WEEE Glass as a Sustainable Supplementary Cementitious Material: Experimental Analysis on Strength, Durability and Ecotoxic Performance of Mortars
Abstract
1. Introduction
2. Research Significance
3. Experimental Development
3.1. Materials
3.1.1. Glass Powder Obtaining
- Washing (only for fluorescent lamp clean): The fragments were submerged in distilled water for 24 h, allowing the removal of surface dirt and the separation of any different material that may have been sent along with the glass;
- Drying (only for fluorescent lamp clean): The fragments were introduced into a ventilated oven operating at a stable temperature of 105 ± 1 °C, for approximately 2 h, ensuring the elimination of humidity;
- Grounding: The fragments were ground in 0.5 kg portions, with 5-minute cycles (around 15 cycles, using a grain mill with a speed equal to 36,000 rpm), interspersed with pauses, until a fineness comparable to that of Portland cement was reached.
3.1.2. Glass Powder and Cement Characterization
3.2. Mortar Production
3.3. Tests
3.3.1. Mechanical Behavior
3.3.2. Durability Indicators
3.3.3. Ecotoxicity Performance
- Fine powders (comprising glass waste and cement);
- Mortar specimens cured for 90 days.
4. Results and Discussion
4.1. Mechanical Behavior Results
4.1.1. Compressive Strength
4.1.2. Flexural Strength
4.1.3. Strength Activity Index
4.2. Durability Indicators Results
4.2.1. Chloride Diffusion Coefficient
4.2.2. Electrical Resistivity
4.3. Ecotoxicity Performance Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ASTM C1866M-20; Standard Specification for Glass Aggregates for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2023. [CrossRef]
- Ferreira, D.L.; Malheiro, R.; Lemos, A.L.M.; Camões, A.; Ribeiro, M.J.P.M.; Nóbrega, A.F. Avaliação do Desempenho de Argamassas Produzidas com pó de Vidro de reee como Substituto Parcial do Cimento. SIMPÓSIO BRASILEIRO DE TECNOLOGIA DAS ARGAMASSAS, 15. 2025. Available online: https://eventos.antac.org.br/index.php/sbta/article/view/6944/5182 (accessed on 25 June 2025).
- Zhang, Y.; Xiao, R.; Jiang, X.; Li, W.; Zhu, X.; Huang, B. Effect of particle size and curing temperature on mechanical and microstructural properties of waste glass-slag-based and waste glass-fly ash-based geopolymers. J. Clean. Prod. 2020, 273, 122970. [Google Scholar] [CrossRef]
- Malheiro, R.; Moreira, B.; Pontes, K.; Jesus, C.; Camões, A. Utilização do pó de Vidro como Substituto Parcial do Cimento: Uma Abordagem Experimental Acerca da Resistência Mecânica. In Proceedings of the Congresso Luso-Brasileiro de Materiais de Construção Sustentáveis, CLBMCS, Salvador, Brazil, 10 November 2022; Available online: https://hdl.handle.net/1822/81939 (accessed on 25 June 2025).
- Matos, A.M. Estudo de Argamassas com Substituição Parcial de Cimento por Resíduos de Vidro Moídos. Master’s Thesis, FEUP, Porto, Portugal, 2010. Available online: http://hdl.handle.net/10216/59733 (accessed on 19 May 2025).
- Aliabdo, A.A.; Abd Elmoaty, A.E.M.; Aboshama, A.Y. Utilization of waste glass powder in the production of cement and concrete. Constr. Build. Mater. 2016, 124, 866–877. [Google Scholar] [CrossRef]
- Matos, A.M.; Sousa-Coutinho, J. Durability of mortar using waste glass powder as cement replacement. Constr. Build. Mater. 2012, 36, 205–215. [Google Scholar] [CrossRef]
- Omran, A.; Tagnit-Hamou, A. Performance of glass-powder concrete in field applications. Constr. Build. Mater. 2016, 109, 84–95. [Google Scholar] [CrossRef]
- Islam, H.; Prova, Z.; Sobuz, H.; Nijum, N.; Aditto, F. Experimental investigation on fresh, hardened and durability characteristics of partially replaced E-waste plastic concrete: A sustainable concept with machine learning approaches. Heliyon 2025, 11, e41924. [Google Scholar] [CrossRef]
- Forti, V.; Balde, C.P.; Kuehr, R.; Bel, G. The Global E-Waste Monitor 2020: Quantities, Flows and the Circular Economy Potential; United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR)—Co-Hosted SCYCLE Programme: Geneva, Switzerland; International Telecommunication Union (ITU): Geneva, Switzerland; International Solid Waste Association (ISWA): Rotterdam, The Netherlands, 2020. [Google Scholar]
- Gollmann, M.; Silva, M.; Masuero, A.; Santos, J. Stabilization and solidification of Pb in cement matrices. J. Hazard. Mater. 2010, 179, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Kara, P. Performance of lamp glass waste powder (LGWP) as supplementary cementitious material (SCM)—Viscosity and electrical conductivity. J. Silic. Based Compos. Mater. 2015, 67, 12–18. [Google Scholar] [CrossRef]
- Ali, H.; Jaber, H.; Farid, S. Investigation of fluorescent lamp glass waste as a fluxing agent in porcelain bodies. Mater. Today Proc. 2021, 42, 2381–2386. [Google Scholar] [CrossRef]
- Novais, R.; Ascensão, G.; Seabra, M.P.; Labrincha, J.A. Waste glass from end-of-life fluorescent lamps as raw material in geopolymers. Waste Manag. 2016, 52, 245–255. [Google Scholar] [CrossRef]
- Viana, L.; Soares, A.; Guimarães, D.; Rojano, W.; Saint’Pierre, T. Fluorescent lamps: A review on environmental concerns and current recycling perspectives highlighting Hg and rare earth elements. J. Environ. Chem. Eng. 2022, 10, 108915. [Google Scholar] [CrossRef]
- Kara, P.; Korjakins, A.; Kovalenko, K. The Usage of Fluorescent Waste Glass Powder in Concrete. Constr. Sci. 2013, 13, 26–32. [Google Scholar] [CrossRef]
- Pitarch, A.M.; Reig, L.; Gallardo, A.; Soriano, L.; Borrachero, M.V.; Rochina, S. Reutilisation of hazardous spent fluorescent lamps glass waste as supplementary cementitious material. Constr. Build. Mater. 2021, 292, 123424. [Google Scholar] [CrossRef]
- Moreira, O.; Camões, A.; Malheiro, R.; Jesus, C. High Glass Waste Incorporation towards Sustainable High-Performance Concrete. CivilEng 2024, 5, 41–64. [Google Scholar] [CrossRef]
- Guignone, G.; Calmon, J.L.; Vieira, G.; Zulcão, R.; Rebello, T.A. Life Cycle Assessment ofWaste Glass Powder Incorporation on Concrete: A Bridge Retrofit Study Case. Appl. Sci. 2022, 12, 3353. [Google Scholar] [CrossRef]
- APA—Agência Portuguesa do Ambiente—Relatório de Gestão de Resíduos. 2021. Available online: www.apambiente.pt (accessed on 15 September 2022).
- Moreira, O. High-Performance Concrete with High Glass Powder Incorporation. Master’s Degree in Sustainable Construction and Rehabilitation, University of Minho, Minho, Portugal, 2023. (In Portuguese). [Google Scholar]
- European Committee for Standardization. EN 1097-6: Tests for Mechanical and Physical Properties of—Part 6: Determination of Particle Density and Water Absorption; CEN: Brussels, Belgium, 2016. [Google Scholar]
- ASTM C618-22; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2023. [CrossRef]
- ABNT Associação Brasileira de Normas Técnicas. NBR 12653: Materiais Pozolânicos—Requisitos; ABNT: Rio de Janeiro, Brazil, 2014. [Google Scholar]
- IEA—International Energy Agency. Direct Emissions Intensity of Cement Production in the Net Zero Scenario, 2015–2030. Available online: https://www.iea.org/energy-system/industry/cement (accessed on 2 July 2025).
- EN 1015-3; Methods of Test for Mortar for Masonry: Determination of Consistence of Fresh Mortar (by Flow Table). European Committee for Standardization, CEN: Brussels, Belgium, 1999.
- EN 1015-11; Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. European Committee for Standardization, CEN: Brussels, Belgium, 1999.
- EN 450-1; Fly Ash for Concrete—Part 1: Definition, Specifications and Conformity Criteria. European Committee for Standardization, CEN: Brussels, Belgium, 2012.
- Laboratório Nacional de Engenharia Civil. E 463: Coeficiente de Difusão dos Cloretos. Ensaio de Migração; LNEC: Lisboa, Portugal, 2004. [Google Scholar]
- EN 12457-4; Characterisation of Waste—Leaching—Compliance Test for Leaching of Granular Waste Materials and Sludges—Part 4: One Stage Batch Test at a Liquid to Solid Ratio of 10 l/kg for Materials with Particle Size Below 10 mm (without or with Size Reduction). European Committee for Standardization, CEN: Brussels, Belgium, 2002.
- ISO 3696; Water for Analytical Laboratory Use—Specification and Test Methods. International Organization for Standardization, ISO: Geneva, Switzerland, 1987.
- Bignozzi, M.C.; Saccani, A.; Barbieri, L.; Lancellotti, I. Glass waste as supplementary cementing materials: The effects of glass chemical composition. Cem. Concr. Compos. 2015, 55, 45–52. [Google Scholar] [CrossRef]
- Kim, S.K.; Kang, S.T.; Kim, J.K.; Jang, I.Y. Effects of Particle Size and Cement Replacement of LCD Glass Powder in Concret. Adv. Mater. Sci. Eng. 2017, 3928047, 12. [Google Scholar] [CrossRef]
- Ferreira, D.L.; Oliveira, A.D.; Silva, R.; Correa, M.; Jesus, C.M.G.; Malheiro, R.L.M.C.; Camões, A. Viabilidade de incorporação de resíduos de vidros industriais na produção de argamassas sustentáveis. In Proceedings of the Congresso Luso-Brasileiro de Materiais de Construção Sustentáveis|Congresso Construção, Lisboa, Portugal, 7 November 2024; Available online: https://ceris.pt/wp-content/uploads/2024/11/CLBMCS2024_Atas.pdf (accessed on 5 May 2025).
- Dobiszewska, M.; Pichór, W.; Tracz, T.; Petrella, A.; Notarnicola, M. Effect of Glass Powder on the Cement Hydration, Microstructure and Mechanical Properties of Mortar. Mater. Proc. 2023, 13, 40. [Google Scholar] [CrossRef]
- Paul, D.; Bindhu, K.; Matos, A.M.; Delgado, J. Eco-friendly concrete with waste glass powder: A sustainable and circular solution. Constr. Build. Mater. 2022, 355, 129217. [Google Scholar] [CrossRef]
- Du, H.; Tan, K.H. Transport Properties of Concrete with Glass Powder as Supplementary Cementitious Material. ACI Mater. J. 2015, 112, 429–438. [Google Scholar] [CrossRef]
- Masra, W.; Sutan, S.M.; Keran, N.M.; Matudin, N.D. Electrical Resistivity of Cement Based Materials. Appl. Mech. Mater. 2016, 833, 102–107. [Google Scholar] [CrossRef]
- Kamali, M.; Ghahremaninezhad, A. Effect of glass powders on the mechanical and durability properties of cementitious materials. Constr. Build. Mater. 2015, 98, 407–416. [Google Scholar] [CrossRef]
- Ramezanianpour, A.; Pilvar, A.; Mahdikhani, M.; Moodi, F. Practical evaluation of relationship between concrete resistivity, water penetration, rapid chloride penetration and compressive strength. Constr. Build. Mater 2011, 25, 2472–2479. [Google Scholar] [CrossRef]
- Araújo, C.C.; Meira, G.R. Correlation between concrete strength properties and surface electrical resistivity. Rev. IBRACON Estrut. E Mater. 2022, 15, e15103. [Google Scholar] [CrossRef]
- Portugal. (2020, 10 de dezembro). Decreto-Lei n.º 102-D/2020: Aprova o Regime Geral da Gestão de Resíduos, o Regime Jurídico da Deposição de Resíduos em Aterro e Altera o Regime de Fluxos Específicos (Diário da República n.º 239/2020, 1.º Suplemento, Série I). Available online: https://diariodarepublica.pt/dr/detalhe/decreto-lei/102-d-2020-150908012 (accessed on 25 June 2025).
- Pavón, S.; Lapo, B.; Fortuny, A.; Sastre, A.M.; Bertau, M. Recycling of rare earths from fluorescent lamp waste by the integration of solid-state chlorination, leaching and solvent extraction processes. Sep. Purif. Technol. 2021, 272, 118879. [Google Scholar] [CrossRef]
CEM I 42.5 R | FL-C | FL-D | G-C | |
---|---|---|---|---|
D(50) (µm) | 23.4 | 21.0 | 18.7 | 24.5 |
Specific surface (m2/kg) | 415.4 | 544.7 | 631.4 | 493 |
Volumetric mass (kg/m3) | 3140 | 2632 | 2551 | 2603 |
Element (%) | CEM I 42.5 R | FL-C | G-C |
---|---|---|---|
MgO | 1.23 | 2.69 | 1.00 |
Al2O3 | 3.73 | 2.23 | 2.30 |
SiO2 | 12.8 | 66.97 | 69.20 |
K2O | 1.66 | 1.04 | 0.90 |
CaO | 66.85 | 5.87 | 11.80 |
Fe2O3 | 3.41 | 3.8 | 1.30 |
Na2O | - | 15.05 | 13.40 |
Tl2O3 | 5.54 | - | - |
TiO2 | - | 1.06 | - |
MnO | - | - | 0.10 |
ID | Cement | Glass Powder (Green Bottle) | Glass Powder (Fluorescent Lamp) | Sand | Water |
---|---|---|---|---|---|
REF | 512 | - | - | 1535 | 256 |
FL-C | 384 | - | 107 | 1535 | 256 |
FL-D | 384 | - | 104 | 1535 | 256 |
G-C | 384 | 106 | - | 1535 | 256 |
ID | SAI | |||
---|---|---|---|---|
28 Days | 90 Days | |||
REF | 100% | 100% | ||
FL-C | 78% | OK | 101% | OK |
FL-D | 60% | N | 81% | N |
G-C | 59% | N | 73% | N |
Threshold EN 450-1 [28] | ≥75% | ≥85% |
Leachates | Ba | Cd | Cr | Cu | NI | Pb | Zn | Hg |
---|---|---|---|---|---|---|---|---|
INERT waste (DL 102-D/2020 [42], table 2)-mg/kg | 20.00 | 0.04 | 0.50 | 2.00 | 0.40 | 0.50 | 4.00 | 0.01 |
NON-HAZARDOUS waste (table 4 from DL 102-D/2020) [42]-mg/kg | 100.00 | 2.00 | 20.00 | 50.00 | 10.00 | 10.00 | 50.00 | 0.50 |
HAZARDOUS waste (DL 102-D/2020 [42], table 8)—mg/kg | 300.00 | 5.00 | 70.00 | 100.00 | 40.00 | 50.00 | 200.00 | 2.00 |
ID samples | Values/Classification | |||||||
Cement (powder) | 11.38 | 0.00 | 0.64 | 0.00 | 0.00 | 0.06 | 0.00 | 2.18 |
REF | 2.03 | 0.00 | 0.01 | 0.06 | 0.00 | 0.05 | 0.00 | 0.63 |
Bottle green glass (powder) | 0.08 | 0.00 | 0.48 | 0.00 | 4.95 | 0.16 | 0.00 | 0.01 |
G-C | 0.84 | 0.00 | 0.01 | 0.00 | 0.00 | 0.05 | 0.00 | 0.31 |
Fluorescent lamp glass (powder) | 0.15 | 0.15 | 2.71 | 0.00 | 4.17 | 0.07 | 0.00 | 1.11 |
FL-C | 6.35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malheiro, R.; Lemos, A.; Camões, A.; Ferreira, D.; Alves, J.; Quintelas, C. WEEE Glass as a Sustainable Supplementary Cementitious Material: Experimental Analysis on Strength, Durability and Ecotoxic Performance of Mortars. Sci 2025, 7, 107. https://doi.org/10.3390/sci7030107
Malheiro R, Lemos A, Camões A, Ferreira D, Alves J, Quintelas C. WEEE Glass as a Sustainable Supplementary Cementitious Material: Experimental Analysis on Strength, Durability and Ecotoxic Performance of Mortars. Sci. 2025; 7(3):107. https://doi.org/10.3390/sci7030107
Chicago/Turabian StyleMalheiro, Raphaele, André Lemos, Aires Camões, Duarte Ferreira, Juliana Alves, and Cristina Quintelas. 2025. "WEEE Glass as a Sustainable Supplementary Cementitious Material: Experimental Analysis on Strength, Durability and Ecotoxic Performance of Mortars" Sci 7, no. 3: 107. https://doi.org/10.3390/sci7030107
APA StyleMalheiro, R., Lemos, A., Camões, A., Ferreira, D., Alves, J., & Quintelas, C. (2025). WEEE Glass as a Sustainable Supplementary Cementitious Material: Experimental Analysis on Strength, Durability and Ecotoxic Performance of Mortars. Sci, 7(3), 107. https://doi.org/10.3390/sci7030107