Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = eco-acoustics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9913 KB  
Article
Analysis of BirdNET Configuration and Performance Applied to the Acoustic Monitoring of a Restored Quarry
by Carlos Iglesias-Merchan, Raquel Sanchez-Torres and Raúl Alonso
Environments 2026, 13(1), 31; https://doi.org/10.3390/environments13010031 - 2 Jan 2026
Viewed by 820
Abstract
In the global context of biodiversity loss, increased demand for natural resources, and major efforts to restore ecosystems altered by human activities, the widespread use of passive acoustic monitoring (PAM) and acoustic recording devices allows for the collection of enormous amounts of data [...] Read more.
In the global context of biodiversity loss, increased demand for natural resources, and major efforts to restore ecosystems altered by human activities, the widespread use of passive acoustic monitoring (PAM) and acoustic recording devices allows for the collection of enormous amounts of data for monitoring the health of ecosystems. BirdNET Analyzer is a freely accessible machine learning tool that has had a great impact on the scientific community due to its apparent ease of use for identifying animals by sound. However, the literature shows some gaps regarding the influence of certain BirdNET configuration parameters on the results of its predictions. This study applies PAM and uses BirdNET in a real acoustic monitoring project and analyzes the potential impact of the configuration parameters Overlap and Sensitivity on the results of the bird inventory of a wetland created on the site of a former limestone quarry in Spain. Our results guide other researchers in the optimal combination of configuration parameters at the community level. Higher Sensitivity configuration values provided the optimal solution for minimizing the loss of species in the bird inventory. On the other hand, we identified that Recall is the best indicator to identify all combinations of BirdNET configuration parameters that cause the lowest species loss, in line with the goal of this monitoring program. Full article
(This article belongs to the Special Issue Interdisciplinary Noise Research)
Show Figures

Figure 1

23 pages, 18754 KB  
Article
Wavelet-Based Analysis of Soundscape Dynamics in a Riparian Woodland: The Bernate-Ticino River Park
by Roberto Benocci, Giorgia Guagliumi, Andrea Potenza, Valentina Zaffaroni-Caorsi, Hector Eduardo Roman and Giovanni Zambon
Sensors 2025, 25(23), 7248; https://doi.org/10.3390/s25237248 - 27 Nov 2025
Viewed by 483
Abstract
Passive acoustic monitoring (PAM) is a valuable tool for ecological research, but many eco-acoustic indices show inconsistent correlations with biodiversity due to methodological variability and environmental noise. We propose a complementary, physically interpretable approach using energy-derived metrics. We analyzed audio recordings from three [...] Read more.
Passive acoustic monitoring (PAM) is a valuable tool for ecological research, but many eco-acoustic indices show inconsistent correlations with biodiversity due to methodological variability and environmental noise. We propose a complementary, physically interpretable approach using energy-derived metrics. We analyzed audio recordings from three sites near a major highway in the Ticino River Park (Milan, Italy) using 1 sec equivalent continuous sound pressure level (Leq1s), peak interval statistics, maximal-overlap discrete-wavelet transform (MODWT), and temporal fractal analysis. This multi-resolution type of approach enabled frequency-specific tracking of acoustic energy and temporal structure. Our results reveal site-specific differences: Site 3, the most distant from the highway, showed higher high-frequency energy and longer temporal persistence, suggesting richer biophonic activity. Site 1, the closest to the highway, displayed flatter spectral profiles and faster autocorrelation decay. Diel patterns were reflected in hourly Leq trends, while fractal analysis revealed frequency- and site-dependent acoustic memory. These automated findings were corroborated by expert annotations of bird activity and traffic. The integration of Leq1s, peak metrics, and wavelet decomposition offers a suitable framework for soundscape characterization, with strong potential for long-term ecoacoustic monitoring and habitat quality assessment in complex environments. Full article
Show Figures

Figure 1

30 pages, 2372 KB  
Article
Towards Circular Biobased Materials: Enhancing Unfired Adobe with Grape Pomace—A Comprehensive Analysis
by Monica C. M. Parlato, Andrea Pezzuolo, Anna Perbellini, Edoardo Piana and Lorenzo Guerrini
Agronomy 2025, 15(11), 2605; https://doi.org/10.3390/agronomy15112605 - 12 Nov 2025
Viewed by 664
Abstract
This research pioneers the incorporation of grape pomace (GP) as a sustainable additive in unfired adobe construction materials, establishing a novel circular pathway that valorises agro-waste in zero-emission, low-energy building components. Five mix designs were developed with GP contents of 0%, 2.5%, 5%, [...] Read more.
This research pioneers the incorporation of grape pomace (GP) as a sustainable additive in unfired adobe construction materials, establishing a novel circular pathway that valorises agro-waste in zero-emission, low-energy building components. Five mix designs were developed with GP contents of 0%, 2.5%, 5%, 7.5%, and 10% by weight, using a soil matrix composed of 15% clay, 25% silt, and 60% sand with a 20% water content. Comprehensive characterization included physical properties, mechanical performance, thermal behavior, acoustic properties, and durability assessment. The incorporation of GP demonstrated dose-dependent effects on all measured properties. Bulk density decreased linearly from 1951 kg/m3 (0%GP) to 1595 kg/m3 (10%GP), representing an 18.3% reduction. Optimal mechanical performance was achieved at a 2.5–5% GP content, with compressive strength ranging from 1.51–1.64 MPa and flexural strength of 0.56–0.80 MPa, while higher GP contents resulted in significant strength reductions. Thermal conductivity improved substantially, decreasing from 0.99 to 0.25 W/Mk (66% RH) with increasing GP content, indicating enhanced insulation properties. The sound insulation performance showed a single-value sound reduction index (Rw) of 41–43 dB for all compositions, making them suitable for facade applications. Statistical analysis revealed significant correlations between GP content and material properties. The results indicate an optimal GP content of around 5%, which balances mechanical integrity, thermal performance, and durability while providing environmental benefits through the valorization of agro-waste. This research offers a sustainable approach for producing low-energy, eco-friendly building materials by incorporating grape pomace into unfired adobe, promoting waste valorization and improved thermal and acoustical insulation for green construction. Further research is needed to assess durability performance, standardize production methods, and evaluate large-scale implementation. Full article
Show Figures

Figure 1

20 pages, 3412 KB  
Article
Development of a Mineral Binder for Wood Wool Acoustic Panels with a Reduced Carbon Footprint
by Aleksandrs Korjakins, Genadijs Sahmenko, Ina Pundiene, Jolanta Pranckevicienė and Vjaceslavs Lapkovskis
Materials 2025, 18(21), 4999; https://doi.org/10.3390/ma18214999 - 1 Nov 2025
Viewed by 983
Abstract
The construction industry’s reliance on Portland cement (PC) significantly contributes to global CO2 emissions, driving the search for sustainable binder alternatives. This study develops and evaluates novel mineral binder systems for wood wool acoustic panels with a reduced carbon footprint. Alternative binders, [...] Read more.
The construction industry’s reliance on Portland cement (PC) significantly contributes to global CO2 emissions, driving the search for sustainable binder alternatives. This study develops and evaluates novel mineral binder systems for wood wool acoustic panels with a reduced carbon footprint. Alternative binders, including calcium aluminate cement (CAC), magnesium oxychloride cement (MOC), and gypsum–cement–pozzolan (GCP) hybrids, were combined with additives such as metakaolin and liquid glass. Mechanical testing demonstrated that 20–30% metakaolin and liquid glass composites achieved flexural strengths of up to 2.65 MPa and densities above 490 kg/m3. The GCP system showed synergistic improvements in flexural and compressive strengths by nearly 50%, along with enhanced dimensional stability and water resistance. Life cycle assessment indicated substantial CO2 emission increases, particularly for the MOC and CAC formulations, compared to conventional Portland cement-based panels. The carbon footprint of the binder system consisting of GCP is approximately 5.644 kg of CO2 equivalent per functional unit compared to magnesium chloride binder systems, which reach up to 10.84 kg CO2 eq., and white Portland cement systems, which are around 6.19 kg CO2 eq. The three-component GCP binder system offers the best balance of mechanical performance and minimised environmental impact. Key raw material contributors to the ecological load are cement (various types), MgO, MgCl2, and metakaolin, highlighting the importance of optimising binder formulations to reduce carbon emissions. The GCP system, in particular, demonstrates unprecedented synergistic improvements in flexural and compressive strengths, dimensional stability, and water resistance while minimising CO2 emissions. Current work sets a new benchmark for sustainable building materials by offering an eco-innovative pathway towards low-carbon, high-performance wood wool acoustic panels, aligning with global decarbonisation goals. Full article
Show Figures

Figure 1

19 pages, 19254 KB  
Article
Hybrid Al6060/TiB2/Microsilica Composites Produced by Ultrasonically Assisted Stir Casting and Radial-Shear Rolling: Microstructural Evolution and Strength–Ductility Balance
by Maxat Abishkenov, Ilgar Tavshanov, Nikita Lutchenko, Kairosh Nogayev, Zhassulan Ashkeyev and Siman Kulidan
Eng 2025, 6(11), 298; https://doi.org/10.3390/eng6110298 - 1 Nov 2025
Viewed by 347
Abstract
We report a scalable route to hybrid aluminum matrix composites (AMCs) based on Al6060 (as-fabricated condition) reinforced with 2 wt.% TiB2 and 1 wt.% microsilica, fabricated by ultrasonically assisted stir casting (UASC) followed by radial-shear rolling (RSR). Premixing and preheating of powders [...] Read more.
We report a scalable route to hybrid aluminum matrix composites (AMCs) based on Al6060 (as-fabricated condition) reinforced with 2 wt.% TiB2 and 1 wt.% microsilica, fabricated by ultrasonically assisted stir casting (UASC) followed by radial-shear rolling (RSR). Premixing and preheating of powders combined with acoustic cavitation/streaming during UASC ensured uniform, non-sedimentary particle dispersion and low-defect cast billets. X-ray diffraction of the as-cast composite shows fcc-Al with weak TiB2 reflections and no reaction products; microsilica remains amorphous. Electron microscopy and EBSD after RSR reveal full erasure of cast dendrites, fine equiaxed grains, weakened texture, and a high fraction of high-angle boundaries due to the concurrent action of particle-stimulated nucleation (micron-scale TiB2) and Zener pinning/Orowan strengthening (50–350 nm microsilica). Mechanical testing shows that, in the cast state—comparing cast monolithic Al6060 to the cast hybrid-reinforced composite—yield strength (YS) increases from 61.7 to 77.2 MPa and ultimate tensile strength (UTS) from 103.4 to 130.7 MPa, without loss of ductility. After RSR to Ø16 mm (cumulated true strain ≈ 0.893), the hybrid attains YS 101.2 MPa, UTS 150.6 MPa, and elongation ≈ 22.0%, i.e., comparable strength to rolled Al6060 (UTS 145.1 MPa) while restoring/raising ductility by ~9.7 percentage points. Microhardness follows the same trend, increasing from 50.2 HV0.2 to 73.1 HV0.2 when comparing the base cast condition with the rolled hybrid. The route from UASC to RSR thus achieves a favorable mechanical strength–ductility balance using an economical, eco-friendly oxide/boride hybrid reinforcement, making it attractive for formable AMC bar and rod products. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

21 pages, 4448 KB  
Article
Eco-Friendly and Sustainable One-Component Polyurethane Syntactic Foams Reinforced with Fly Ash Cenospheres for Acoustic and Thermal Insulation
by Hakkı Özer and Anıl Burak Bektaşoğlu
Processes 2025, 13(11), 3420; https://doi.org/10.3390/pr13113420 - 24 Oct 2025
Viewed by 621
Abstract
In this study, syntactic composite foams were developed by incorporating cenosphere (CS) particles recovered from recycled fly ash into a one-component polyurethane (PU) foam system. During production, CS was added to the spray-applied PU foam at specific ratios, and the foaming reaction was [...] Read more.
In this study, syntactic composite foams were developed by incorporating cenosphere (CS) particles recovered from recycled fly ash into a one-component polyurethane (PU) foam system. During production, CS was added to the spray-applied PU foam at specific ratios, and the foaming reaction was simultaneously initiated via manual mixing. This approach minimized particle settling caused by the filler–matrix density difference and promoted a more homogeneous structure. Two types of CS, with mean sizes of approximately 70 µm and 130 µm, were incorporated at five loadings ranging from 5 wt% to 15 wt%. The resulting composites were evaluated for their acoustic, mechanical, and thermal performance. Thermal analyses revealed that CS addition increased the glass-transition temperature (Tg) by ≈12 °C and delayed the 5% mass-loss temperature (T5%) by ≈30–35 °C compared with the neat N2 foam, confirming the stabilizing role of cenospheres. The refoaming process with manual mixing promoted finer cell diameters and thicker walls, enhancing the sound absorption coefficient (α), particularly at medium and high frequencies. Moreover, increasing the filler content improved both the sound transmission loss (STL) and compressive strength, alongside density, although further gains in α and STL were limited beyond a 10 wt% filler content. Significant enhancements in compressive strength were achieved at filler ratios above 12.5 wt%. Unlike conventional two-component PU foams, this study demonstrates a sustainable one-component PU system reinforced with recycled cenospheres that simultaneously achieves acoustic, mechanical, and thermal multifunctionality. To the best of our knowledge, this is the first report on incorporating recycled cenospheres into a one-component PU foam system, overcoming dispersion challenges of conventional two-component formulations and presenting an environmentally responsible route for developing versatile insulation materials. Full article
(This article belongs to the Special Issue Thermal Properties of Composite Materials)
Show Figures

Figure 1

12 pages, 2884 KB  
Article
Potential Application of Fibers Extracted from Recycled Maple Leaf Waste in Broadband Sound Absorption
by Jie Jin, Yecheng Feng, Haipeng Hao, Yunle Cao and Zhuqing Zhang
Buildings 2025, 15(19), 3582; https://doi.org/10.3390/buildings15193582 - 5 Oct 2025
Viewed by 589
Abstract
To address environmental pollution issues and optimize the utilization of waste biomass resources, this study proposes a novel eco-friendly sound-absorbing material based on maple leaf waste and tests its sound absorption performance. The fibers were extracted from maple leaf waste through a wet [...] Read more.
To address environmental pollution issues and optimize the utilization of waste biomass resources, this study proposes a novel eco-friendly sound-absorbing material based on maple leaf waste and tests its sound absorption performance. The fibers were extracted from maple leaf waste through a wet decomposition and grinding process. Metallurgical microscopy was employed to observe the microstructural characteristics of maple leaf fibers to identify the potential synergistic effect. The effects of two key factors—sample thickness and mass density—on sound absorption performance were investigated. The sound absorption coefficients were measured using the transfer function method in a dual-microphone impedance tube to evaluate their sound-absorbing performance. Experimental results demonstrate that the prepared maple leaf fibers, as acoustic materials, exhibit excellent acoustic performance across a wide frequency range, with an average sound absorption coefficient of 0.7. Increasing sample thickness improves the sound absorption coefficient in low- and mid-frequency ranges. Additionally, increased sample mass density was found to enhance acoustic performance in low- and mid-frequency bands. This study developed an eco-friendly material with lightweight and efficient acoustic absorption properties using completely biodegradable maple leaf waste. The results provide high-performance, economical, and ecologically sustainable solutions for controlling building and traffic noise while promoting the development of eco-friendly acoustic materials. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

13 pages, 1484 KB  
Article
Development of an Empirical Model as a Prediction Tool for the Sound Absorption Performance of Wool/Soy Protein Biocomposites
by Jesús Alba, Marta Urdanpilleta, Romina del Rey, Itsaso Leceta, Pedro Guerrero and Koro de la Caba
Polymers 2025, 17(19), 2666; https://doi.org/10.3390/polym17192666 - 2 Oct 2025
Cited by 1 | Viewed by 1262
Abstract
Finding eco-friendly alternatives to the synthetic materials used for acoustic application in building industry is necessary to address environmental sustainability. Biocomposites of natural fibers combined with a biopolymer matrix emerge as a promising approach. In this study, soy protein biocomposites were prepared with [...] Read more.
Finding eco-friendly alternatives to the synthetic materials used for acoustic application in building industry is necessary to address environmental sustainability. Biocomposites of natural fibers combined with a biopolymer matrix emerge as a promising approach. In this study, soy protein biocomposites were prepared with 10, 15, and 20 wt% sheep wool and were added spent coffee grounds by freeze-drying to create fibro-porous biocomposites for acoustic applications. Transmission loss (TL) measurements underlined good behavior as sound insulators, with maximum values around 22 dB at 2500 Hz and even better performance than those of commercial synthetic solutions. The obtained sound absorption coefficients were competitive, as they almost reached unity at medium and high frequencies. Airflow resistivity was determined, and values were higher for the biocomposites with coffee grounds, specifically 14–18 kPa·s·m−2 vs. 5.62–11.6 kPa·s·m−2. Using the input of the measured airflow resistivity, an empirical model using a genetic algorithm was developed as a prediction tool for the sound absorption performance of the samples. All in all, results showcase the feasibility of employing the studied biocomposites as competitive sound insulators and absorbers in building construction industry. Full article
(This article belongs to the Special Issue Modeling of Polymer Composites and Nanocomposites (2nd Edition))
Show Figures

Figure 1

26 pages, 10152 KB  
Article
Linking Acoustic Indices to Vegetation and Microclimate in a Historical Urban Garden: Setting the Stage for a Restorative Soundscape
by Alessia Portaccio, Francesco Chianucci, Francesco Pirotti, Marco Piragnolo, Marco Sozzi, Andrea Zangrossi, Miriam Celli, Marta Mazzella di Bosco, Monica Bolognesi, Enrico Sella, Maurizio Corbetta, Francesca Pazzaglia and Raffaele Cavalli
Land 2025, 14(10), 1970; https://doi.org/10.3390/land14101970 - 30 Sep 2025
Viewed by 808
Abstract
Urban soundscapes are increasingly recognized as fundamental for both ecological integrity and human well-being, yet the complex interplay between the vegetation structure, seasonal dynamics, and microclimatic factors in shaping these soundscapes remains poorly understood. This study tests the hypothesis that vegetation structure and [...] Read more.
Urban soundscapes are increasingly recognized as fundamental for both ecological integrity and human well-being, yet the complex interplay between the vegetation structure, seasonal dynamics, and microclimatic factors in shaping these soundscapes remains poorly understood. This study tests the hypothesis that vegetation structure and seasonally driven biological activity mediate the balance and the quality of the urban acoustic environment. We investigated seasonal and spatial variations in five acoustic indices (NDSI, ACI, AEI, ADI, and BI) within a historical urban garden in Castelfranco Veneto, Italy. Using linear mixed-effects models, we analyzed the effects of season, microclimatic variables, and vegetation characteristics on soundscape composition. Non-parametric tests were used to assess spatial differences in vegetation metrics. Results revealed strong seasonal patterns, with spring showing increased NDSI (+0.17), ADI (+0.22), and BI (+1.15) values relative to winter, likely reflecting bird breeding phenology and enhanced biological productivity. Among microclimatic predictors, temperature (p < 0.001), humidity (p = 0.014), and solar radiation (p = 0.002) showed significant relationships with acoustic indices, confirming their influence on both animal behaviour and sound propagation. Spatial analyses showed significant differences in acoustic patterns across points (Kruskal–Wallis p < 0.01), with vegetation metrics such as tree density and evergreen proportion correlating with elevated biophonic activity. Although the canopy height model did not emerge as a significant predictor in the models, the observed spatial heterogeneity supports the role of vegetation in shaping urban sound environments. By integrating ecoacoustic indices, LiDAR-derived vegetation data, and microclimatic parameters, this study offers novel insights into how vegetational components should be considered to manage urban green areas to support biodiversity and foster acoustically restorative environments, advancing the evidence base for sound-informed urban planning. Full article
Show Figures

Figure 1

36 pages, 35564 KB  
Article
Enhancing Soundscape Characterization and Pattern Analysis Using Low-Dimensional Deep Embeddings on a Large-Scale Dataset
by Daniel Alexis Nieto Mora, Leonardo Duque-Muñoz and Juan David Martínez Vargas
Mach. Learn. Knowl. Extr. 2025, 7(4), 109; https://doi.org/10.3390/make7040109 - 24 Sep 2025
Viewed by 912
Abstract
Soundscape monitoring has become an increasingly important tool for studying ecological processes and supporting habitat conservation. While many recent advances focus on identifying species through supervised learning, there is growing interest in understanding the soundscape as a whole while considering patterns that extend [...] Read more.
Soundscape monitoring has become an increasingly important tool for studying ecological processes and supporting habitat conservation. While many recent advances focus on identifying species through supervised learning, there is growing interest in understanding the soundscape as a whole while considering patterns that extend beyond individual vocalizations. This broader view requires unsupervised approaches capable of capturing meaningful structures related to temporal dynamics, frequency content, spatial distribution, and ecological variability. In this study, we present a fully unsupervised framework for analyzing large-scale soundscape data using deep learning. We applied a convolutional autoencoder (Soundscape-Net) to extract acoustic representations from over 60,000 recordings collected across a grid-based sampling design in the Rey Zamuro Reserve in Colombia. These features were initially compared with other audio characterization methods, showing superior performance in multiclass classification, with accuracies of 0.85 for habitat cover identification and 0.89 for time-of-day classification across 13 days. For the unsupervised study, optimized dimensionality reduction methods (Uniform Manifold Approximation and Projection and Pairwise Controlled Manifold Approximation and Projection) were applied to project the learned features, achieving trustworthiness scores above 0.96. Subsequently, clustering was performed using KMeans and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), with evaluations based on metrics such as the silhouette, where scores above 0.45 were obtained, thus supporting the robustness of the discovered latent acoustic structures. To interpret and validate the resulting clusters, we combined multiple strategies: spatial mapping through interpolation, analysis of acoustic index variance to understand the cluster structure, and graph-based connectivity analysis to identify ecological relationships between the recording sites. Our results demonstrate that this approach can uncover both local and broad-scale patterns in the soundscape, providing a flexible and interpretable pathway for unsupervised ecological monitoring. Full article
Show Figures

Figure 1

28 pages, 5782 KB  
Article
Design of a Shipping Container-Based Home: Structural, Thermal, and Acoustic Conditioning
by Javier Pinilla-Melo, Jose Ramón Aira-Zunzunegui, Giuseppe La Ferla, Daniel de la Prida and María Ángeles Navacerrada
Buildings 2025, 15(17), 3127; https://doi.org/10.3390/buildings15173127 - 1 Sep 2025
Viewed by 4455
Abstract
The construction of buildings using shipping containers (SCs) is a way to extend their useful life. They are constructed by modifying the structure, thermal, and acoustic conditioning by improving the envelope and creating openings for lighting and ventilation purposes. This study explores the [...] Read more.
The construction of buildings using shipping containers (SCs) is a way to extend their useful life. They are constructed by modifying the structure, thermal, and acoustic conditioning by improving the envelope and creating openings for lighting and ventilation purposes. This study explores the architectural adaptation of SCs to sustainable residential housing, focusing on structural, thermal, and acoustic performance. The project centers on a case study in Madrid, Spain, transforming four containers into a semi-detached, multilevel dwelling. The design emphasizes modular coordination, spatial flexibility, and structural reinforcement. The retrofit process includes the integration of thermal insulation systems in the ventilated façades and sandwich roof panels to counteract steel’s high thermal conductivity, enhancing energy efficiency. The acoustic performance of the container-based dwelling was assessed through in situ measurements of façade airborne sound insulation and floor impact noisedemonstrating compliance with building code requirements by means of laminated glazing, sealed joints, and floating floors. This represents a novel contribution, given the scarcity of experimental acoustic data for residential buildings made from shipping containers. Results confirm that despite the structure’s low surface mass, appropriate design strategies can achieve the required sound insulation levels, supporting the viability of this lightweight modular construction system. Structural calculations verify the building’s load-bearing capacity post-modification. Overall, the findings support container architecture as a viable and eco-efficient alternative to conventional construction, while highlighting critical design considerations such as thermal performance, sound attenuation, and load redistribution. The results offer valuable data for designers working with container-based systems and contribute to a strategic methodology for the sustainable refurbishment of modular housing. Full article
Show Figures

Figure 1

16 pages, 7600 KB  
Article
Passive Long-Term Acoustic Sampling Reveals Multiscale Temporal Ecological Pattern and Anthropogenic Disturbance of Campus Forests in a High Density City
by Xiaoqing Xu, Xueyao Sun and Hanbin Xie
Forests 2025, 16(8), 1289; https://doi.org/10.3390/f16081289 - 7 Aug 2025
Cited by 1 | Viewed by 1005
Abstract
Biodiversity conservation and sustainable development in high-density forest urban areas have attracted growing attention and are increasingly recognized as critical for achieving the Sustainable Development Goals (SDGs). University campus forests, functioning as ecological islands, possess unique acoustic characteristics and play a vital role [...] Read more.
Biodiversity conservation and sustainable development in high-density forest urban areas have attracted growing attention and are increasingly recognized as critical for achieving the Sustainable Development Goals (SDGs). University campus forests, functioning as ecological islands, possess unique acoustic characteristics and play a vital role in supporting urban biodiversity. In this case study, acoustic monitoring was conducted over the course of a full year to objectively reveal the ecological patterns across temporal scales of the campus sound environment, by combining acoustic indices’ visualization combined with statistical analysis. The findings indicate (1) the existence of ecological sound patterns across different temporal scales, closely associated with phenological cycles; (2) the identification of the specific timing affected by the different species‘ activities, such as the breeding season of birds, the chirping time of cicadas and other insects, as well as the fluctuations in the intensity of human activities, and (3) the development of a methodological framework integrating a visualization technique with statistical analysis to enhance the understanding of long-term ecological dynamics. The results offer a foundation for promoting the sustainable conservation of campus biodiversity in high-density urban settings. Full article
(This article belongs to the Special Issue Soundscape in Urban Forests—2nd Edition)
Show Figures

Figure 1

21 pages, 1209 KB  
Article
Sustainable Membrane-Based Acoustic Metamaterials Using Cork and Honeycomb Structures: Experimental and Numerical Characterization
by Giuseppe Ciaburro and Virginia Puyana-Romero
Buildings 2025, 15(15), 2763; https://doi.org/10.3390/buildings15152763 - 5 Aug 2025
Viewed by 1813
Abstract
This work presents the experimental and numerical investigation of a novel acoustic metamaterial based on sustainable and biodegradable components: cork membranes and honeycomb cores made from treated aramid paper. The design exploits the principle of localized resonance induced by tensioned membranes coupled with [...] Read more.
This work presents the experimental and numerical investigation of a novel acoustic metamaterial based on sustainable and biodegradable components: cork membranes and honeycomb cores made from treated aramid paper. The design exploits the principle of localized resonance induced by tensioned membranes coupled with subwavelength cavities, aiming to achieve high sound absorption at low (250–500 Hz) and mid frequencies (500–1400 Hz) with minimal thickness and environmental impact. Three configurations were analyzed, varying the number of membranes (one, two, and three) while keeping a constant core structure composed of three stacked honeycomb layers. Acoustic performance was measured using an impedance tube (Kundt’s tube), focusing on the normal-incidence sound absorption coefficient in the frequency range of 250–1400 Hz. The results demonstrate that increasing the number of membranes introduces multiple resonances and broadens the effective absorption bandwidth. Numerical simulations were performed to predict pressure field distributions. The numerical model showed good agreement with the experimental data, validating the underlying physical model of coupled mass–spring resonators. The proposed metamaterial offers a low-cost, modular, and fully recyclable solution for indoor sound control, combining acoustic performance and environmental sustainability. These findings offer promising perspectives for the application of bio-based metamaterials in architecture and eco-design. Further developments will address durability, high-frequency absorption, and integration in hybrid soundproofing systems. Full article
Show Figures

Figure 1

25 pages, 6464 KB  
Article
Eco-Friendly Sandwich Panels for Energy-Efficient Façades
by Susana P. B. Sousa, Helena C. Teixeira, Giorgia Autretto, Valeria Villamil Cárdenas, Stefano Fantucci, Fabio Favoino, Pamela Voigt, Mario Stelzmann, Robert Böhm, Gabriel Beltrán, Nicolás Escribano, Belén Hernández-Gascón, Matthias Tietze and Andreia Araújo
Sustainability 2025, 17(15), 6848; https://doi.org/10.3390/su17156848 - 28 Jul 2025
Cited by 1 | Viewed by 2111
Abstract
To meet the European Green Deal targets, the construction sector must improve building thermal performance via advanced insulation systems. Eco-friendly sandwich panels offer a promising solution. Therefore, this work aims to develop and validate a new eco-friendly composite sandwich panel (basalt fibres and [...] Read more.
To meet the European Green Deal targets, the construction sector must improve building thermal performance via advanced insulation systems. Eco-friendly sandwich panels offer a promising solution. Therefore, this work aims to develop and validate a new eco-friendly composite sandwich panel (basalt fibres and recycled extruded polystyrene) with enhanced multifunctionality for lightweight and energy-efficient building façades. Two panels were produced via vacuum infusion—a reference panel and a multifunctional panel incorporating phase change materials (PCMs) and silica aerogels (AGs). Their performance was evaluated through lab-based thermal and acoustic tests, numerical simulations, and on-site monitoring in a living laboratory. The test results from all methods were consistent. The PCM-AG panel showed 16% lower periodic thermal transmittance (0.16 W/(m2K) vs. 0.19 W/(m2K)) and a 92% longer time shift (4.26 h vs. 2.22 h), indicating improved thermal inertia. It also achieved a single-number sound insulation rating of 38 dB. These findings confirm the panel’s potential to reduce operational energy demand and support long-term climate goals. Full article
Show Figures

Figure 1

21 pages, 2794 KB  
Article
Medical Data over Sound—CardiaWhisper Concept
by Radovan Stojanović, Jovan Đurković, Mihailo Vukmirović, Blagoje Babić, Vesna Miranović and Andrej Škraba
Sensors 2025, 25(15), 4573; https://doi.org/10.3390/s25154573 - 24 Jul 2025
Viewed by 3016
Abstract
Data over sound (DoS) is an established technique that has experienced a resurgence in recent years, finding applications in areas such as contactless payments, device pairing, authentication, presence detection, toys, and offline data transfer. This study introduces CardiaWhisper, a system that extends the [...] Read more.
Data over sound (DoS) is an established technique that has experienced a resurgence in recent years, finding applications in areas such as contactless payments, device pairing, authentication, presence detection, toys, and offline data transfer. This study introduces CardiaWhisper, a system that extends the DoS concept to the medical domain by using a medical data-over-sound (MDoS) framework. CardiaWhisper integrates wearable biomedical sensors with home care systems, edge or IoT gateways, and telemedical networks or cloud platforms. Using a transmitter device, vital signs such as ECG (electrocardiogram) signals, PPG (photoplethysmogram) signals, RR (respiratory rate), and ACC (acceleration/movement) are sensed, conditioned, encoded, and acoustically transmitted to a nearby receiver—typically a smartphone, tablet, or other gadget—and can be further relayed to edge and cloud infrastructures. As a case study, this paper presents the real-time transmission and processing of ECG signals. The transmitter integrates an ECG sensing module, an encoder (either a PLL-based FM modulator chip or a microcontroller), and a sound emitter in the form of a standard piezoelectric speaker. The receiver, in the form of a mobile phone, tablet, or desktop computer, captures the acoustic signal via its built-in microphone and executes software routines to decode the data. It then enables a range of control and visualization functions for both local and remote users. Emphasis is placed on describing the system architecture and its key components, as well as the software methodologies used for signal decoding on the receiver side, where several algorithms are implemented using open-source, platform-independent technologies, such as JavaScript, HTML, and CSS. While the main focus is on the transmission of analog data, digital data transmission is also illustrated. The CardiaWhisper system is evaluated across several performance parameters, including functionality, complexity, speed, noise immunity, power consumption, range, and cost-efficiency. Quantitative measurements of the signal-to-noise ratio (SNR) were performed in various realistic indoor scenarios, including different distances, obstacles, and noise environments. Preliminary results are presented, along with a discussion of design challenges, limitations, and feasible applications. Our experience demonstrates that CardiaWhisper provides a low-power, eco-friendly alternative to traditional RF or Bluetooth-based medical wearables in various applications. Full article
Show Figures

Graphical abstract

Back to TopTop