Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,214)

Search Parameters:
Keywords = ecotoxicology.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1185 KiB  
Article
Ecotoxicological Assessment of Sediment Samples Impacted by Wastewater Treatment Plant Effluents Transporting Contaminants of Emerging Concern
by Carlos Silva, Ana Ré, Nelson Abrantes, Fernando J. M. Gonçalves and Joana Luísa Pereira
J. Xenobiot. 2025, 15(4), 132; https://doi.org/10.3390/jox15040132 - 15 Aug 2025
Abstract
Wastewater treatment plant (WWTP) effluents can be important sources of contaminants of emerging concern (CEC) for riverine ecosystems, with some accumulation in sediments. This study investigated the ecotoxicological effects of sediment samples collected near three WWTPs. Sediment elutriates, simulating resuspension conditions, and whole [...] Read more.
Wastewater treatment plant (WWTP) effluents can be important sources of contaminants of emerging concern (CEC) for riverine ecosystems, with some accumulation in sediments. This study investigated the ecotoxicological effects of sediment samples collected near three WWTPs. Sediment elutriates, simulating resuspension conditions, and whole sediment samples were tested. Results showed that sediments were toxic to some organisms and beneficial to others. Elutriates from one site significantly reduced luminescence in the bacterium Aliivibrio fischeri, though this was not consistently linked to sediment contaminant levels. Significant noxious effects of elutriates were recorded for the macrophyte Lemma minor (yield reductions up to 48%) and the microalgae Raphidocelis subcapitata (yield reductions up to 25%). Exposure to elutriates resulted in increased Daphnia magna reproduction and increased biomass yield of Chironomus riparius exposed to sediments directly. Overall, there were no major toxicity variations in samples collected upstream and downstream of the effluent outfall. Suggesting limited hazardous potential of the effluent and a potential masking effect of background contamination (mostly metals and polycyclic aromatic hydrocarbons). The complexity of effluent-sourced contamination, coupled with the realistic testing approach, renders this work a valuable contribution to understanding the role of WWTP effluents in surface freshwaters contamination and their effects, especially concerning CECs. Full article
Show Figures

Figure 1

26 pages, 2226 KiB  
Review
Unveiling the Sustainable and Biological Remediation of Heavy Metals Contaminations in Soils and Water Ecosystems Through Potential Microbes—A Review
by Kallol Das, Md Abdullah Al Masud, Aniruddha Sarker, Ramadan A. Arafa and Margi Patel
Sustainability 2025, 17(16), 7357; https://doi.org/10.3390/su17167357 - 14 Aug 2025
Viewed by 352
Abstract
This review provides a critical summary of the biological remediation of heavy metals by leveraging the potential of microbes in soils and water ecosystems, highlighting major research findings and practical obstacles. Heavy metals (HMs) pose a severe threat to environmental health due to [...] Read more.
This review provides a critical summary of the biological remediation of heavy metals by leveraging the potential of microbes in soils and water ecosystems, highlighting major research findings and practical obstacles. Heavy metals (HMs) pose a severe threat to environmental health due to their toxicity and persistence, necessitating effective remediation strategies. Biological remediation, especially through microorganisms and enzymatic actions, offers a promising alternative to conventional methods due to its eco-friendly and cost-effective nature. The review discusses various microbes, including bacteria, fungi, and algae known for their metal-binding capacities and transformation abilities. It delves into the mechanisms of bioremediation, such as biosorption, bioaccumulation, and biotransformation, facilitated by microbial enzymes like oxidoreductases and hydrolases that remove or bind the chemical structure of HMs. This paper also explores genetic engineering approaches to enhance microbial efficacy in HMs’ uptake and resistance. Furthermore, the review addresses the significant challenges in scaling bioremediation from a laboratory to the field, such as the complexity of environmental conditions, the presence of mixed contaminants, and the need for system optimization to improve efficiency and sustainability. It also evaluates the current legislative framework governing bioremediation practices, suggesting a need for clearer policies to support the integration of biological methods into mainstream remediation strategies. Conclusively, while microbial and enzymatic remediation presents considerable potential, extensive research is needed to overcome existing hurdles and develop robust, field-applicable systems. This paper calls for a multidisciplinary approach combining microbiology, engineering, and environmental sciences to advance this promising field. Full article
Show Figures

Figure 1

22 pages, 793 KiB  
Article
Ecotoxicological Risk Assessment and Monitoring of Pesticide Residues in Soil, Surface Water, and Groundwater in Northwestern Tunisia
by Khaoula Toumi, Abir Arbi, Nafissa Soudani, Anastasia Lomadze, Dalila Haouas, Terenzio Bertuzzi, Alessandra Cardinali, Lucrezia Lamastra, Ettore Capri and Nicoleta Alina Suciu
Water 2025, 17(16), 2387; https://doi.org/10.3390/w17162387 - 12 Aug 2025
Viewed by 346
Abstract
Pesticides play a significant role in agriculture, but their leaching into soil and water poses serious environmental risks. This study examines pesticide contamination in surface and groundwater in northern Tunisia, specifically in Kef governorate, involving a survey of 140 farmers to gather data [...] Read more.
Pesticides play a significant role in agriculture, but their leaching into soil and water poses serious environmental risks. This study examines pesticide contamination in surface and groundwater in northern Tunisia, specifically in Kef governorate, involving a survey of 140 farmers to gather data on agricultural practices and pesticide use. Twenty-four pesticides were monitored and utilized within the Pesticide Environmental Risk Indicator (PERI) model to evaluate environmental risk scores for each substance. Soil and water samples were analyzed using a multi-residue method and liquid chromatography–tandem mass spectrometry. Results showed that 50% of the pesticides assessed had an Environmental Risk Score of 5 or higher. Contamination was identified in water and soil, with 18 and 15 pesticide residues, respectively. Notable concentrations included 7.8 µg/L of linuron and flupyradifurone in water and 1718.4 µg/kg of linuron in soil. Commonly detected substances included the insecticide acetamiprid and fungicides like cyflufenamid and penconazole in water, while soil contamination was linked to fungicides metalaxyl and metalaxyl-m, as well as herbicides linuron and s-metolachlor. Factors such as proximity to treated water points and poor packaging management were discussed as risks. The findings emphasize the need for better monitoring and sustainable agricultural practices to mitigate contamination. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Graphical abstract

12 pages, 234 KiB  
Review
Trifluoroacetic Acid: A Narrative Review on Physico-Chemical Properties, Exposure Pathways, and Toxicological Concerns
by Andrea Moscato, Maria Valentina Longo, Margherita Ferrante and Maria Fiore
Environments 2025, 12(8), 277; https://doi.org/10.3390/environments12080277 - 12 Aug 2025
Viewed by 425
Abstract
Trifluoroacetic acid (TFA) is a persistent degradation product of widely used fluorinated compounds such as hydrofluorocarbons, hydrofluoroolefins, hydrochlorofluorocarbons (HCFCs) and hydrochlorofluoroolefins. Its chemical stability, water solubility, and environmental persistence raise concerns about potential human and ecological risks. To provide an overview of current [...] Read more.
Trifluoroacetic acid (TFA) is a persistent degradation product of widely used fluorinated compounds such as hydrofluorocarbons, hydrofluoroolefins, hydrochlorofluorocarbons (HCFCs) and hydrochlorofluoroolefins. Its chemical stability, water solubility, and environmental persistence raise concerns about potential human and ecological risks. To provide an overview of current knowledge on TFA, we conducted a literature search (PubMed and Scopus, December 2024–January 2025) focusing on its environmental fate, human exposure, toxicokinetic, ecotoxicology, and regulation. A narrative approach was applied, prioritizing recent and high-quality evidence. TFA is ubiquitous in air, water, food, and consumer products. Human exposure occurs mainly through ingestion and inhalation. It is rapidly absorbed and excreted mostly unchanged in urine, with limited metabolic transformation. Though not bioaccumulated in fat, its environmental persistence and ongoing exposure raise concerns about long-term systemic effects. Ecotoxicological data show chronic toxicity in aquatic and terrestrial species, with environmental concentrations often exceeding safety thresholds. Currently, no binding EU limit exists for TFA, although several countries have proposed drinking water guidelines. TFA represents an emerging environmental contaminant with potential human health and ecological impacts. Strengthened monitoring, long-term toxicological studies, and precautionary regulatory action are urgently needed. Full article
14 pages, 2174 KiB  
Article
Effects of Diethylstilbestrol on Uterus Structure and Immunological Function in Mice During Early Pregnancy
by Jian Li, Ruiping Xu, Guan Wang, Yanhua Su, Yaoxing Chen and Jing Cao
Toxics 2025, 13(8), 672; https://doi.org/10.3390/toxics13080672 - 9 Aug 2025
Viewed by 233
Abstract
Due to the growing environmental burden of endocrine-disrupting chemicals (EDCs), there is an increasing concern regarding the reproductive hazards posed by synthetic estrogens, particularly diethylstilbestrol (DES). However, the precise mechanisms by which DES disrupts uterine endocrine function and immune homeostasis leading to pregnancy [...] Read more.
Due to the growing environmental burden of endocrine-disrupting chemicals (EDCs), there is an increasing concern regarding the reproductive hazards posed by synthetic estrogens, particularly diethylstilbestrol (DES). However, the precise mechanisms by which DES disrupts uterine endocrine function and immune homeostasis leading to pregnancy failure remain unclear. Given that wild rodents serve as key reservoirs for zoonotic diseases such as plague, reproductive interventions targeting their pregnancy processes hold significant ecological implications for disease control. In this study, female mice in estrus were randomly divided into four experimental groups, receiving DES at doses of 0 (control), 0.02 (low), 0.2 (medium), and 2 mg/kg (high), respectively. For five consecutive days, mice were injected subcutaneously on a daily basis, with the goal of examining DES-related alterations in hormone secretion and local immune responses within the uterus and spleen. It was found that high-dose DES treatment significantly increased maternal body weight and spleen weight during early pregnancy (p < 0.05). Meanwhile, reproductive function declined progressively with increasing doses, as indicated by decreased ovarian and uterine weights, fewer embryos, and extended estrous cycle duration (p < 0.05). Hematoxylin and eosin staining revealed that high-dose DES markedly reduced uterine gland density at day P5, accompanied by epithelial vacuolar degeneration and nuclear pyknosis. The proportion of uterine glands relative to total uterine area also decreased significantly with increasing DES doses. Moreover, DES inhibited lymphocyte proliferation in both the uterus and spleen in a dose-dependent fashion, with ConA- and LPS-induced proliferation rates decreasing by 0.78–30.70% and 1.91–18.20%, respectively (p < 0.05). The proinflammatory cytokine IL-2 was significantly elevated by DES, whereas the anti-inflammatory cytokine IL-4 showed a notable decrease (p < 0.05). DES administration notably decreased uterine expression of proliferating cell nuclear antigen. In contrast, the numbers of B-cell lymphoma 2- and Bcl-2-associated X protein-positive cells rose, along with upregulated levels of inducible nitric oxide synthase. Furthermore, DES impaired antioxidant defenses in both the uterus and spleen, evidenced by the decreased activities of superoxide dismutase and glutathione peroxidase, reduced total antioxidant capacity, and elevated malondialdehyde levels. This study elucidates the multifaceted mechanisms by which DES impairs the early gestational reproductive environment, filling a critical knowledge gap regarding its interference with the uterus–immune axis, and expands the current understanding of the ecotoxicological impacts of endocrine-disrupting chemicals. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

12 pages, 732 KiB  
Article
Ecotoxicological Assessment of Soils Reclaimed with Waste
by Marta Bik-Małodzińska, Kamila Rybczyńska-Tkaczyk and Anna Jakubczyk
Appl. Sci. 2025, 15(16), 8770; https://doi.org/10.3390/app15168770 - 8 Aug 2025
Viewed by 105
Abstract
This study aimed to conduct an ecotoxicological assessment of soils reclaimed with waste, assessing the treatments’ impacts on both plants and the soils themselves. The reclamation experiment was conducted on the former sulfur mine “Jeziórko”. A microplot experiment was established on a slightly [...] Read more.
This study aimed to conduct an ecotoxicological assessment of soils reclaimed with waste, assessing the treatments’ impacts on both plants and the soils themselves. The reclamation experiment was conducted on the former sulfur mine “Jeziórko”. A microplot experiment was established on a slightly clayey sand to assess the possibilities of different technologies for applying mineral wool to degraded soil. The highest toxicity level was observed in the unreclaimed degraded soil. The M index value was 200%, indicating the death of half of the test organisms. At the same time, root growth inhibition reached 75%, indicating significantly limited root system development. The addition of lime and mineral fertilizers contributed to a slight reduction in toxicity—M = 250%, GI = 50%. Application of sewage sludge at a dose of 100 Mg·ha−1 significantly reduced environmental toxicity—M decreased to 333.3% and 500%, and GI to 35% and 10%, respectively. The addition of mineral wool resulted in further improvement. The best results were achieved in the variant where the soil was enriched with lime, sewage sludge and a large volume of mineral wool (400 m3·ha−1). The GI and M levels indicate that, in this variant, soil toxicity was practically eliminated. Full article
(This article belongs to the Special Issue Degraded Soil Treatment and Influence on Biodiversity)
Show Figures

Figure 1

30 pages, 5440 KiB  
Article
Canals, Contaminants, and Connections: Exploring the Urban Exposome in a Tropical River System
by Alan D. Ziegler, Theodora H. Y. Lee, Khajornkiat Srinuansom, Teppitag Boonta, Jongkon Promya and Richard D. Webster
Urban Sci. 2025, 9(8), 302; https://doi.org/10.3390/urbansci9080302 - 4 Aug 2025
Viewed by 323
Abstract
Emerging and persistent contaminants (EPCs) were detected at high concentrations in Chiang Mai’s Mae Kha Canal, identifying urban waterways as important sources of pollution in the Ping River system in northern Thailand. Maximum levels of metformin (20,000 ng/L), fexofenadine (15,900 ng/L), gabapentin (12,300 [...] Read more.
Emerging and persistent contaminants (EPCs) were detected at high concentrations in Chiang Mai’s Mae Kha Canal, identifying urban waterways as important sources of pollution in the Ping River system in northern Thailand. Maximum levels of metformin (20,000 ng/L), fexofenadine (15,900 ng/L), gabapentin (12,300 ng/L), sucralose (38,000 ng/L), and acesulfame (23,000 ng/L) point to inadequately treated wastewater as a plausible contributor. Downstream enrichment patterns relative to upstream sites highlight the cumulative impact of urban runoff. Five compounds—acesulfame, gemfibrozil, fexofenadine, TBEP, and caffeine—consistently emerged as reliable tracers of urban wastewater, forming a distinct chemical fingerprint of the riverine exposome. Median EPC concentrations were highest in Mae Kha, lower in other urban canals, and declined with distance from the city, reflecting spatial gradients in urban density and pollution intensity. Although most detected concentrations fell below predicted no-effect thresholds, ibuprofen frequently approached or exceeded ecotoxicological benchmarks and may represent a compound of ecological concern. Non-targeted analysis revealed a broader “chemical cocktail” of unregulated substances—illustrating a witches’ brew of pollution that likely escapes standard monitoring efforts. These findings demonstrate the utility of wide-scope surveillance for identifying key compounds, contamination hotspots, and spatial gradients in mixed-use watersheds. They also highlight the need for integrated, long-term monitoring strategies that address diffuse, compound mixtures to safeguard freshwater ecosystems in rapidly urbanizing regions. Full article
Show Figures

Figure 1

19 pages, 2157 KiB  
Article
WEEE Glass as a Sustainable Supplementary Cementitious Material: Experimental Analysis on Strength, Durability and Ecotoxic Performance of Mortars
by Raphaele Malheiro, André Lemos, Aires Camões, Duarte Ferreira, Juliana Alves and Cristina Quintelas
Sci 2025, 7(3), 107; https://doi.org/10.3390/sci7030107 - 2 Aug 2025
Viewed by 335
Abstract
This study investigates the use of waste glass powder derived from fluorescent lamps as a partial replacement for cement in mortar production, aiming to valorize this Waste from Electrical and Electronic Equipment (WEEE) and enhance sustainability in the construction sector. Mortars were formulated [...] Read more.
This study investigates the use of waste glass powder derived from fluorescent lamps as a partial replacement for cement in mortar production, aiming to valorize this Waste from Electrical and Electronic Equipment (WEEE) and enhance sustainability in the construction sector. Mortars were formulated by substituting 25% of cement by volume with glass powders from fluorescent lamp glass and green bottle glass. The experimental program evaluated mechanical strength, durability parameters and ecotoxicological performance. Results revealed that clean fluorescent lamp mortars showed the most promising mechanical behavior, exceeding the reference in long-term compressive (54.8 MPa) and flexural strength (10.0 MPa). All glass mortars exhibited significantly reduced chloride diffusion coefficients (85–89%) and increased electrical resistivity (almost 4 times higher), indicating improved durability. Leaching tests confirmed that the incorporation of fluorescent lamp waste did not lead to hazardous levels of heavy metals in the cured mortars, suggesting effective encapsulation. By addressing both technical (mechanical and durability) and ecotoxic performance, this research contributes in an original and relevant way to the development of more sustainable building materials. Full article
Show Figures

Figure 1

32 pages, 995 KiB  
Case Report
Phytotoxic Effects and Agricultural Potential of Nanofertilizers: A Case Study Using Zeolite, Zinc Oxide, and Titanium Dioxide Under Controlled Conditions
by Ezequiel Zamora-Ledezma, Glenda Leonela Loor Aragundi, Willian Stalyn Guamán Marquines, Michael Anibal Macías Pro, José Vicente García Díaz, Henry Antonio Pacheco Gil, Julián Mauricio Botero Londoño, Mónica Andrea Botero Londoño and Camilo Zamora-Ledezma
J. Xenobiot. 2025, 15(4), 123; https://doi.org/10.3390/jox15040123 - 1 Aug 2025
Viewed by 650
Abstract
Nanofertilizers (NFs) and engineered nanoparticles (NPs) are increasingly used in agriculture, yet their environmental safety remains poorly understood. This study evaluated the comparative phytotoxicity of zinc oxide (ZnO), titanium dioxide (TiO2), and clinoptilolite nanoparticles, three commercial nanofertilizers, and potassium dichromate (K [...] Read more.
Nanofertilizers (NFs) and engineered nanoparticles (NPs) are increasingly used in agriculture, yet their environmental safety remains poorly understood. This study evaluated the comparative phytotoxicity of zinc oxide (ZnO), titanium dioxide (TiO2), and clinoptilolite nanoparticles, three commercial nanofertilizers, and potassium dichromate (K2Cr2O7) using Lactuca sativa seeds under adapted OECD-208 protocol conditions. Seeds were exposed to varying concentrations of each xenobiotic material (0.5–3% for NFs; 10–50% for NPs), with systematic assessment of seedling survival, root and hypocotyl length, dry biomass, germination index (GI), and median effective concentration (EC50) values. Nanofertilizers demonstrated significantly greater phytotoxicity than engineered nanoparticles despite lower application concentrations. The toxicity ranking was established as NF1 > NF3 > NF2 > NM2 > NM1 > NM3, with NF1 being most toxic (EC50 = 1.2%). Nanofertilizers caused 45–78% reductions in root length and 30–65% decreases in dry biomass compared with controls. GI values dropped to ≤70% in NF1 and NF3 treatments, indicating concentration-dependent growth inhibition. While nanofertilizers offer agricultural benefits, their elevated phytotoxicity compared with conventional nanoparticles necessitates rigorous pre-application safety assessment. These findings emphasize the critical need for standardized evaluation protocols incorporating both physiological and ecotoxicological endpoints to ensure safe xenobiotic nanomaterial deployment in agricultural systems. Full article
Show Figures

Graphical abstract

13 pages, 1057 KiB  
Article
Osmotic Pretreatment and Solar Drying of Eggplant in Tunisian Rural Areas: Assessing the Impact of Process Efficiency and Product Quality
by Sarra Jribi, Ismahen Essaidi, Ines Ben Rejeb, Raouia Ghanem, Mahmoud Elies Hamza and Faten Khamassi
Processes 2025, 13(8), 2442; https://doi.org/10.3390/pr13082442 - 1 Aug 2025
Viewed by 343
Abstract
The drying process plays a crucial role in enhancing the shelf life of food products by reducing moisture content. As climate change contributes to rising temperatures, alternative drying methods, such as solar drying, offer promising solutions for sustainable food preservation. This study investigates [...] Read more.
The drying process plays a crucial role in enhancing the shelf life of food products by reducing moisture content. As climate change contributes to rising temperatures, alternative drying methods, such as solar drying, offer promising solutions for sustainable food preservation. This study investigates the solar drying of eggplant (Solanum melongena L.) slices, with a focus on the effect of salting pretreatment on drying efficiency. Eggplant slices were subjected to salting pretreatment for partial moisture removal prior to drying. Drying kinetics were monitored to construct the characteristic drying curve. The dried eggplant slices were evaluated for their proximate composition and rehydration capacity, as well as textural and thermal properties. The results showed that salting pretreatment significantly enhanced the solar drying process by accelerating moisture removal. Notably, water activity (aw) decreased significantly from 0.978 to 0.554 for the control sample and to 0.534 for the saltedsample. Significant differences were observed between the dried and salted dried slices, particularly in rehydration capacity, which decreased following salting. Additionally, the salted dried samples showedreductions in protein, carbohydrate, and potassium contents. In contrast, ash content and hardness increased as a result ofosmotic pretreatment. These findings suggest that while dry salting pretreatment effectively reduces solar drying time, it may adversely affect several nutritional and textural properties. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

20 pages, 1379 KiB  
Article
Combined Effects of Polyethylene and Bordeaux Mixture on the Soil–Plant System: Phytotoxicity, Copper Accumulation and Changes in Microbial Abundance
by Silvia Romeo-Río, Huguette Meta Foguieng, Antía Gómez-Armesto, Manuel Conde-Cid, David Fernández-Calviño and Andrés Rodríguez-Seijo
Agriculture 2025, 15(15), 1657; https://doi.org/10.3390/agriculture15151657 - 1 Aug 2025
Viewed by 404
Abstract
Greenhouses have positively impacted plant production by allowing the cultivation of different crops per year. However, the accumulation of agricultural plastics, potentially contaminated with agrochemicals, raises environmental concerns. This work evaluates the combined effect of Bordeaux mixture and low-density polyethylene (LDPE) microplastics (<5 [...] Read more.
Greenhouses have positively impacted plant production by allowing the cultivation of different crops per year. However, the accumulation of agricultural plastics, potentially contaminated with agrochemicals, raises environmental concerns. This work evaluates the combined effect of Bordeaux mixture and low-density polyethylene (LDPE) microplastics (<5 mm) on the growth of lettuce (Lactuca sativa L.) and soil microbial communities. Different levels of Bordeaux mixture (0, 100 and 500 mg kg−1), equivalent to Cu(II) concentrations (0, 17 and 83 mg kg−1), LDPE microplastics (0, 1% and 5%) and their combination were selected. After 28 days of growth, biometric and photosynthetic parameters, Cu uptake, and soil microbial responses were evaluated. Plant germination and growth were not significantly affected by the combination of Cu and plastics. However, individual Cu treatments influenced root and shoot length and biomass. Chlorophyll and carotenoid concentrations increased with Cu addition, although the differences were not statistically significant. Phospholipid fatty acid (PLFA) analysis revealed a reduction in microbial biomass at the highest Cu dose, whereas LDPE alone showed limited effects and may reduce Cu bioavailability. These results suggest that even at the highest concentration added, Cu can act as a plant nutrient, while the combination of Cu–plastics showed varying effects on plant growth and soil microbial communities. Full article
(This article belongs to the Special Issue Impacts of Emerging Agricultural Pollutants on Environmental Health)
Show Figures

Figure 1

26 pages, 5192 KiB  
Review
Application of Multi-Omics Techniques in Aquatic Ecotoxicology: A Review
by Boyang Li, Yizhang Zhang, Jinzhe Du, Chen Liu, Guorui Zhou, Mingrui Li and Zhenguang Yan
Toxics 2025, 13(8), 653; https://doi.org/10.3390/toxics13080653 - 31 Jul 2025
Viewed by 263
Abstract
Traditional ecotoxicology primarily investigates pollutant toxicity through physiological, biochemical, and single-molecular indicators. However, the limited data obtained through this approach constrain its application in the mechanistic analysis of pollutant toxicity. Omics technologies have emerged as a major research focus in recent years, enabling [...] Read more.
Traditional ecotoxicology primarily investigates pollutant toxicity through physiological, biochemical, and single-molecular indicators. However, the limited data obtained through this approach constrain its application in the mechanistic analysis of pollutant toxicity. Omics technologies have emerged as a major research focus in recent years, enabling the comprehensive and accurate analysis of biomolecular-level changes. The integration of multi-omics technologies can holistically reveal the molecular toxicity mechanisms of pollutants, representing a primary emphasis in current toxicological research. This paper introduces the fundamental concepts of genomics, transcriptomics, proteomics, and metabolomics, while reviewing recent advancements in integrated omics approaches within aquatic toxicology. Furthermore, it provides a reference framework for the implementation of multi-omics strategies in ecotoxicological investigations. While multi-omics integration enables the unprecedented reconstruction of pollutant-induced molecular cascades and earlier biomarker discovery (notably through microbiome–metabolome linkages), its full potential requires experimental designs, machine learning-enhanced data integration, and validation against traditional toxicological endpoints within environmentally relevant models. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Figure 1

24 pages, 1117 KiB  
Article
Comparative Analysis of Pesticide Residues in Hive Products from Rapeseed (Brassica napus subsp. napus) and Sunflower (Helianthus annuus) Crops Under Varying Agricultural Practices in Romania During the 2020–2021 Beekeeping Seasons
by Dan Bodescu, Viorel Fătu, Agripina Şapcaliu, Elena Luiza Bădic, Roxana Zaharia, Dana Tăpăloagă, Alexandru-Dragoș Robu and Radu-Adrian Moraru
Agriculture 2025, 15(15), 1648; https://doi.org/10.3390/agriculture15151648 - 31 Jul 2025
Viewed by 322
Abstract
Over the past years, increasing attention has been drawn to the adverse effects of agricultural pesticide use on pollinators, with honeybees being especially vulnerable. The aim of this study was to evaluate the levels of residues detectable and/or quantifiable of neonicotinoid pesticides and [...] Read more.
Over the past years, increasing attention has been drawn to the adverse effects of agricultural pesticide use on pollinators, with honeybees being especially vulnerable. The aim of this study was to evaluate the levels of residues detectable and/or quantifiable of neonicotinoid pesticides and other pesticides in biological materials (bees, bee brood, etc.) and beehive products (honey, pollen, etc.) applied as seed dressings in rapeseed and sunflower plants in two growing seasons (2020–2021) in fields located in three agro-climatic regions in Romania. The study involved the comparative sampling of hive products (honey, pollen, adult bees, and brood) from experimental and control apiaries, followed by pesticide residue analysis in an accredited laboratory (Primoris) using validated chromatographic techniques (LC-MS/MS and GC-MS). Toxicological analyses of 96 samples, including bees, bee brood, honey, and pollen, confirmed the presence of residues in 46 samples, including 10 bee samples, 10 bee brood samples, 18 honey samples, and 8 pollen bread samples. The mean pesticide residue concentrations detected in hive products were 0.032 mg/kg in honey, 0.061 mg/kg in pollen, 0.167 mg/kg in bees, and 0.371 mg/kg in bee brood. The results highlight the exposure of honeybee colonies to multiple sources of pesticide residue contamination, under conditions where legal recommendations for the controlled application of agricultural treatments are not followed. The study provides relevant evidence for strengthening the risk assessment framework and underscores the need for adopting stricter monitoring and regulatory measures to ensure the protection of honeybee colony health. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

23 pages, 1627 KiB  
Article
A Comprehensive Ecotoxicological Evaluation of a Treated Olive Mill Wastewater and Obtained Sludge
by José N. Pinto, Andreia Pereira, Ana Rita R. Silva, Diogo N. Cardoso, Amid Mostafaie, Fábio Campos, Iryna Rehan, Olga Moreira, Ivã Guidini Lopes, Daniel Murta, Alexandra Afonso, Margarida Oliveira, Karina S. Silvério, Maria Teresa Santos, Fátima Carvalho, Adelaide Almeida and Susana Loureiro
Toxics 2025, 13(8), 648; https://doi.org/10.3390/toxics13080648 - 30 Jul 2025
Viewed by 374
Abstract
Olive mill wastewaters (OMWWs) are an environmental problem in the Mediterranean region, and it is crucial to explore strategies for their treatment and repurposing. The chemical precipitation technique (CPT) has been presented as a cost-effective wastewater treatment solution that might be applied to [...] Read more.
Olive mill wastewaters (OMWWs) are an environmental problem in the Mediterranean region, and it is crucial to explore strategies for their treatment and repurposing. The chemical precipitation technique (CPT) has been presented as a cost-effective wastewater treatment solution that might be applied to OMWW. The CPT-resulting precipitant subproducts (sludge) may be reprocessed (e.g., agricultural fertilizer and/or soil amendment), while the treated wastewater may be repurposed or reused (e.g., irrigation, aquaponic, or industrial processes). This study aimed to evaluate the efficacy of CPT in treating wastewater from the olive oil industry from an ecotoxicological perspective. Additionally, to assess the safe use of the obtained sludge in CPT treatment, its effects on soil biota were assessed. For this, a set of ecotoxicological assays using freshwater (Raphidocelis subcapitata, Daphnia magna and Danio rerio), terrestrial invertebrates (Folsomia candida and Enchytraeus crypticus), and plants (Brassica oleracea and Lolium perenne) were used as model organisms. Results demonstrated that CPT reduced OMWW toxicity to freshwater organisms, offering a favorable outlook on CPT’s potential as a wastewater treatment method. Increasing application rates of sludge in soil reduced the shoot biomass and the hydric content of both plants compared to the control. Survival of F. candida and E. crypticus was not affected by sludge in soil at any tested application rate, yet sludge application negatively affected the reproduction of both species, even at relevant sludge application rates (2%) of sludge in soils. Overall, the applicability of this sludge obtained by the CPT treatment in soils should be carefully evaluated due to the observed adverse effects on soil biota. Although the results of CPT were promising in reducing the toxicity of OMWW for these aquatic species, some adjustments/improvements should be performed to improve this technique and use all the obtained resources (treated water and sludge) in a fully circular perspective. Full article
(This article belongs to the Special Issue Biomass Conversion and Organic Waste Utilization in Wastewater)
Show Figures

Graphical abstract

17 pages, 1962 KiB  
Article
Effects of Commercially Available Plastics on Estuarine Sediment Dweller Polychaeta Hediste diversicolor
by David Daniel, João Pinto da Costa, Ana Violeta Girão and Bruno Nunes
Microplastics 2025, 4(3), 46; https://doi.org/10.3390/microplastics4030046 - 30 Jul 2025
Viewed by 305
Abstract
Microplastics (MPs) are a major contaminant in aquatic environments. Due to their size, they are likely to cause deleterious effects. In this study, we assessed the effects of MPs obtained from two commercially available plastics (PP and PET) in the polychaeta Hediste diversicolor [...] Read more.
Microplastics (MPs) are a major contaminant in aquatic environments. Due to their size, they are likely to cause deleterious effects. In this study, we assessed the effects of MPs obtained from two commercially available plastics (PP and PET) in the polychaeta Hediste diversicolor after different periods (4 and 28 days). Toxic effects were assessed by measuring burrowing and spontaneous activities, phase I (CYP1A1, 1A2, and 3A4) activities), conjugation metabolism (GSTs), and antioxidant defense (CAT). Behavioral traits and phase I activities were nonresponsive to the presence of both plastics and for the two durations of exposure, indicating that these organisms are not affected by exposure to MPs and do not metabolize them. Conjugation metabolism was inhibited, which may be explained by the MPs’ capability of inhibiting certain enzymes. CAT activity was increased in animals acutely exposed to PP and decreased in animals chronically exposed to PET. This study shows that PP- and PET-MPs do not cause adverse effects on H. diversicolor. Full article
Show Figures

Figure 1

Back to TopTop