, stable, and efficient non-noble electrocatalysts for sustainable hydrogen generation. Full article
Show Figures

Graphical abstract

16 pages, 2260 KiB  
Article
From Shale to Value: Dual Oxidative Route for Kukersite Conversion
by Kristiina Kaldas, Kati Muldma, Aia Simm, Birgit Mets, Tiina Kontson, Estelle Silm, Mariliis Kimm, Villem Ödner Koern, Jaan Mihkel Uustalu and Margus Lopp
Processes 2025, 13(8), 2421; https://doi.org/10.3390/pr13082421 - 30 Jul 2025
Viewed by 252
Abstract
The increasing need for sustainable valorization of fossil-based and waste-derived materials has gained interest in converting complex organic matrices such as kerogen into valuable chemicals. This study explores a two-step oxidative strategy to decompose and valorize kerogen-rich oil shale, aiming to develop a [...] Read more.
The increasing need for sustainable valorization of fossil-based and waste-derived materials has gained interest in converting complex organic matrices such as kerogen into valuable chemicals. This study explores a two-step oxidative strategy to decompose and valorize kerogen-rich oil shale, aiming to develop a locally based source of aliphatic dicarboxylic acids (DCAs). The method combines air oxidation with subsequent nitric acid treatment to enable selective breakdown of the organic structure under milder conditions. Air oxidation was conducted at 165–175 °C using 1% KOH as an alkaline promoter and 40 bar oxygen pressure (or alternatively 185 °C at 30 bar), targeting 30–40% carbon conversion. The resulting material was then subjected to nitric acid oxidation using an 8% HNO3 solution. This approach yielded up to 23% DCAs, with pre-oxidation allowing a twofold reduction in acid dosage while maintaining efficiency. However, two-step oxidation was still accompanied by substantial degradation of the structure, resulting in elevated CO2 formation, highlighting the need to balance conversion and carbon retention. The process offers a possible route for transforming solid fossil residues into useful chemical precursors and supports the advancement of regionally sourced, sustainable DCA production from unconventional raw materials. Full article
Show Figures

Figure 1

18 pages, 404 KiB  
Article
Long COVID-19: A Concept Analysis
by Sujata Srikanth, Jessica R. Boulos, Diana Ivankovic, Lucia Gonzales, Delphine Dean and Luigi Boccuto
Infect. Dis. Rep. 2025, 17(4), 90; https://doi.org/10.3390/idr17040090 - 29 Jul 2025
Viewed by 221
Abstract
Background/Objectives: In late 2019, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) caused a pandemic called the ‘coronavirus disease 2019’ (COVID-19). After the acute SARS-CoV-2 infection, many individuals (up to 33%) complained of unexplained symptoms involving multiple organ systems and were diagnosed [...] Read more.
Background/Objectives: In late 2019, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) caused a pandemic called the ‘coronavirus disease 2019’ (COVID-19). After the acute SARS-CoV-2 infection, many individuals (up to 33%) complained of unexplained symptoms involving multiple organ systems and were diagnosed as having Long COVID-19 (LC-19). Currently, LC-19 is inadequately defined, requiring the formation of consistent diagnostic parameters to provide a foundation for ongoing and future studies of epidemiology, risk factors, clinical characteristics, and therapy. LC-19 represents a significant burden on multiple levels. The reduced ability of workers to return to work or compromised work efficiency has led to consequences at national, economic, and societal levels by increasing dependence on community services. On a personal scale, the isolation and helplessness caused by the disease and its subsequent impact on the patient’s mental health and quality of life are incalculable. Methods: In this paper, we used Walker and Avants’ eight-step approach to perform a concept analysis of the term “Long COVID-19” and define its impact across these parameters. Results: Using this methodology, we provide an improved definition of LC-19 by connecting the clinical symptomology with previously under-addressed factors, such as mental, psychological, economic, and social effects. This definition of LC-19 features can help improve diagnostic procedures and help plan relevant healthcare services. Conclusions: LC-19 represents a complex and pressing public health challenge with diverse symptomology, an unpredictable timeline, and complex pathophysiology. This concept analysis serves as a tool for improving LC-19 definition, but it remains a dynamic disease with evolving diagnostic and therapeutic approaches, requiring deeper investigation and understanding of its long-term effects. Full article
Show Figures

Figure 1

22 pages, 2808 KiB  
Article
Assessment of Platinum Catalyst in Rice Husk Combustion: A Comparative Life Cycle Analysis with Conventional Methods
by Emmanuel Owoicho Abah, Pubudu D. Kahandage, Ryozo Noguchi, Tofael Ahamed, Paul Adigun and Christian Idogho
Catalysts 2025, 15(8), 717; https://doi.org/10.3390/catal15080717 - 28 Jul 2025
Viewed by 512
Abstract
This study presents a novel approach to address these challenges by introducing automobile platinum honeycomb catalysts into biomass combustion systems. The study employed a dual methodology, combining experimental investigations and a Life Cycle Assessment (LCA) case study, to comprehensively evaluate the catalyst’s performance [...] Read more.
This study presents a novel approach to address these challenges by introducing automobile platinum honeycomb catalysts into biomass combustion systems. The study employed a dual methodology, combining experimental investigations and a Life Cycle Assessment (LCA) case study, to comprehensively evaluate the catalyst’s performance and environmental impacts. The catalyst’s ability to facilitate combustion without open flame formation and its operational efficiency throughout combustion phases position it as a promising avenue for reducing gaseous and particulate matter emissions. The LCA considers multiple impact categories, employing the ReCiPe 2008 Hierarchist midpoint and endpoint perspective to assess environmental effects. The experimental results show that the catalyst effectively reduced CO, SO2, and particulate emissions. Temperatures below 400 °C diminished the catalyst’s performance. The catalyst achieved a 100% CO conversion rate at specific temperatures of 427.4–490.3 °C. The findings highlight the potential for a 34% reduction in environmental impacts when replacing conventional rice husk combustion with the catalyst-integrated system. Notably, the study emphasizes the significance of sustainable catalyst manufacturing processes and cleaner electricity sources in maximizing environmental benefits. In conclusion, the integration of platinum honeycomb catalysts into biomass combustion systems, exemplified by rice husk combustion, emerges as a promising strategy for achieving more sustainable and environmentally friendly bioenergy production. Full article
(This article belongs to the Special Issue Catalytic Processes for a Green and Sustainable Future)
Show Figures

Graphical abstract

26 pages, 11239 KiB  
Review
Microbial Mineral Gel Network for Enhancing the Performance of Recycled Concrete: A Review
by Yuanxun Zheng, Liwei Wang, Hongyin Xu, Tianhang Zhang, Peng Zhang and Menglong Qi
Gels 2025, 11(8), 581; https://doi.org/10.3390/gels11080581 - 27 Jul 2025
Viewed by 211
Abstract
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent [...] Read more.
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent old mortar layers, lead to significant performance degradation of the resulting RC, limiting its widespread application. Traditional methods for enhancing RA often suffer from limitations, including high energy consumption, increased costs, or the introduction of new pollutants. MICP offers an innovative approach for enhancing RC performance. This technique employs the metabolic activity of specific microorganisms to induce the formation of a three-dimensionally interwoven calcium carbonate gel network within the pores and on the surface of RA. This gel network can improve the inherent defects of RA, thereby enhancing the performance of RC. Compared to conventional techniques, this approach demonstrates significant environmental benefits and enhances concrete compressive strength by 5–30%. Furthermore, embedding mineralizing microbial spores within the pores of RA enables the production of self-healing RC. This review systematically explores recent research advances in microbial mineral gel network for improving RC performance. It begins by delineating the fundamental mechanisms underlying microbial mineralization, detailing the key biochemical reactions driving the formation of calcium carbonate (CaCO3) gel, and introducing the common types of microorganisms involved. Subsequently, it critically discusses the key environmental factors influencing the effectiveness of MICP treatment on RA and strategies for their optimization. The analysis focuses on the enhancement of critical mechanical properties of RC achieved through MICP treatment, elucidating the underlying strengthening mechanisms at the microscale. Furthermore, the review synthesizes findings on the self-healing efficiency of MICP-based RC, including such metrics as crack width healing ratio, permeability recovery, and restoration of mechanical properties. Key factors influencing self-healing effectiveness are also discussed. Finally, building upon the current research landscape, the review provides perspectives on future research directions for advancing microbial mineralization gel techniques to enhance RC performance, offering a theoretical reference for translating this technology into practical engineering applications. Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

16 pages, 1640 KiB  
Article
Polydroxyalkanoates Production from Simulated Food Waste Condensate Using Mixed Microbial Cultures
by Konstantina Filippou, Evaggelia Bouzani, Elianta Kora, Ioanna Ntaikou, Konstantina Papadopoulou and Gerasimos Lyberatos
Polymers 2025, 17(15), 2042; https://doi.org/10.3390/polym17152042 - 26 Jul 2025
Viewed by 373
Abstract
The growing environmental concerns associated with petroleum-based plastics require the development of sustainable, biodegradable alternatives. Polyhydroxyalkanoates (PHAs), a family of biodegradable bioplastics, offer a promising potential as eco-friendly substitutes due to their renewable origin and favorable degradation properties. This research investigates the use [...] Read more.
The growing environmental concerns associated with petroleum-based plastics require the development of sustainable, biodegradable alternatives. Polyhydroxyalkanoates (PHAs), a family of biodegradable bioplastics, offer a promising potential as eco-friendly substitutes due to their renewable origin and favorable degradation properties. This research investigates the use of synthetic condensate, mimicking the liquid fraction from drying and shredding of household food waste, as a viable substrate for PHA production using mixed microbial cultures. Two draw-fill reactors (DFRs) were operated under different feed organic concentrations (2.0 ± 0.5 and 3.8 ± 0.6 g COD/L), maintaining a consistent carbon-to-nitrogen ratio to selectively enrich microorganisms capable of accumulating PHAs through alternating nutrient availability and deficiency. Both reactors achieved efficient organic pollutant removal (>95% soluble COD removal), stable biomass growth, and optimal pH levels. Notably, the reactor with the higher organic load (DFR-2) demonstrated a modest increase in PHA accumulation (19.05 ± 7.18%) compared to the lower-loaded reactor (DFR-1; 15.19 ± 6.00%), alongside significantly enhanced biomass productivity. Polymer characterization revealed the formation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), influenced by the substrate composition. Microbial community analysis showed an adaptive shift towards Proteobacteria dominance, signifying successful enrichment of effective PHA producers. Full article
(This article belongs to the Special Issue Bioplastics)
Show Figures

Figure 1

22 pages, 2129 KiB  
Article
Thermodynamic Modeling of Low-Temperature Fischer–Tropsch Synthesis: A Gibbs Free Energy Minimization Study for Hydrocarbon Production
by Julles Mitoura dos Santos Junior, Lucas Pinheiro dos Reis, Annamaria Dória Souza Vidotti, Antonio Carlos Daltro de Freitas, Adriano Pinto Mariano and Reginaldo Guirardello
Processes 2025, 13(8), 2373; https://doi.org/10.3390/pr13082373 - 26 Jul 2025
Viewed by 331
Abstract
Fischer–Tropsch synthesis (FTS) facilitates the conversion of syngas, derived from feedstocks such as biomass, coal, and natural gas, into valuable hydrocarbons (HCs). This investigation employed optimization methods, specifically Gibbs energy minimization, to perform a thermodynamic characterization of the low-temperature Fischer–Tropsch (LTFT) reaction for [...] Read more.
Fischer–Tropsch synthesis (FTS) facilitates the conversion of syngas, derived from feedstocks such as biomass, coal, and natural gas, into valuable hydrocarbons (HCs). This investigation employed optimization methods, specifically Gibbs energy minimization, to perform a thermodynamic characterization of the low-temperature Fischer–Tropsch (LTFT) reaction for HC generation. The CONOPT3 solver within GAMS 23.2.1 software was utilized for solving the developed model. To represent the complex FTS product spectrum, twenty-three compounds, encompassing C2–C20 aliphatic hydrocarbons, were considered using a stoichiometric framework. The study explored the impact of operational parameters, including temperature (350–550 K), pressure (5–30 bar), and H2/CO molar feed ratio (1.0–2.0/0.5–1.0), on hydrocarbon synthesis. Evaluation of the outcomes focused on HC yield and product characteristics. A significant sensitivity of the reaction to operating parameters was observed. Notably, lower temperatures, elevated pressures, and a H2/CO ratio of 2.0/1.0 were identified as optimal for fostering the formation of longer-chain HCs. The developed model demonstrated robustness and efficiency, with rapid computation times across all simulations. Full article
(This article belongs to the Special Issue Advances in Gasification and Pyrolysis of Wastes)
Show Figures

Figure 1

16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 323
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

18 pages, 11093 KiB  
Article
CRISPR/Cas9-Mediated Disruption of lrp6a Leads to Abnormal Median Fin Development and Somitogenesis in Goldfish (Carassius auratus)
by Huijuan Li, Rong Zhang, Xiaowen Wang, Lili Liu, Zhigang Yao and Hua Zhu
Int. J. Mol. Sci. 2025, 26(15), 7067; https://doi.org/10.3390/ijms26157067 - 22 Jul 2025
Viewed by 317
Abstract
In this study, we demonstrated that lrp6a, a co-receptor in the Wnt signaling pathway, is essential for proper median fin formation and somitogenesis in goldfish. We analyzed the gene’s sequence features and expression patterns in both wen-type and egg-type goldfish, uncovering distinct [...] Read more.
In this study, we demonstrated that lrp6a, a co-receptor in the Wnt signaling pathway, is essential for proper median fin formation and somitogenesis in goldfish. We analyzed the gene’s sequence features and expression patterns in both wen-type and egg-type goldfish, uncovering distinct tissue-specific expression differences between the two varieties. To explore the functional role of lrp6a, we performed CRISPR/Cas9-mediated gene knockout using eight designed single-guide RNAs (sgRNAs), of which four showed effective targeting. Three high-efficiency sgRNAs were selected and co-injected into embryos to achieve complete gene disruption. Morphological assessments and X-ray microtomography (μCT) imaging of the resulting mutants revealed various abnormalities, including defects in the dorsal, caudal, and anal fins, as well as skeletal deformities near the caudal peduncle. These results confirm that lrp6a plays a key role in median fin development and axial patterning, offering new insights into the genetic regulation of fin formation in teleost fish. Full article
(This article belongs to the Special Issue Fish Genomics and Developmental Biology, 2nd Edition)
Show Figures

Figure 1

16 pages, 7234 KiB  
Article
SnBi Catalytic Grown on Copper Foam by Co-Electrodeposition for Efficient Electrochemical Reduction of CO2 to Formate
by Zhuoqi Liu, Hangxin Xie, Li Lv, Jialin Xu, Xinbo Li, Chunlai Wang and Aijing Ma
Catalysts 2025, 15(8), 698; https://doi.org/10.3390/catal15080698 - 22 Jul 2025
Viewed by 344
Abstract
The efficient electrochemical reduction of carbon dioxide to formate under mild conditions is a promising approach to mitigate the energy crisis, but requires the use of high-performance catalysts. The selectivity and activity of catalysts can be enhanced through multi-metal doping, further advancing the [...] Read more.
The efficient electrochemical reduction of carbon dioxide to formate under mild conditions is a promising approach to mitigate the energy crisis, but requires the use of high-performance catalysts. The selectivity and activity of catalysts can be enhanced through multi-metal doping, further advancing the electrochemical reduction of CO2 to formate. This study demonstrates a co-electrodeposition strategy for synthesizing SnBi electrocatalysts on pretreated copper foam substrates, systematically evaluating how the Sn2+/Bi3+ molar ratio in the electrodeposition solution and the applied current density affect the catalytic performance for CO2-to-formate conversion. Optimal performance was achieved with a molar ratio of Sn2+ to Bi3+ of 1:0.5 and a deposition current density of 3 mA cm−2, resulting in a formate Faradaic efficiency (FEformate) of 97.80% at −1.12 V (vs. RHE) and a formate current density of 26.9 mA·cm−2. Furthermore, the Sn1Bi0.50-3 mA·cm−2 electrode demonstrated stable operation at the specified potential for 9 h, maintaining a FEformate above 90%. Compared to previously reported metal catalysts, the SnBi catalytic electrode exhibits superior performance for the electrochemical reduction of CO2 to HCOOH. The study highlights the significant impact of the metal ion molar ratio and deposition current density in the electrodeposition process on the characteristics and catalytic performance of the electrode. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

20 pages, 4450 KiB  
Article
Synergistic Promotion of Selective Oxidation of Glycerol to C3 Products by Mo-Doped BiVO4-Coupled FeOOH Co-Catalysts Through Photoelectrocatalysis Process
by Jian Wang, Xinyue Guo, Haomin Gong, Wanggang Zhang, Yiming Liu and Bo Li
J. Compos. Sci. 2025, 9(8), 381; https://doi.org/10.3390/jcs9080381 - 22 Jul 2025
Viewed by 246
Abstract
The Mo:BiVO4/FeOOH photoelectrode was synthesized through the deposition of FeOOH onto the surface of the Mo:BiVO4 photoelectrode. The composite photoelectrode demonstrated a photocurrent of 1.8 mA·cm−2, which is three times greater than that observed for pure BiVO4 [...] Read more.
The Mo:BiVO4/FeOOH photoelectrode was synthesized through the deposition of FeOOH onto the surface of the Mo:BiVO4 photoelectrode. The composite photoelectrode demonstrated a photocurrent of 1.8 mA·cm−2, which is three times greater than that observed for pure BiVO4. Furthermore, the glycerol conversion rate was recorded at 79 μmol·cm−2·h−1, approximately double that of pure BiVO4, while the selectivity for glyceraldehyde reached 49%, also about twice that of pure BiVO4. The incorporation of Mo has been shown to enhance the stability of the BiVO4. Additionally, Mo doping improves the efficiency of electron-hole transport and increases the carrier concentration within the BiVO4. This enhancement leads to a greater number of holes participating in the formation of iron oxyhydroxide (FeOOH), thereby stabilizing the FeOOH co-catalyst within the glycerol conversion system. The FeOOH co-catalyst facilitates the adsorption and oxidation of the primary hydroxyl group of glycerol, resulting in the cleavage of the C−H bond to generate a carbon radical (C). The interaction between the carbon radical and the hydroxyl group produces an intermediate, which subsequently dehydrates to form glyceraldehyde (GLAD). Full article
(This article belongs to the Special Issue Optical–Electric–Magnetic Multifunctional Composite Materials)
Show Figures

Figure 1

13 pages, 2300 KiB  
Article
A Hierarchically Structured Ni-NOF@ZIF-L Heterojunction Using Van Der Waals Interactions for Electrocatalytic Reduction of CO2 to HCOOH
by Liqun Wu, Xiaojun He and Jian Zhou
Appl. Sci. 2025, 15(14), 8095; https://doi.org/10.3390/app15148095 - 21 Jul 2025
Viewed by 230
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) offers an energy-saving and environmentally friendly approach to producing hydrocarbon fuels. The use of a gas diffusion electrode (GDE) flow cell has generally improved the rate of CO2RR, while the gas diffusion [...] Read more.
The electrocatalytic CO2 reduction reaction (CO2RR) offers an energy-saving and environmentally friendly approach to producing hydrocarbon fuels. The use of a gas diffusion electrode (GDE) flow cell has generally improved the rate of CO2RR, while the gas diffusion layer (GDL) remains a significant challenge. In this study, we successfully engineered a novel metal–organic framework (MOF) heterojunction through the controlled coating of zeolitic imidazolate framework (ZIF-L) on ultrathin nickel—metal–organic framework (Ni-MOF) nanosheets. This innovative architecture simultaneously integrates GDL functionality and exposes abundant solid–liquid–gas triple-phase boundaries. The resulting Ni-MOF@ZIF-L heterostructure demonstrates exceptional performance, achieving a formate Faradaic efficiency of 92.4% while suppressing the hydrogen evolution reaction (HER) to 6.7%. Through computational modeling of the optimized heterojunction configuration, we further elucidated its competitive adsorption behavior and electronic modulation effects. The experimental and theoretical results demonstrate an improvement in electrochemical CO2 reduction activity with suppressed hydrogen evolution for the heterojunction because of its hydrophobic interface, good electron transfer capability, and high CO2 adsorption at the catalyst interface. This work provides a new insight into the rational design of porous crystalline materials in electrocatalytic CO2RR. Full article
Show Figures

Figure 1

Back to TopTop