Synergistic Promotion of Selective Oxidation of Glycerol to C3 Products by Mo-Doped BiVO4-Coupled FeOOH Co-Catalysts Through Photoelectrocatalysis Process
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of BiVO4/Mo:BiVO4 Photoanodes
2.2. Preparation of Mo:BiVO4/FeOOH Photoelectrodes
2.3. PEC Testing
3. Results
3.1. Synthesis and Morphology Analysis
3.2. Structure and Composition Analysis
3.3. PEC Performance Testing and Analysis
3.4. Optical Performance Testing and Analysis
3.5. Glycerol Conversion Properties
3.6. Promotion of Glycerol Selective Adsorption by Photoelectricanode
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, C.; Dong, C.; Kim, S.; Lu, Y.; Wang, Y.; Yu, Z.; Gu, Y.; Gu, Z.; Lee, D.K.; Zhang, K.; et al. Photo-Electrochemical Glycerol Conversion over a Mie Scattering Effect Enhanced Porous BiVO4 Photoanode. Adv. Mat. 2023, 35, 2209955. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Yan, X.; Gu, Q. Low-content atomically dispersed Mo on defective TiO2 for significantly improved hydrogen production. Int. J. Hydrogen Energy 2024, 71, 674–682. [Google Scholar] [CrossRef]
- Or, T.; Gourley, S.W.D.; Kaliyappan, K.; Zheng, Y.; Li, M.; Chen, Z. Recent Progress in Surface Coatings for Sodium-Ion Battery Electrode Materials. Electrochem. Energy Rev. 2022, 5, 20. [Google Scholar] [CrossRef]
- Jaiswal, S.; Maurya, S.; Sharma, Y.C. Studies on role of support metal in glycerol conversion to glycerol carbonate through Mg/MnO2 and Mg/CuO heterogeneous catalyst. Mol. Catal. 2023, 546, 113243. [Google Scholar] [CrossRef]
- Xiao, Y.; Varma, A. Kinetics of glycerol conversion to hydrocarbon fuels over Pd/H-ZSM-5 catalyst. AIChE J. 2017, 63, 5445–5451. [Google Scholar] [CrossRef]
- Fernández-Caso, K.; Hagheh-Kavousi, Z.; Holade, Y.; Cornu, D.; Díaz-Sainz, G.; Álvarez-Guerra, M.; Irabien, A.; Bechelany, M. Low nickel loading carbon microfibers fabricated by electrospinning for the glycerol electrooxidation coupled with the continuous gas-phase CO2 reduction reaction towards formate. J. Power Sources 2025, 631, 236260. [Google Scholar] [CrossRef]
- Imbault, A.L.; Gong, J.; Farnood, R. Photocatalytic production of dihydroxyacetone from glycerol on TiO2 in acetonitrile. RSC Adv. 2020, 10, 4956–4968. [Google Scholar] [CrossRef] [PubMed]
- Nunotani, N.; Takashima, M.; Choi, P.-G.; Choi, Y.-B.; Imanaka, N. Selective oxidation of glycerol to dihydroxyacetone using CeO2-ZrO2-Bi2O3-SnO2-supported platinum catalysts. J. Asian Ceram. Soc. 2020, 8, 470–475. [Google Scholar] [CrossRef]
- Bora, D.K.; Nadjafi, M.; Armutlulu, A.; Hosseini, D.; Castro-Fernández, P.; Toth, R. Photoelectrochemical glycerol oxidation on Mo-BiVO4 photoanodes shows high photocharging current density and enhanced H2 evolution. Energy Adv. 2022, 1, 715–728. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pu, Y.; Yuan, D.; Luo, J.; Li, F.; Xiao, F.; Zhao, N. Selective Oxidation of Glycerol to Dihydroxyacetone over Au/CuxZr1–xOy Catalysts in Base-Free Conditions. ACS Appl. Mater. Interfaces 2019, 11, 44058–44068. [Google Scholar] [CrossRef] [PubMed]
- Kongprawes, G.; Wongsawaeng, D.; Hosemann, P.; Ngaosuwan, K.; Kiatkittipong, W.; Assabumrungrat, S. Non-catalytic glycerol dehydrogenation to dihydroxyacetone using needle-in-tube dielectric barrier discharge plasma. Sci. Rep. 2024, 14, 31295. [Google Scholar] [CrossRef] [PubMed]
- Mu, F.; Dai, B.; Zhao, W.; Zhang, L.; Xu, J.; Guo, X. A review on metal-organic frameworks for photoelectrocatalytic applications. Chin. Chem. Lett. 2020, 31, 1773–1781. [Google Scholar] [CrossRef]
- Weber, M.; Collot, P.; El Gaddari, H.; Tingry, S.; Bechelany, M.; Holade, Y. Enhanced Catalytic Glycerol Oxidation Activity Enabled by Activated-Carbon-Supported Palladium Catalysts Prepared through Atomic Layer Deposition. ChemElectroChem 2018, 5, 743–747. [Google Scholar] [CrossRef]
- Shen, Y.; Mamakhel, A.; Liu, X.; Hansen, T.W.; Tabanelli, T.; Bonincontro, D.; Iversen, B.B.; Prati, L.; Li, Y.; Niemantsverdriet, J.W.H.; et al. Promotion Mechanisms of Au Supported on TiO2 in Thermal- and Photocatalytic Glycerol Conversion. J. Phys. Chem. C 2019, 123, 19734–19741. [Google Scholar] [CrossRef]
- Tateno, H.; Chen, S.-Y.; Miseki, Y.; Nakajima, T.; Mochizuki, T.; Sayama, K. Photoelectrochemical Oxidation of Glycerol to Dihydroxyacetone Over an Acid-Resistant Ta:BiVO4 Photoanode. ACS Sustain. Chem. Eng. 2022, 10, 7586–7594. [Google Scholar] [CrossRef]
- Liu, Y.; Shang, H.; Zhang, B.; Yan, D.; Xiang, X. Surface fluorination of BiVO4 for the photoelectrochemical oxidation of glycerol to formic acid. Nat. Commun. 2024, 15, 8155. [Google Scholar] [CrossRef] [PubMed]
- Hessel, C.; Moreti, L.; Yukuhiro, V.Y.; Fernández, P.S.; Sitta, E. Methanol, ethylene glycol, and glycerol photoelectrochemical oxidation reactions on BiVO4: Zr, Mo/Pt thin films: A comparative study. Electrochim. Acta 2025, 509, 145300. [Google Scholar] [CrossRef]
- Zhang, W.; Hao, B.; Gao, Q.; Wang, Y.; Bian, X.; Gong, H.; Tian, R.; Wei, A.; Wang, J.; Liu, Y. NiOOH-coated BiVO4 for selective glycerol oxidation: Surface effects and pH-Bias voltage synergy. Appl. Catal. A Gen. 2025, 697, 120205. [Google Scholar] [CrossRef]
- Gao, Q.; Tian, R.; Niu, L.; Wang, J.; Wei, A.; Zhang, W.; Liu, Y. Improved glyceraldehyde generation through FeOOH co-catalysts-modified BiVO4 featuring Bi-O-Fe active sites for photoelectrocatalytic glycerol oxidation. J. Catal. 2024, 438, 115709. [Google Scholar] [CrossRef]
- Yang, P.; Chang, Q.; Zhang, Q.; Yu, J.; Ji, X.; Zhang, Y.; Yang, W.; Xiao, P.; Zhang, Y. Boost photoelectrocatalytic selectivity of glycerol to dihydroxyacetone on BiVO4 via accelerating middle hydroxyl oxidation by co-catalysts. J. Catal. 2025, 446, 116061. [Google Scholar] [CrossRef]
- Wu, Y.-H.; Kuznetsov, D.A.; Pflug, N.C.; Fedorov, A.; Müller, C.R. Solar-driven valorisation of glycerol on BiVO4 photoanodes: Effect of co-catalyst and reaction media on reaction selectivity. J. Mater. Chem. A 2021, 9, 6252–6260. [Google Scholar] [CrossRef]
- Pattengale, B.; Huang, J. The effect of Mo doping on the charge separation dynamics and photocurrent performance of BiVO4 photoanodes. Phys. Chem. Chem. Phys. 2016, 18, 32820–32825. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Ahirwar, S.; Satpati, A.K. Insight into the PEC and interfacial charge transfer kinetics at the Mo doped BiVO4 photoanodes. RSC Adv. 2019, 9, 41368–41382. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Yuan, Z.; Zhao, S.; Che, Q.; Ma, Q.; Wang, J. N-type tetragonal phase Mo:BiVO4 thin film with hydrogen production activity. Surf. Interfaces 2025, 69, 106762. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Kong, W.; Liu, H.; Fan, H.; Wang, M. Reducing the surface recombination during light-driven water oxidation by core-shell BiVO4@Ni:FeOOH. Electrochim. Acta 2019, 300, 77–84. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, L.; Geng, Z.; Ren, T.; Yang, Z. The improvement of photocatalysis O2 production over BiVO4 with amorphous FeOOH shell modification. Sci. Rep. 2019, 9, 19090. [Google Scholar] [CrossRef] [PubMed]
- She, H.; Yue, P.; Huang, J.; Wang, L.; Wang, Q. One-step hydrothermal deposition of F:FeOOH onto BiVO4 photoanode for enhanced water oxidation. Chem. Eng. J. 2020, 392, 123703. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Bai, J.; Li, J.; Zhou, C.; Li, L.; Xie, C.; Zhou, T.; Zhu, H.; Zhou, B. Ni doped amorphous FeOOH layer as ultrafast hole transfer channel for enhanced PEC performance of BiVO4. J. Colloid Interface Sci. 2023, 644, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.-L.; Shan, L.-W.; Wu, Z.; Dong, L.-M. Enhanced photocatalytic properties of molybdenum-doped BiVO4 prepared by sol–gel method. Rare Met. 2017, 36, 129–133. [Google Scholar] [CrossRef]
- Li, Y.L.; Liu, Y.; Hao, Y.J.; Wang, X.J.; Liu, R.H.; Li, F.T. Fabrication of core-shell BiVO4@Fe2O3 heterojunctions for realizing photocatalytic hydrogen evolution via conduction band elevation. Mater. Des. 2020, 187, 108379. [Google Scholar] [CrossRef]
- Liu, B.; Yan, X.; Yan, H.; Yao, Y.; Cai, Y.; Wei, J.; Chen, S.; Xu, X.; Li, L. Preparation and Characterization of Mo Doped in BiVO4 with Enhanced Photocatalytic Properties. Materials 2017, 10, 976. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.-Y.; Zhang, X.; Tang, Y.-B.; Wang, X.-G.; Shu, K.-K. Facile and rapid synthesis of a novel spindle-like heterojunction BiVO4 showing enhanced visible-light-driven photoactivity. RSC Adv. 2020, 10, 5234–5240. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Luo, H.; Xu, Y.; Wang, W.; Liang, Q.; Mitsuzaki, N.; Chen, Z. Cobalt–phosphate-modified Mo:BiVO4 mesoporous photoelectrodes for enhanced photoelectrochemical water splitting. J. Mater. Sci. 2019, 54, 10670–10683. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, S.; Liu, J.; Jin, X.; Dong, F.; Shi, G.; Wu, Q. One-Dimensional Shaving-like BiVO4 Nanobelts: Synthesis, Characterization and Photocatalytic Activity with Methylene Blue. Molecules 2023, 28, 7793. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Li, Q.; Han, N.; Zhang, K.; Tang, P.; Feng, Y.; Luo, R.; Li, D.; Chen, A. Synthesis of novel BiVO4/Cu2O heterojunctions for improving BiVO4 towards NO2 sensing properties. J. Colloid Interface Sci. 2020, 567, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Yang, X.; Li, Y.; Ling, R.; Sun, G. Preparation and effects of calcining temperature and pH on the photocatalytic activity of BiVO4 microcrystal for degrading methylene blue. Ionics 2024, 30, 2333–2344. [Google Scholar] [CrossRef]
- Guo, W.; Shuai, Y.; Xu, M.; Wu, S.; Peng, R.; Wang, X. Facile synthesis of flower-shaped BiVO4 microspheres for acetone sensor. Mater. Lett. 2022, 324, 132722. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Hong, S.-S. Facile solvothermal synthesis of monoclinic-tetragonal heterostructured BiVO4 for photodegradation of rhodamine B. Catal. Commun. 2020, 136, 105920. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, G.; Liu, T.; Su, Y.; Ren, H.; Zhang, X.; Xia, A.; Lv, L.; Liu, Y. Photocatalytic properties of the g-C3N4/{010} facets BiVO4 interface Z-Scheme photocatalysts induced by BiVO4 surface heterojunction. Appl. Catal. B Environ. 2018, 234, 37–49. [Google Scholar] [CrossRef]
- Li, G.; Kou, S.; Zhang, F.; Zhang, W.; Guo, H. Target stoichiometry and growth temperature impact on properties of BiVO4 (010) epitaxial thin films. CrystEngComm 2018, 20, 6950–6956. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Uchida, A.; Tominaga, Y.; Fujii, Y.; Yadav, A.A.; Kang, S.W.; Suzuki, N.; Shitanda, I.; Kondo, T.; Itagaki, M.; et al. Visible Light-Assisted Photocatalysis Using Spherical-Shaped BiVO4 Photocatalyst. Catalysts 2021, 11, 460. [Google Scholar] [CrossRef]
- Bulut, D.T. Exploring the dual role of BiVO4 nanoparticles: Unveiling enhanced antimicrobial efficacy and photocatalytic performance. J. Sol-Gel Sci. Technol. 2025, 114, 198–222. [Google Scholar] [CrossRef]
- Nalini, P.; Raja, A.; Sweekaran, S.; Thulasika, R.; Poonguzhali, K.; Yuvarani, K.; Sridhar, S.; Saravanakumar, M.; Kang, M.; El-marghany, A. Preparation of Zn-doped BiVO4 nanoparticles by hydrothermal process for solar photocatalytic activity. J. Mater. Sci. Mater. Electron. 2025, 36, 516. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Wu, Y.; Zhang, J.; Yang, Y.; Mao, H.; Zhang, Y.; Song, X.-M. Freeing the surface-bound excitons to facilitate water oxidation catalysis in BiVO4 photoanode. Appl. Surf. Sci. 2022, 578, 151914. [Google Scholar] [CrossRef]
- She, H.; Jiang, M.; Yue, P.; Huang, J.; Wang, L.; Li, J.; Zhu, G.; Wang, Q. Metal (Ni2+/Co2+) sulfides modified BiVO4 for effective improvement in photoelectrochemical water splitting. J. Colloid Interface Sci. 2019, 549, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Harris-Lee, T.R.; Surman, M.K.; Straiton, A.J.; Marken, F.; Johnson, A.L. Precursor Development and Aerosol-Assisted Chemical Vapour Deposition for BiVO4 and W-Doped BiVO4 Photoanodes: A Universal Ligand Approach. ChemSusChem 2025, 18, e202401452. [Google Scholar] [CrossRef] [PubMed]
- Gutkowski, R.; Peeters, D.; Schuhmann, W. Improved photoelectrochemical performance of electrodeposited metal-doped BiVO4 on Pt-nanoparticle modified FTO surfaces. J. Mater. Chem. A 2016, 4, 7875–7882. [Google Scholar] [CrossRef]
- Zhu, X.; Liang, X.; Wang, P.; Huang, B.; Zhang, Q.; Qin, X.; Zhang, X. Fabrication of large size nanoporous BiVO4 photoanode by a printing-like method for efficient solar water splitting application. Catal. Today 2020, 340, 145–151. [Google Scholar] [CrossRef]
- Huo, R.; Yang, X.-L.; Liu, Y.-Q.; Xu, Y.-H. Visible-light photocatalytic degradation of glyphosate over BiVO4 prepared by different co-precipitation methods. Mater. Res. Bull. 2017, 88, 56–61. [Google Scholar] [CrossRef]
- Abdellaoui, I.; Islam, M.M.; Remeika, M.; Higuchi, Y.; Kawaguchi, T.; Harada, T.; Budich, C.; Maeda, T.; Wada, T.; Ikeda, S.; et al. Photocarrier Recombination Dynamics in BiVO4 for Visible Light-Driven Water Oxidation. J. Phys. Chem. C 2020, 124, 3962–3972. [Google Scholar] [CrossRef]
- Wei, J.; Wang, X.; Li, W.; Li, Y.; Zhu, X.; Zhu, L. Mulberry-like BiVO4 architectures: Synthesis, characterization and their application in photocatalysis. CrystEngComm 2021, 23, 4028–4037. [Google Scholar] [CrossRef]
- Tachikawa, T.; Ochi, T.; Kobori, Y. Crystal-Face-Dependent Charge Dynamics on a BiVO4 Photocatalyst Revealed by Single-Particle Spectroelectrochemistry. ACS Catal. 2016, 6, 2250–2256. [Google Scholar] [CrossRef]
- Li, X.; Huang, C. Investigation of BiVO4 structure variations on the dichlorotoluene ammoxidation performance. J. Chin. Chem. Soc. 2021, 68, 866–870. [Google Scholar] [CrossRef]
- Kim, H.; Yoo, K.; Kim, Y.; Yoon, S.-Y. Thermochromic behaviors of boron–magnesium co-doped BiVO4 powders prepared by a hydrothermal method. Dye. Pigment. 2018, 149, 373–376. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Guo, X.; Gong, H.; Zhang, W.; Liu, Y.; Li, B. Synergistic Promotion of Selective Oxidation of Glycerol to C3 Products by Mo-Doped BiVO4-Coupled FeOOH Co-Catalysts Through Photoelectrocatalysis Process. J. Compos. Sci. 2025, 9, 381. https://doi.org/10.3390/jcs9080381
Wang J, Guo X, Gong H, Zhang W, Liu Y, Li B. Synergistic Promotion of Selective Oxidation of Glycerol to C3 Products by Mo-Doped BiVO4-Coupled FeOOH Co-Catalysts Through Photoelectrocatalysis Process. Journal of Composites Science. 2025; 9(8):381. https://doi.org/10.3390/jcs9080381
Chicago/Turabian StyleWang, Jian, Xinyue Guo, Haomin Gong, Wanggang Zhang, Yiming Liu, and Bo Li. 2025. "Synergistic Promotion of Selective Oxidation of Glycerol to C3 Products by Mo-Doped BiVO4-Coupled FeOOH Co-Catalysts Through Photoelectrocatalysis Process" Journal of Composites Science 9, no. 8: 381. https://doi.org/10.3390/jcs9080381
APA StyleWang, J., Guo, X., Gong, H., Zhang, W., Liu, Y., & Li, B. (2025). Synergistic Promotion of Selective Oxidation of Glycerol to C3 Products by Mo-Doped BiVO4-Coupled FeOOH Co-Catalysts Through Photoelectrocatalysis Process. Journal of Composites Science, 9(8), 381. https://doi.org/10.3390/jcs9080381