Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (810)

Search Parameters:
Keywords = economic voltage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1948 KiB  
Article
Real-World Performance and Economic Evaluation of a Residential PV Battery Energy Storage System Under Variable Tariffs: A Polish Case Study
by Wojciech Goryl
Energies 2025, 18(15), 4090; https://doi.org/10.3390/en18154090 - 1 Aug 2025
Viewed by 295
Abstract
This paper presents an annual, real-world evaluation of the performance and economics of a residential photovoltaic (PV) system coupled with a battery energy storage system (BESS) in southern Poland. The system, monitored with 5 min resolution, operated under time-of-use (TOU) electricity tariffs. Seasonal [...] Read more.
This paper presents an annual, real-world evaluation of the performance and economics of a residential photovoltaic (PV) system coupled with a battery energy storage system (BESS) in southern Poland. The system, monitored with 5 min resolution, operated under time-of-use (TOU) electricity tariffs. Seasonal variation was significant; self-sufficiency exceeded 90% in summer, while winter conditions increased grid dependency. The hybrid system reduced electricity costs by over EUR 1400 annually, with battery operation optimized for high-tariff periods. Comparative analysis of three configurations—grid-only, PV-only, and PV + BESS—demonstrated the economic advantage of the integrated solution, with the shortest payback period (9.0 years) achieved with financial support. However, grid voltage instability during high PV production led to inverter shutdowns, highlighting limitations in the infrastructure. This study emphasizes the importance of tariff strategies, environmental conditions, and voltage control when designing residential PV-BESS systems. Full article
(This article belongs to the Special Issue Design, Analysis and Operation of Renewable Energy Systems)
Show Figures

Figure 1

19 pages, 439 KiB  
Article
Multi-Objective Optimization for Economic and Environmental Dispatch in DC Networks: A Convex Reformulation via a Conic Approximation
by Nestor Julian Bernal-Carvajal, Carlos Arturo Mora-Peña and Oscar Danilo Montoya
Electricity 2025, 6(3), 43; https://doi.org/10.3390/electricity6030043 - 1 Aug 2025
Viewed by 214
Abstract
This paper addresses the economic–environmental dispatch (EED) problem in DC power grids integrating thermoelectric and photovoltaic generation. A multi-objective optimization model is developed to minimize both fuel costs and CO2 emissions while considering power balance, voltage constraints, generation limits, and thermal line [...] Read more.
This paper addresses the economic–environmental dispatch (EED) problem in DC power grids integrating thermoelectric and photovoltaic generation. A multi-objective optimization model is developed to minimize both fuel costs and CO2 emissions while considering power balance, voltage constraints, generation limits, and thermal line capacities. To overcome the non-convexity introduced by quadratic voltage products in the power flow equations, a convex reformulation is proposed using second-order cone programming (SOCP) with auxiliary variables. This reformulation ensures global optimality and enhances computational efficiency. Two test systems are used for validation: a 6-node DC grid and an 11-node grid incorporating hourly photovoltaic generation. Comparative analyses show that the convex model achieves objective values with errors below 0.01% compared to the original non-convex formulation. For the 11-node system, the integration of photovoltaic generation led to a 24.34% reduction in operating costs (from USD 10.45 million to USD 7.91 million) and a 27.27% decrease in CO2 emissions (from 9.14 million kg to 6.64 million kg) over a 24 h period. These results confirm the effectiveness of the proposed SOCP-based methodology and demonstrate the environmental and economic benefits of renewable integration in DC networks. Full article
Show Figures

Figure 1

20 pages, 5076 KiB  
Article
Brackish Water Desalination Using Electrodialysis: Influence of Operating Parameters on Energy Consumption and Scalability
by Angie N. Medina-Toala, Priscila E. Valverde-Armas, Jonathan I. Mendez-Ruiz, Kevin Franco-González, Steeven Verdezoto-Intriago, Tomas Vitvar and Leonardo Gutiérrez
Membranes 2025, 15(8), 227; https://doi.org/10.3390/membranes15080227 - 31 Jul 2025
Viewed by 303
Abstract
Groundwater is one of the main water sources for consumption, domestic use, agriculture, and tourism in coastal communities. However, high total dissolved solids (TDS) levels in the water (700–2000 mg L−1 TDS) and electrical conductivity (3000–5000 µS cm−1) threaten the [...] Read more.
Groundwater is one of the main water sources for consumption, domestic use, agriculture, and tourism in coastal communities. However, high total dissolved solids (TDS) levels in the water (700–2000 mg L−1 TDS) and electrical conductivity (3000–5000 µS cm−1) threaten the health and economic growth opportunities for residents. This research aims to evaluate the performance of a laboratory-scale electrodialysis system as a technology for desalinating brackish water. For this purpose, water samples were collected from real groundwater sources. Batch experiments were conducted with varying operational parameters, such as voltage (2–10 V), feed volume (100–1600 mL), recovery rate (50–80%), and cros-flow velocity (1.3–5.1 cm s−1) to determine the electrodialysis system setup that meets the requirements for drinking water in terms of TDS and energy efficiency. A total specific energy consumption of 1.65 kWh m−3, including pumping energy, was achieved at a laboratory scale. The conditions were as follows: flow velocity of 5.14 cm s−1, applied voltage of 6 V, feed volume of 1.6 L, and a water recovery of 66%. Furthermore, increasing the flow velocity and the applied voltage enhanced the desalination kinetics and salt removal. Additionally, the system presented opportunities for scalability. This research aims to evaluate a sustainable membrane-based treatment technology for meeting the growing demand for water resources in coastal communities, particularly in developing countries in South America. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

16 pages, 3383 KiB  
Article
Thermal and Electrical Design Considerations for a Flexible Energy Storage System Utilizing Second-Life Electric Vehicle Batteries
by Rouven Christen, Simon Nigsch, Clemens Mathis and Martin Stöck
Batteries 2025, 11(8), 287; https://doi.org/10.3390/batteries11080287 - 26 Jul 2025
Viewed by 305
Abstract
The transition to electric mobility has significantly increased the demand for lithium-ion batteries, raising concerns about their end-of-life management. Therefore, this study presents the design, development and first implementation steps of a stationary energy storage system utilizing second-life electric vehicle (EV) batteries. These [...] Read more.
The transition to electric mobility has significantly increased the demand for lithium-ion batteries, raising concerns about their end-of-life management. Therefore, this study presents the design, development and first implementation steps of a stationary energy storage system utilizing second-life electric vehicle (EV) batteries. These batteries, no longer suitable for traction applications due to a reduced state of health (SoH) below 80%, retain sufficient capacity for less demanding stationary applications. The proposed system is designed to be flexible and scalable, serving both research and commercial purposes. Key challenges include heterogeneous battery characteristics, safety considerations due to increased internal resistance and battery aging, and the need for flexible power electronics. An optimized dual active bridge (DAB) converter topology is introduced to connect several batteries in parallel and to ensure efficient bidirectional power flow over a wide voltage range. A first prototype, rated at 50 kW, has been built and tested in the laboratory. This study contributes to sustainable energy storage solutions by extending battery life cycles, reducing waste, and promoting economic viability for industrial partners. Full article
Show Figures

Figure 1

20 pages, 3338 KiB  
Article
Mitigation of Reverse Power Flows in a Distribution Network by Power-to-Hydrogen Plant
by Fabio Massaro, John Licari, Alexander Micallef, Salvatore Ruffino and Cyril Spiteri Staines
Energies 2025, 18(15), 3931; https://doi.org/10.3390/en18153931 - 23 Jul 2025
Viewed by 254
Abstract
The increase in power generation facilities from nonprogrammable renewable sources is posing several challenges for the management of electrical systems, due to phenomena such as congestion and reverse power flows. In mitigating these phenomena, Power-to-Gas plants can make an important contribution. In this [...] Read more.
The increase in power generation facilities from nonprogrammable renewable sources is posing several challenges for the management of electrical systems, due to phenomena such as congestion and reverse power flows. In mitigating these phenomena, Power-to-Gas plants can make an important contribution. In this paper, a linear optimisation study is presented for the sizing of a Power-to-Hydrogen plant consisting of a PEM electrolyser, a hydrogen storage system composed of multiple compressed hydrogen tanks, and a fuel cell for the eventual reconversion of hydrogen to electricity. The plant was sized with the objective of minimising reverse power flows in a medium-voltage distribution network characterised by a high presence of photovoltaic systems, considering economic aspects such as investment costs and the revenue obtainable from the sale of hydrogen and excess energy generated by the photovoltaic systems. The study also assessed the impact that the electrolysis plant has on the power grid in terms of power losses. The results obtained showed that by installing a 737 kW electrolyser, the annual reverse power flows are reduced by 81.61%, while also reducing losses in the transformer and feeders supplying the ring network in question by 17.32% and 29.25%, respectively, on the day with the highest reverse power flows. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy IV)
Show Figures

Figure 1

17 pages, 4494 KiB  
Article
A Fault Detection Method for Multi-Sensor Data of Spring Circuit Breakers Based on the RF-Adaboost Algorithm
by Chuang Wang, Peijie Cong, Sifan Yu, Jing Yuan, Nian Lv, Yu Ling, Zheng Peng, Haoyan Zhang and Hongwei Mei
Energies 2025, 18(14), 3890; https://doi.org/10.3390/en18143890 - 21 Jul 2025
Viewed by 398
Abstract
In the context of increasing the complexity and intelligence of modern power systems, traditional maintenance approaches for circuit breakers have shown limitations in meeting both reliability and economic requirements. This paper proposes a multi-sensor data fusion fault detection method based on the RF-Adaboost [...] Read more.
In the context of increasing the complexity and intelligence of modern power systems, traditional maintenance approaches for circuit breakers have shown limitations in meeting both reliability and economic requirements. This paper proposes a multi-sensor data fusion fault detection method based on the RF-Adaboost algorithm for spring-operated circuit breakers. By integrating pressure, speed, coil current, and energy storage motor sensors into the mechanism, multi-source operational data are acquired and processed via denoising and feature extraction techniques. A fault detection model is then constructed using the RF-Adaboost classifier. The experimental results demonstrate that the proposed method achieves over 96% accuracy in identifying typical fault states such as coil voltage deviation, reset spring fatigue, and closing spring degradation, outperforming conventional approaches. These results validate the model’s effectiveness and robustness in diagnosing complex mechanical failures in circuit breakers. Full article
(This article belongs to the Special Issue Advanced Control and Monitoring of High Voltage Power Systems)
Show Figures

Figure 1

39 pages, 1774 KiB  
Review
FACTS Controllers’ Contribution for Load Frequency Control, Voltage Stability and Congestion Management in Deregulated Power Systems over Time: A Comprehensive Review
by Muhammad Asad, Muhammad Faizan, Pericle Zanchetta and José Ángel Sánchez-Fernández
Appl. Sci. 2025, 15(14), 8039; https://doi.org/10.3390/app15148039 - 18 Jul 2025
Viewed by 392
Abstract
Incremental energy demand, environmental constraints, restrictions in the availability of energy resources, economic conditions, and political impact prompt the power sector toward deregulation. In addition to these impediments, electric power competition for power quality, reliability, availability, and cost forces utilities to maximize utilization [...] Read more.
Incremental energy demand, environmental constraints, restrictions in the availability of energy resources, economic conditions, and political impact prompt the power sector toward deregulation. In addition to these impediments, electric power competition for power quality, reliability, availability, and cost forces utilities to maximize utilization of the existing infrastructure by flowing power on transmission lines near to their thermal limits. All these factors introduce problems related to power network stability, reliability, quality, congestion management, and security in restructured power systems. To overcome these problems, power-electronics-based FACTS devices are one of the beneficial solutions at present. In this review paper, the significant role of FACTS devices in restructured power networks and their technical benefits against various power system problems such as load frequency control, voltage stability, and congestion management will be presented. In addition, an extensive discussion about the comparison between different FACTS devices (series, shunt, and their combination) and comparison between various optimization techniques (classical, analytical, hybrid, and meta-heuristics) that support FACTS devices to achieve their respective benefits is presented in this paper. Generally, it is concluded that third-generation FACTS controllers are more popular to mitigate various power system problems (i.e., load frequency control, voltage stability, and congestion management). Moreover, a combination of multiple FACTS devices, with or without energy storage devices, is more beneficial compared to their individual usage. However, this is not commonly adopted in small power systems due to high installation or maintenance costs. Therefore, there is a trade-off between the selection and cost of FACTS devices to minimize the power system problems. Likewise, meta-heuristics and hybrid optimization techniques are commonly adopted to optimize FACTS devices due to their fast convergence, robustness, higher accuracy, and flexibility. Full article
(This article belongs to the Special Issue State-of-the-Art of Power Systems)
Show Figures

Figure 1

23 pages, 3337 KiB  
Article
Optimization of Economic Space: Algorithms for Controlling Energy Storage in Low-Voltage Networks
by Marcin Rabe, Tomasz Norek, Agnieszka Łopatka, Jarosław Korpysa, Veselin Draskovic, Andrzej Gawlik and Katarzyna Widera
Energies 2025, 18(14), 3756; https://doi.org/10.3390/en18143756 - 16 Jul 2025
Viewed by 246
Abstract
With the increasing penetration of renewables, the importance of electrical energy storage (EES) for power supply stabilization is growing. The intermittency of renewable energy sources remains the main issue limiting their rapid integration; however, the development of high-capacity batteries capable of storing large [...] Read more.
With the increasing penetration of renewables, the importance of electrical energy storage (EES) for power supply stabilization is growing. The intermittency of renewable energy sources remains the main issue limiting their rapid integration; however, the development of high-capacity batteries capable of storing large quantities of energy offers a way to address this challenge. This article presents and describes dedicated algorithms for controlling the EES system to enable the provision of individual system services. Five services are planned for implementation: RES power stabilization; voltage regulation using active and reactive power; reactive power compensation; power stabilization of unstable loads; and power reduction on demand. The aim of this paper is to develop new, dedicated energy storage control algorithms for delivering these specific services. Additionally, the voltage regulation algorithm includes two operating modes: short-term regulation (voltage fluctuation stabilization) and long-term regulation (triggered by an operator signal). Full article
(This article belongs to the Special Issue Sustainable Energy & Society—2nd Edition)
Show Figures

Figure 1

21 pages, 6897 KiB  
Article
Performance Analysis of HVDC Operational Control Strategies for Supplying Offshore Oil Platforms
by Alex Reis, José Carlos Oliveira, Carlos Alberto Villegas Guerrero, Johnny Orozco Nivelo, Lúcio José da Motta, Marcos Rogério de Paula Júnior, José Maria de Carvalho Filho, Vinicius Zimmermann Silva, Carlos Andre Carreiro Cavaliere and José Mauro Teixeira Marinho
Energies 2025, 18(14), 3733; https://doi.org/10.3390/en18143733 - 15 Jul 2025
Viewed by 218
Abstract
Driven by the environmental benefits associated with reduced greenhouse gas emissions, oil companies have intensified research efforts into reassessing the strategies used to meet the electrical demands of offshore production platforms. Among the various alternatives available, the deployment of onshore–offshore interconnections via High-Voltage [...] Read more.
Driven by the environmental benefits associated with reduced greenhouse gas emissions, oil companies have intensified research efforts into reassessing the strategies used to meet the electrical demands of offshore production platforms. Among the various alternatives available, the deployment of onshore–offshore interconnections via High-Voltage Direct Current (HVDC) transmission systems has emerged as a promising solution, offering both economic and operational advantages. In addition to reliably meeting the electrical demand of offshore facilities, this approach enables enhanced operational flexibility due to the advanced control and regulation capabilities inherent to HVDC converter stations. Based on the use of interconnection through an HVDC link, aiming to evaluate the operation of the electrical system as a whole, this study focuses on evaluating dynamic events using the PSCAD software version 5.0.2 to analyze the direct online starting of a large induction motor and the sudden loss of a local synchronous generating unit. The simulation results are then analyzed to assess the effectiveness of both Grid-Following (GFL) and Grid-Forming (GFM) control strategies for the converters, while the synchronous generators are evaluated under both voltage regulation and constant power factor control operation, with a particular focus on system stability and restoration of normal operating conditions in the sequence of events. Full article
(This article belongs to the Special Issue Advanced Electric Power Systems, 2nd Edition)
Show Figures

Figure 1

17 pages, 3483 KiB  
Article
A Feasibility Study of a Virtual Power Line Device to Improve Hosting Capacity in Renewable Energy Sources
by Seong-Eun Rho, Sung-Moon Choi, Joong-Seon Lee, Hyun-Sang You, Seung-Ho Lee and Dae-Seok Rho
Energies 2025, 18(14), 3714; https://doi.org/10.3390/en18143714 - 14 Jul 2025
Viewed by 283
Abstract
As many renewable energy sources have been waiting to be interconnected with distribution systems due to the lack of power system infrastructure in Korea, studies to solve the delayed problem for renewable energy sources required. In order to overcome these problems, this paper [...] Read more.
As many renewable energy sources have been waiting to be interconnected with distribution systems due to the lack of power system infrastructure in Korea, studies to solve the delayed problem for renewable energy sources required. In order to overcome these problems, this paper presents an introduction model and optimal capacity algorithm of a VPL (virtual power line) device, which is a virtual power line operation technology to manage the power system by operating an ESS installed at the coupling point of renewable energy source without additionally expanding the power system infrastructure in a conventional way; this paper also proposes an economic evaluation method to assess the feasibility of the VPL device. The optimal capacity of the VPL device is determined by solving the over-voltage problem for the customer, and the economic evaluation method for the VPL device is considered by cost and benefit elements to evaluate the feasibility of introduction model for VPL device. From the simulation result of the proposed optimal capacity algorithm and economic evaluation method based on the introduction model in the VPL device, and it was confirmed that the optimal kW capacity of VPL device was selected as the maximum value in power control values, and the optimal kWh capacity was also determined by accumulating the power control values over the time intervals; also, the proper capacity of the VPL can be more economical than the investment cost of power system infrastructure expansion in the conventional method. Full article
(This article belongs to the Special Issue Stationary Energy Storage Systems for Renewable Energies)
Show Figures

Figure 1

16 pages, 2528 KiB  
Article
An Adaptable Capacity Estimation Method for Lithium-Ion Batteries Based on a Constructed Open Circuit Voltage Curve
by Linjing Zhang, Xiaoqian Su, Caiping Zhang, Yubin Wang, Yao Wang, Tao Zhu and Xinyuan Fan
Batteries 2025, 11(7), 265; https://doi.org/10.3390/batteries11070265 - 14 Jul 2025
Viewed by 290
Abstract
The inevitable decline in battery performance presents a major barrier to its widespread industrial application. Adaptive and accurate estimation of battery capacity is paramount for battery operation, maintenance, and residual value evaluation. In this paper, we propose a novel battery capacity estimation method [...] Read more.
The inevitable decline in battery performance presents a major barrier to its widespread industrial application. Adaptive and accurate estimation of battery capacity is paramount for battery operation, maintenance, and residual value evaluation. In this paper, we propose a novel battery capacity estimation method based on an approximate open circuit voltage curve. The proposed method is rigorously tested using both lithium–iron–phosphate (LFP) and nickel–cobalt–manganese (NCM) battery packs at multiple charging rates under varied aging conditions. To further enhance capacity estimation accuracy, a voltage correction strategy is implemented utilizing the incremental capacity (IC) curve. This strategy also verifies the potential benefits of increasing the charging rate to shorten the overall test duration. Eventually, the capacity estimation error is consistently controlled within 2%. With optimal state of charge (SOC) interval selection, the estimation error can be further reduced to 1%. Clearly, our proposed method exhibits excellent compatibility across diverse battery materials and degradation states. This adaptability holds substantial scientific value and practical importance. It contributes to the safe and economic utilization of Li-ion batteries throughout their entire lifespan. Full article
Show Figures

Figure 1

19 pages, 2359 KiB  
Article
Technical and Economic Feasibility Analysis to Implement a Solid-State Transformer in Local Distribution Systems in Colombia
by Juan Camilo Ramírez, Eduardo Gómez-Luna and Juan C. Vasquez
Energies 2025, 18(14), 3723; https://doi.org/10.3390/en18143723 - 14 Jul 2025
Cited by 1 | Viewed by 402
Abstract
Today’s power grids are being modernized with the integration of new technologies, making them increasingly efficient, secure, and flexible. One of these technologies, which is beginning to make great contributions to distribution systems, is solid-state transformers (SSTs), motivating the present technical and economic [...] Read more.
Today’s power grids are being modernized with the integration of new technologies, making them increasingly efficient, secure, and flexible. One of these technologies, which is beginning to make great contributions to distribution systems, is solid-state transformers (SSTs), motivating the present technical and economic study of local level 2 distribution systems in Colombia. Taking into account Resolution 015 of 2018 issued by the Energy and Gas Regulatory Commission (CREG), which establishes the economic and quality parameters for the remuneration of electricity operators, the possibility of using these new technologies in electricity networks, particularly distribution networks, was studied. The methodology for developing this study consisted of creating a reference framework describing the topologies implemented in local distribution systems (LDSs), followed by a technical and economic evaluation based on demand management and asset remuneration through special construction units, providing alternatives for the digitization and modernization of the Colombian electricity market. The research revealed the advantages of SST technologies, such as reactive power compensation, surge protection, bidirectional flow, voltage drops, harmonic mitigation, voltage regulation, size reduction, and decreased short-circuit currents. These benefits can be leveraged by distribution network operators to properly manage these types of technologies, allowing them to be better prepared for the transition to smart grids. Full article
Show Figures

Figure 1

26 pages, 3806 KiB  
Article
A Novel Approach for Voltage Stability Assessment and Optimal Siting and Sizing of DGs in Radial Power Distribution Networks
by Salah Mokred, Yifei Wang, Mohammed Alruwaili and Moustafa Ahmed Ibrahim
Processes 2025, 13(7), 2239; https://doi.org/10.3390/pr13072239 - 14 Jul 2025
Viewed by 444
Abstract
The increasing integration of renewable energy sources and the rising demand for electricity has intensified concerns over voltage stability in radial distribution systems. These networks are particularly susceptible to voltage collapse under heavy loading conditions, posing serious system reliability and efficiency risks. Integrating [...] Read more.
The increasing integration of renewable energy sources and the rising demand for electricity has intensified concerns over voltage stability in radial distribution systems. These networks are particularly susceptible to voltage collapse under heavy loading conditions, posing serious system reliability and efficiency risks. Integrating distributed generation (DG) has emerged as a strategic solution to strengthen voltage profiles and reduce power losses. To address this challenge, this study proposes a novel distribution voltage stability index (NDVSI) for accurately assessing voltage stability and guiding optimal DG placement and sizing. The NDVSI provides a reliable tool to identify weak buses and their neighboring nodes that critically impact stability. By targeting these locations, the method ensures DG units are installed where they offer maximum improvement in voltage support and minimum power losses. The approach is implemented using MATLAB R2019a (MathWorks Inc., Natick, MA, USA) and validated on three benchmark radial distribution systems, including IEEE 12-bus, 33-bus, and 69-bus systems, demonstrating its scalability and effectiveness across different grid complexities. Comparative analysis with existing voltage stability indices confirms the superiority of NDVSI in both diagnostic precision and practical application. The proposed approach offers a technically sound and economically viable tool for enhancing the reliability, stability, and performance of modern distribution networks. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

26 pages, 5733 KiB  
Article
Design Optimization of Cesium Contents for Mixed Cation MA1−xCsxPbI3-Based Efficient Perovskite Solar Cell
by Syed Abdul Moiz, Ahmed N. M. Alahmadi and Mohammed Saleh Alshaikh
Nanomaterials 2025, 15(14), 1085; https://doi.org/10.3390/nano15141085 - 13 Jul 2025
Viewed by 372
Abstract
Perovskite solar cells (PSCs) have already been reported as a promising alternative to traditional energy sources due to their excellent power conversion efficiency, affordability, and versatility, which is particularly relevant considering the growing worldwide demand for energy and increasing scarcity of natural resources. [...] Read more.
Perovskite solar cells (PSCs) have already been reported as a promising alternative to traditional energy sources due to their excellent power conversion efficiency, affordability, and versatility, which is particularly relevant considering the growing worldwide demand for energy and increasing scarcity of natural resources. However, operational concerns under environmental stresses hinder its economic feasibility. Through the addition of cesium (Cs), this study investigates how to optimize perovskite solar cells (PSCs) based on methylammonium lead-iodide (MAPbI3) by creating mixed-cation compositions of MA1−xCsxPbI3 (x = 0, 0.25, 0.5, 0.75, 1) for devices A to E, respectively. The impact of cesium content on the following factors, such as open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and power conversion efficiency (PCE), was investigated using simulation software, with ITO/TiO2/MA1−xCsxPbI3/Spiro-OMeTAD/Au as a device architecture. Due to diminished defect density, the device with x = 0.5 (MA0.5Cs0.5PbI3) attains a maximum power conversion efficiency of 18.53%, with a Voc of 0.9238 V, Jsc of 24.22 mA/cm2, and a fill factor of 82.81%. The optimal doping density of TiO2 is approximately 1020 cm−3, while the optimal thicknesses of the electron transport layer (TiO2, 10–30 nm), the hole-transport layer (Spiro-OMeTAD, about 10–20 nm), and the perovskite absorber (750 nm) were identified to maximize efficiency. The inclusion of a small amount of Cs may improve photovoltaic responses; however, at elevated concentrations (x > 0.5), power conversion efficiency (PCE) diminished due to the presence of trap states. The results show that mixed-cation perovskite solar cells can be a great commercially viable option because they strike a good balance between efficiency and performance. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

27 pages, 2254 KiB  
Article
Distributed Optimization Strategy for Voltage Regulation in PV-Integrated Power Systems with Limited Sensor Deployment
by Xun Lu, Junlei Liu, Xinmiao Liu, Jun Liu and Lingxue Lin
Energies 2025, 18(14), 3598; https://doi.org/10.3390/en18143598 - 8 Jul 2025
Viewed by 239
Abstract
This paper presents a distributed optimization strategy for reactive power–voltage control in distribution networks with high photovoltaic (PV) penetration under limited sensor deployment scenarios. To address voltage violations and minimize network power losses, a novel distributed optimization framework is developed that utilizes selective [...] Read more.
This paper presents a distributed optimization strategy for reactive power–voltage control in distribution networks with high photovoltaic (PV) penetration under limited sensor deployment scenarios. To address voltage violations and minimize network power losses, a novel distributed optimization framework is developed that utilizes selective nodal measurements from PV-integrated nodes and critical T-junction locations, coupled with inter-node communication for information exchange. The methodology integrates an adaptive step size algorithm within a dynamic projected primal–dual distributed optimization framework, eliminating manual parameter tuning requirements while ensuring theoretical convergence guarantees through Lyapunov stability analysis. Comprehensive validation on the IEEE 33-bus distribution test system demonstrates that the proposed strategy achieves significant performance improvements. The distributed control framework reduces measurement infrastructure requirements while maintaining near-optimal performance, demonstrating superior economic efficiency and operational reliability. These results establish the practical viability of the proposed approach for real-world distribution network applications with high renewable energy integration, providing a cost-effective solution for voltage regulation under incomplete observability conditions. Full article
(This article belongs to the Special Issue Advances in Power Distribution Systems)
Show Figures

Figure 1

Back to TopTop