CRISPR/Cas9-Mediated Disruption of lrp6a Leads to Abnormal Median Fin Development and Somitogenesis in Goldfish (Carassius auratus)
Abstract
1. Introduction
2. Results
2.1. Sequence Analysis of lrp6a Gene
2.2. Homology and Phylogenetic Analysis of lrp6a Gene
2.3. Tissue-Specific Expression of lrp6a in Goldfish
2.4. Detection of lrp6a-sgRNA Effectiveness
2.5. Characterization of Indel Mutations in the Injected Embryos
2.6. Identification of Mutate Phenotypes
3. Discussion
3.1. The Sequence Characteristics of lrp6a in Goldfish
3.2. The Expression Profiles of lrp6a in Goldfish
3.3. The sgRNA Efficacy and DNA Repair in Goldfish
3.4. The Role of lrp6a in Median Fin Development
3.5. The Functions of lrp6a in Axial Skeleton Development and Somitogenesis
4. Materials and Methods
4.1. Sample Acquisition and Processing
4.2. Gene Sequence Amplification
4.3. Bioinformatics Analyses of lrp6a
4.4. Expression Analysis of lrp6a by Real-Time Quantitative PCR
4.5. Preparation of sgRNA and Cas9 mRNA
4.6. Embryo Microinjection
4.7. Sanger Sequencing-Based Mutation Screening
4.8. Phonotype Screening
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abe, G.; Ide, H.; Tamura, K. Function of FGF signaling in the developmental process of the median fin fold in zebrafish. Dev. Biol. 2007, 304, 355–366. [Google Scholar] [PubMed]
- Mabee, P.M.; Crotwell, P.L.; Bird, N.C.; Burke, A.C. Evolution of median fin modules in the axial skeleton of fishes. J. Exp. Zool. 2002, 294, 77–90. [Google Scholar]
- Bird, N.C.; Mabee, P.M. Developmental morphology of the axial skeleton of the zebrafish, Danio rerio (Ostariophysi: Cyprinidae). Dev. Dyn. 2003, 228, 337–357. [Google Scholar] [PubMed]
- Letelier, J.; De La Calle-Mustienes, E.; Pieretti, J.; Naranjo, S.; Maeso, I.; Nakamura, T.; Pascual-Anaya, J.; Shubin, N.H.; Schneider, I.; Martinez-Morales, J.R.; et al. A conserved Shh cis-regulatory module highlights a common developmental origin of unpaired and paired fins. Nat. Genet. 2018, 50, 504–509. [Google Scholar]
- Wagner, G.P. Homology, Genes, and Evolutionary Innovation; Princeton University Press: Princeton, NJ, USA, 2014. [Google Scholar]
- Goodrich, E.S. Memoirs: Notes on the development, structure, and origin of the median and paired fins of fish. J. Cell Sci. 1906, 2, 333–376. [Google Scholar]
- Goodrich, E. Studies on the Structure and Development of Vertebrates; Macmillan: New York, NY, USA, 1986. [Google Scholar]
- Nishino, A.; Satoh, N. The simple tail of chordates: Phylogenetic significance of Appendicularians. Genesis 2001, 29, 36–45. [Google Scholar] [PubMed]
- Cole, N.J.; Currie, P.D. Insights from sharks: Evolutionary and developmental models of fin development. Dev. Dyn. 2007, 236, 2421–2431. [Google Scholar]
- Stewart, T.A.; Bonilla, M.M.; Ho, R.K.; Hale, M.E. Adipose fin development and its relation to the evolutionary origins of median fins. Sci. Rep. 2019, 9, 512. [Google Scholar]
- Lee, R.T.H.; Knapik, E.W.; Thiery, J.P.; Carney, T.J. An exclusively mesodermal origin of fin mesenchyme demonstrates that zebrafish trunk neural crest does not generate ectomesenchyme. Development 2013, 140, 2923–2932. [Google Scholar]
- Miyamoto, K.; Kawakami, K.; Tamura, K.; Abe, G. Developmental independence of median fins from the larval fin fold revises their evolutionary origin. Sci. Rep. 2022, 12, 7521. [Google Scholar]
- Norton, W.H.; Ledin, J.; Grandel, H.; Neumann, C.J. HSPG synthesis by zebrafish Ext2 and Extl3 is required for Fgf10 signalling during limb development. Development 2005, 132, 4963–4973. [Google Scholar]
- Zuniga, A. Next generation limb development and evolution: Old questions, new perspectives. Development 2015, 142, 3810–3820. [Google Scholar] [PubMed]
- Du, S.; Draper, B.W.; Mione, M.; Moens, C.B.; Bruce, A. Differential regulation of epiboly initiation and progression by zebrafish Eomesodermin, A. Dev. Biol. 2012, 362, 11–23. [Google Scholar] [PubMed]
- Sagai, T.; Hosoya, M.; Mizushina, Y.; Tamura, M.; Shiroishi, T. Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb. Development 2005, 132, 797–803. [Google Scholar]
- Adachi, U.; Koita, R.; Seto, A.; Maeno, A.; Ishizu, A.; Oikawa, S.; Tani, T.; Ishizaka, M.; Yamada, K.; Satoh, K.; et al. Teleost Hox code defines regional identities competent for the formation of dorsal and anal fins. Proc. Natl. Acad. Sci. USA 2024, 121, e2403809121. [Google Scholar]
- Hawkins, M.B.; Jandzik, D.; Tulenko, F.J.; Cass, A.N.; Nakamura, T.; Shubin, N.H.; Davis, M.C.; Stock, D.W. An Fgf–Shh positive feedback loop drives growth in development unpaired fins. Proc. Natl. Acad. Sci. USA 2022, 119, e2120150119. [Google Scholar]
- Kon, T.; Omori, Y.; Fukuta, K.; Wada, H.; Watanabe, M.; Chen, Z.; Miki, I.; Tappei, M.; Shin-ichiro, S.; Daiki, Y.; et al. The genetic basis of morphological diversity in domesticated goldfish. Curr. Biol. 2020, 30, 2260–2274. [Google Scholar]
- Li, H.; Wang, X.; Zhang, R.; Liu, L.; Zhu, H. Generation of golden goldfish Carassius auratus via tyrosinase gene targeting by CRISPR/Cas9. Aquaculture 2024, 583, 740594. [Google Scholar]
- Li, H.; Liu, L.; Wang, X.; Zhang, R.; Zhu, H. Enhancing genome editing efficiency in goldfish (Carassius auratus) through utilization of CRISPR-Cas12a (Cpf1) temperature dependency. Int. J. Biol. Macromol. 2025, 305, 141142. [Google Scholar]
- Song, H.; Dong, T.; Yan, X.; Wang, W.; Tian, Z.; Hu, H. Using Bayesian threshold model and machine learning method to improve the accuracy of genomic prediction for ordered categorical traits in fish. Agric. Commun. 2023, 1, 100005. [Google Scholar]
- Ng, V.H.; Spencer, Z.; Neitzel, L.R.; Nayak, A.; Loberg, M.A.; Shen, C.; Kassel, S.N.; Kroh, H.K.; An, Z.; Anthony, C.C.; et al. The USP46 complex deubiquitylates LRP6 to promote Wnt/β-catenin signaling. Nat. Commun. 2023, 14, 6173. [Google Scholar] [PubMed]
- Powell, G.T.; Faro, A.; Zhao, Y.; Stickney, H.; Novellasdemunt, L.; Henriques, P.; Gestri, G.; Redhouse White, E.; Ren, J.; Lu, W. Cachd1 is a novel Frizzled-and LRP6-interacting protein required for neurons to acquire left-right asymmetric character. BioRxiv 2022. [Google Scholar] [CrossRef]
- Combes, A.N.; Bowles, J.; Feng, C.W.; Chiu, H.S.; Khoo, P.L.; Jackson, A.; Little, M.H.; Tam, P.P.; Koopman, P. Expression and functional analysis of Dkk1 during early gonadal development. Sex. Dev. 2011, 5, 124–130. [Google Scholar]
- Windley, S.P.; Wilhelm, D. Signaling pathways involved in mammalian sex determination and gonad development. Sex. Dev. 2016, 9, 297–315. [Google Scholar]
- Wang, J.; Tian, G.G.; Zheng, Z.; Li, B.; Xing, Q.; Wu, J. Comprehensive transcriptomic analysis of mouse gonadal development involving sexual differentiation, meiosis and gametogenesis. Biol. Proced. Online 2019, 21, 20. [Google Scholar]
- Chen, L.J.; Lin, X.X.; Guo, J.; Xu, Y.; Zhang, S.X.; Chen, D.; Zhao, Q.; Xiao, J.; Lian, G.H.; Peng, S.F.; et al. Lrp6 genotype affects individual susceptibility to nonalcoholic fatty liver disease and silibinin therapeutic response via Wnt/β-catenin-Cyp2e1 signaling. Int. J. Biol. Sci. 2021, 17, 3936. [Google Scholar]
- Go, G.W. Low-density lipoprotein receptor-related protein 6 (LRP6) is a novel nutritional therapeutic target for hyperlipidemia, non-alcoholic fatty liver disease, and atherosclerosis. Nutrients 2015, 7, 4453–4464. [Google Scholar] [PubMed]
- Doench, J.G.; Fusi, N.; Sullender, M.; Hegde, M.; Vaimberg, E.W.; Donovan, K.F.; Smith, I.; Tothova, Z.; Wilen, C.; Orchard, R.; et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 2016, 34, 184–191. [Google Scholar]
- Hsu, P.D.; Scott, D.A.; Weinstein, J.A.; Ran, F.A.; Konermann, S.; Agarwala, V.; Li, Y.; Fine, E.J.; Wu, X.; Shalem, O.; et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 2013, 31, 827–832. [Google Scholar]
- Hisano, Y.; Sakuma, T.; Nakade, S.; Ohga, R.; Ota, S.; Okamoto, H.; Yamamoto, T.; Kawahara, A. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci. Rep. 2015, 5, 8841. [Google Scholar]
- Chang, H.H.Y.; Pannunzio, N.R.; Adachi, N.; Lieber, M.R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 2017, 18, 495–506. [Google Scholar] [PubMed]
- Anderson, E.M.; Haupt, A.; Schiel, J.A.; Chou, E.; Machado, H.B.; Strezoska, Ž.; van Brabant Smith, A. Systematic analysis of CRISPR–Cas9 mismatch tolerance reveals low levels of off-target activity. J. Biot. 2015, 211, 56–65. [Google Scholar]
- Song, S.; Du, B.; Chung-Davidson, Y.W.; Cui, W.; Li, Y.; Chen, H.; Huang, R.; Li, W.; Li, F.; Wang, C.; et al. Disruption of T-box transcription factor eomesa results in abnormal development of median fins in Oujiang color common carp Cyprinus carpio. PLoS ONE 2023, 18, e0281297. [Google Scholar]
- Thompson, A.W.; Hawkins, M.B.; Parey, E.; Wcisel, D.J.; Ota, T.; Kawasaki, K.; Braasch, I. The bowfin genome illuminates the developmental evolution of ray-finned fishes. Nat. Genet. 2021, 18, 1373–1384. [Google Scholar]
- Tsutsumi, N.; Hwang, S.; Waghray, D.; Hansen, S.; Jude, K.M.; Wang, N.; Miao, Y.; Glassman, C.R.; Caveney, N.A.; Janda, C.Y.; et al. Structure of the Wnt–Frizzled–LRP6 initiation complex reveals the basis for coreceptor discrimination. Proc. Natl. Acad. Sci. USA 2023, 120, e2218238120. [Google Scholar]
- Qiu, Q. TGF-β, WNT, and FGF Signaling Pathways During Axolotl Tail Regeneration and Forelimb Bud Development. Ph.D. Thesis, University of Kentucky, Lexington, Kentucky, 2019. [Google Scholar]
- Kokubu, C.; Heinzmann, U.; Kokubu, T.; Sakai, N.; Kubota, T.; Kawai, M.; Wahl, M.B.; Galceran, J.; Grosschedl, R.; Ozono, K.; et al. Skeletal defects in ringelschwanz mutant mice reveal that Lrp6 is required for proper somitogenesis and osteogenesis. Development 2004, 131, 5469–5481. [Google Scholar] [PubMed]
- Li, C.; Williams, B.O.; Cao, X.; Wan, M. LRP6 in mesenchymal stem cells is required for bone formation during bone growth and bone remodeling. Bone Res. 2014, 2, 14006. [Google Scholar]
- Simon-Chazottes, D.; Tutois, S.; Kuehn, M.; Evans, M.; Bourgade, F.; Cook, S.; Davisson, M.T.; Guénet, J.L. Mutations in the gene encoding the low-density lipoprotein receptor LRP4 cause abnormal limb development in the mouse. Genomics 2006, 87, 673–677. [Google Scholar]
- Tian, J.; Shao, J.; Liu, C.; Hou, H.Y.; Chou, C.W.; Shboul, M.; Li, G.Q.; El-Khateeb, M.; Samarah, O.Q.; Kou, Y.; et al. Deficiency of lrp4 in zebrafish and human LRP4 mutation induce aberrant activation of Jagged–Notch signaling in fin and limb development. Cell. Mol. Life Sci. 2019, 76, 163–178. [Google Scholar]
- Khrystoforova, I.; Shochat-Carvalho, C.; Harari, R.; Henke, K.; Woronowicz, K.; Harris, M.P.; Karasik, D. Zebrafish mutants reveal unexpected role of Lrp5 in osteoclast regulation. Front. Endocrinol. 2022, 13, 985304. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhang, R.; Wang, X.; Liu, L.; Yao, Z.; Zhu, H. CRISPR/Cas9-Mediated Disruption of lrp6a Leads to Abnormal Median Fin Development and Somitogenesis in Goldfish (Carassius auratus). Int. J. Mol. Sci. 2025, 26, 7067. https://doi.org/10.3390/ijms26157067
Li H, Zhang R, Wang X, Liu L, Yao Z, Zhu H. CRISPR/Cas9-Mediated Disruption of lrp6a Leads to Abnormal Median Fin Development and Somitogenesis in Goldfish (Carassius auratus). International Journal of Molecular Sciences. 2025; 26(15):7067. https://doi.org/10.3390/ijms26157067
Chicago/Turabian StyleLi, Huijuan, Rong Zhang, Xiaowen Wang, Lili Liu, Zhigang Yao, and Hua Zhu. 2025. "CRISPR/Cas9-Mediated Disruption of lrp6a Leads to Abnormal Median Fin Development and Somitogenesis in Goldfish (Carassius auratus)" International Journal of Molecular Sciences 26, no. 15: 7067. https://doi.org/10.3390/ijms26157067
APA StyleLi, H., Zhang, R., Wang, X., Liu, L., Yao, Z., & Zhu, H. (2025). CRISPR/Cas9-Mediated Disruption of lrp6a Leads to Abnormal Median Fin Development and Somitogenesis in Goldfish (Carassius auratus). International Journal of Molecular Sciences, 26(15), 7067. https://doi.org/10.3390/ijms26157067