error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,136)

Search Parameters:
Keywords = dynamic chemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 8987 KB  
Review
How Might Neural Networks Improve Micro-Combustion Systems?
by Luis Enrique Muro, Francisco A. Godínez, Rogelio Valdés and Rodrigo Montoya
Energies 2026, 19(2), 326; https://doi.org/10.3390/en19020326 (registering DOI) - 8 Jan 2026
Abstract
Micro-combustion for micro-thermophotovoltaic (MTPV) and micro-thermoelectric (MTE) systems is gaining renewed interest as a pathway toward compact power generation with high energy density. This review examines how emerging artificial intelligence (AI) methodologies can accelerate the development of such systems by addressing longstanding modeling, [...] Read more.
Micro-combustion for micro-thermophotovoltaic (MTPV) and micro-thermoelectric (MTE) systems is gaining renewed interest as a pathway toward compact power generation with high energy density. This review examines how emerging artificial intelligence (AI) methodologies can accelerate the development of such systems by addressing longstanding modeling, optimization, and design challenges. We analyze four major research areas: artificial neural network (ANN)-based design optimization, AI-driven prediction of micro-scale flow variables, Physics-Informed Neural Networks for combustion modeling, and surrogate models that approximate high-fidelity computational fluid dynamics (CFD) and detailed chemistry solvers. These approaches enable faster exploration of geometric and operating spaces, improved prediction of nonlinear flow and reaction dynamics, and efficient reconstructions of thermal and chemical fields. The review outlines a wide range of future research directions motivated by advances in high-fidelity modeling, AI-based optimization, and hybrid data-physics learning approaches, while also highlighting key challenges related to data availability, model robustness, validation, and manufacturability. Overall, the synthesis shows that overcoming these limitations will enable the development of micro-combustors with higher energy efficiency, lower emissions, more stable and controllable flames, and the practical realization of commercially viable MTPV and MTE systems. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
40 pages, 2292 KB  
Review
Air Pollution as a Driver of Forest Dynamics: Patterns, Mechanisms, and Knowledge Gaps
by Eliza Tupu, Lucian Dincă, Gabriel Murariu, Romana Drasovean, Dan Munteanu, Ionica Soare and George Danut Mocanu
Forests 2026, 17(1), 81; https://doi.org/10.3390/f17010081 - 8 Jan 2026
Abstract
Air pollution is a major but often under-integrated driver of forest dynamics at the global scale. This review combines a bibliometric analysis of 258 peer-reviewed studies with a synthesis of ecological, physiological, and biogeochemical evidence to clarify how multiple air pollutants influence forest [...] Read more.
Air pollution is a major but often under-integrated driver of forest dynamics at the global scale. This review combines a bibliometric analysis of 258 peer-reviewed studies with a synthesis of ecological, physiological, and biogeochemical evidence to clarify how multiple air pollutants influence forest structure, function, and regeneration. Research output is dominated by Europe, East Asia, and North America, with ozone, nitrogen deposition, particulate matter, and acidic precipitation receiving the greatest attention. Across forest biomes, air pollution affects growth, wood anatomy, nutrient cycling, photosynthesis, species composition, litter decomposition, and soil chemistry through interacting pathways. Regional patterns reveal strong context dependency, with heightened sensitivity in mountain and boreal forests, pronounced ozone exposure in Mediterranean and peri-urban systems, episodic oxidative stress in tropical forests, and long-term heavy-metal accumulation in industrial regions. Beyond being impacted, forests actively modify atmospheric chemistry through pollutant filtration, aerosol interactions, and deposition processes. The novelty of this review lies in explicitly framing air pollution as a dynamic driver of forest change, with direct implications for afforestation and restoration on degraded lands. Key knowledge gaps remain regarding combined pollution–climate effects, understudied forest biomes, and the scaling of physiological responses to ecosystem and regional levels, which must be addressed to support effective forest management under global change. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

39 pages, 3073 KB  
Review
The Future of Green Chemistry: Evolution and Recent Trends in Deep Eutectic Solvents Research
by Veronika Jančíková and Michal Jablonský
Appl. Sci. 2026, 16(2), 654; https://doi.org/10.3390/app16020654 - 8 Jan 2026
Abstract
Deep eutectic solvents are a sustainable and chemically tunable class of solvents formed by strong hydrogen bonding between a hydrogen bond acceptor and a hydrogen bond donor. Their extreme versatility has established deep eutectic solvents in ten key applied areas, including the green [...] Read more.
Deep eutectic solvents are a sustainable and chemically tunable class of solvents formed by strong hydrogen bonding between a hydrogen bond acceptor and a hydrogen bond donor. Their extreme versatility has established deep eutectic solvents in ten key applied areas, including the green extraction of bioactive compounds, CO2 capture, electrochemistry, and the catalytic media. Research is shifting towards highly innovative frontier trends, such as the role of deep eutectic solvents in dynamic covalent chemistry and as templates for advanced photocatalytic nanomaterials. Other innovative directions include artificial organelles for bioremediation, thermoacoustic deep eutectic solvents for smart drug delivery, and their use as multifunctional interfaces for 2D materials. The future of deep eutectic solvents lies in process engineering and scale-up, supported by computational chemistry, confirming their position as a central pillar of the circular economy. This trajectory marks the transition of deep eutectic solvents from laboratory curiosities to a scalable industrial reality. Full article
(This article belongs to the Special Issue Technical Advances in Biomass Conversion)
Show Figures

Figure 1

30 pages, 1561 KB  
Review
Molecular Mechanisms of Chondrocyte Hypertrophy Mediated by Physical Cues and Therapeutic Strategies in Osteoarthritis
by Guang-Zhen Jin
Int. J. Mol. Sci. 2026, 27(2), 624; https://doi.org/10.3390/ijms27020624 - 8 Jan 2026
Abstract
Osteoarthritis (OA) is a multifactorial degenerative joint disease in which aberrant mechanical cues act in concert with metabolic dysregulation and chronic low-grade inflammation, with chondrocyte hypertrophy representing a key pathological event driving cartilage degeneration. Alterations in extracellular matrix (ECM) properties—including mechanical loading, stiffness [...] Read more.
Osteoarthritis (OA) is a multifactorial degenerative joint disease in which aberrant mechanical cues act in concert with metabolic dysregulation and chronic low-grade inflammation, with chondrocyte hypertrophy representing a key pathological event driving cartilage degeneration. Alterations in extracellular matrix (ECM) properties—including mechanical loading, stiffness and viscoelasticity, topological organization, and surface chemistry—regulate hypertrophic differentiation and matrix degradation in a zone-, stage-, and scale-dependent manner. Microscale measurements often reveal localized stiffening in superficial zones during early OA, whereas bulk tissue testing can show softening or heterogeneous changes in deeper zones or advanced stages, highlighting the context-dependent nature of ECM mechanics. These biophysical signals are sensed by integrin-based adhesion complexes, primary cilia, mechanosensitive ion channels (TRP/Piezo), and the actin cytoskeleton–nucleus continuum, and are transduced into intracellular pathways with zone- and stage-specific effects, governing chondrocyte fate under physiological and osteoarthritic conditions. Mechanism-based anti-hypertrophic strategies include biomimetic scaffold design for focal defects, dynamic mechanical stimulation targeting early OA, and multimodal approaches integrating mechanical cues with biochemical factors, gene modulation, drug delivery, or cell-based therapies. Collectively, this review provides an integrated mechanobiological framework for understanding cartilage degeneration and highlights emerging opportunities for disease-modifying interventions targeting chondrocyte hypertrophy. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapeutic Approaches to Osteoarthritis)
Show Figures

Figure 1

24 pages, 4587 KB  
Article
A Comprehensive Physicochemical Analysis Focusing on the Characterization and Stability of Valsartan Silver Nano-Conjugates
by Abdul Qadir, Khwaja Suleman Hasan, Khair Bux, Khwaja Ali Hasan, Aamir Jalil, Asad Khan Tanoli, Khwaja Akbar Hasan, Shahida Naz, Muhammad Kashif, Nuzhat Fatima Zaidi, Ayesha Khan, Zeeshan Vohra, Herwig Ralf and Shama Qaiser
Int. J. Mol. Sci. 2026, 27(2), 582; https://doi.org/10.3390/ijms27020582 - 6 Jan 2026
Abstract
Valsartan (Val)—a lipophilic non-peptide angiotensin II type 1 receptor antagonist—is highly effective against hypertension and displaying limited solubility in water (3.08 μg/mL), thereby resulting in low oral bioavailability (23%). The limited water solubility of antihypertensive drugs can pose a challenge, particularly for rapid [...] Read more.
Valsartan (Val)—a lipophilic non-peptide angiotensin II type 1 receptor antagonist—is highly effective against hypertension and displaying limited solubility in water (3.08 μg/mL), thereby resulting in low oral bioavailability (23%). The limited water solubility of antihypertensive drugs can pose a challenge, particularly for rapid and precise administration. Herein, we synthesize and characterize valsartan-containing silver nanoparticles (Val-AgNPs) using Mangifera indica leaf extracts. The physicochemical, structural, thermal, and pharmacological properties of these nano-conjugates were established through various analytical and structural tools. The spectral shifts in both UV-visible and FTIR analyses indicate a successful interaction between the valsartan molecule and the silver nanoparticles. The resulting nano-conjugates are spherical and within the size range of 30–60 nm as revealed in scanning electron-EDS and atomic force micrographs. The log-normal distribution of valsartan-loaded nanoparticles, with a size range of 30 to 60 nm and a mode of 54 nm, indicates a narrow, monodisperse, and highly uniform particle size distribution. This is a favorable characteristic for drug delivery systems, as it leads to enhanced bioavailability and a consistent performance. Dynamic Light Scattering (DLS) analysis of the Val-AgNPs indicates a polydisperse sample with a tendency toward aggregation, resulting in larger effective sizes in the suspension compared to individual nanoparticles. The accompanying decrease in zeta potential (to −19.5 mV) and conductivity further supports the idea that the surface chemistry and stability of the nanoparticles changed after conjugation. Differential scanning calorimetry (DSC) demonstrated the melting onset of the valsartan component at 113.99 °C. The size-dependent densification of the silver nanoparticles at 286.24 °C correspond to a size range of 40–60 nm, showing a significant melting point depression compared to bulk silver due to nanoscale effects. The shift in Rf for pure valsartan to Val-AgNPs suggests that the interaction with the AgNPs alters the compound’s overall polarity and/or its interaction with the stationary phase, complimented in HPTLC and HPLC analysis. The stability and offloading behavior of Val-AgNPs was observed at pH 6–10 and in 40% and 80% MeOH. In addition, Val-AgNPs did not reveal hemolysis or significant alterations in blood cell indices, confirming the safety of the nano-conjugates for biological application. In conclusion, these findings provide a comprehensive characterization of Val-AgNPs, highlighting their potential for improved drug delivery applications. Full article
Show Figures

Figure 1

23 pages, 2691 KB  
Article
Fruit Nutritional Composition and Seed Reserve Mobilization as Tools for Phenotypic Selection in Eugenia patrisii (Myrtaceae)
by Pedro Paulo dos Santos, Elmer Viana Gonçalves, Josiane Celerino de Carvalho, Karen Cristina Pires da Costa, Acacio de Andrade Pacheco, Caris dos Santos Viana, Jaime Paiva Lopes Aguiar, Andreia Varmes Fernandes, Auxiliadora Oliveira Martins, Wagner Luiz Araújo and José Francisco de Carvalho Gonçalves
Foods 2026, 15(2), 188; https://doi.org/10.3390/foods15020188 - 6 Jan 2026
Viewed by 98
Abstract
Understanding the integration of metabolic fluxes in fruits and seeds is crucial for identifying key biochemical markers for phenotypic selection in tropical species. This study investigated the Amazonian fruit species Eugenia patrisii (Myrtaceae), known for its nutritional and biotechnological potential, to elucidate the [...] Read more.
Understanding the integration of metabolic fluxes in fruits and seeds is crucial for identifying key biochemical markers for phenotypic selection in tropical species. This study investigated the Amazonian fruit species Eugenia patrisii (Myrtaceae), known for its nutritional and biotechnological potential, to elucidate the link between fruit chemistry and primary reserve mobilization during germination and early seedling growth. Botanical material was collected from an experimental plantation in Maraba, Pará, Brazil. Three contrasting phenotypes (Ph2, Ph3, and Ph6) were analyzed for fruit proximate composition as well as the dynamics of carbohydrates and protein use over seven germination stages. Fruits predominantly contained carbohydrates (76.6–79.3 g/100 g) and proteins (12.7–17.5 g/100 g) and had low lipid content (<5 g/100 g), indicating high energy conversion efficiency. Phenotype Ph6 showed higher protein accumulation and intensive reserve metabolism in late development stages, while Ph2 featured greater soluble sugar content, indicating contrasting reserve allocation strategies. Principal component analysis (PCA) and the indices of integrated metabolic flux (MFI) and total activity (TAI) revealed distinct metabolic cost patterns and biochemical efficiency among phenotypes. Together, these results demonstrate that fruit nutritional attributes and seed metabolic behavior provide quantitative criteria for identifying superior phenotypes, with Ph3 and Ph6 emerging as promising candidates for domestication, breeding, and conservation programs. Full article
Show Figures

Figure 1

42 pages, 6169 KB  
Review
SnSe: A Versatile Material for Thermoelectric and Optoelectronic Applications
by Chi Zhang, Zhengjie Guo, Fuyueyang Tan, Jinhui Zhou, Xuezhi Li, Xi Cao, Yikun Yang, Yixian Xie, Yuying Feng, Chenyao Huang, Zaijin Li, Yi Qu and Lin Li
Coatings 2026, 16(1), 56; https://doi.org/10.3390/coatings16010056 - 3 Jan 2026
Viewed by 353
Abstract
Tin selenide (SnSe) is a sustainable, lead-free IV–VI semiconductor whose layered orthorhombic crystal structure induces pronounced electronic and phononic anisotropy, enabling diverse energy-related functionalities. This review systematically summarizes recent progress in understanding the structure–property–processing relationships that govern SnSe performance in thermoelectric and optoelectronic [...] Read more.
Tin selenide (SnSe) is a sustainable, lead-free IV–VI semiconductor whose layered orthorhombic crystal structure induces pronounced electronic and phononic anisotropy, enabling diverse energy-related functionalities. This review systematically summarizes recent progress in understanding the structure–property–processing relationships that govern SnSe performance in thermoelectric and optoelectronic applications. Key crystallographic characteristics are first discussed, including the temperature-driven Pnma–Cmcm phase transition, anisotropic band and valley structures, and phonon transport mechanisms that lead to intrinsically low lattice thermal conductivity below 0.5 W m−1 K−1 and tunable carrier transport. Subsequently, major synthesis strategies are critically compared, spanning Bridgman and vertical-gradient single-crystal growth, spark plasma sintering and hot pressing of polycrystals, as well as vapor- and solution-based thin-film fabrication, with emphasis on process windows, stoichiometry control, defect chemistry, and microstructure engineering. For thermoelectric applications, directional and temperature-dependent transport behaviors are analyzed, highlighting record thermoelectric performance in single-crystal SnSe at hi. We analyze directional and temperature-dependent transport, highlighting record thermoelectric figure of merit values exceeding 2.6 along the b-axis in single-crystal SnSe at ~900 K, as well as recent progress in polycrystalline and thin-film systems through alkali/coinage-metal doping (Ag, Na, Cu), isovalent and heterovalent substitution (Zn, S), and hierarchical microstructural design. For optoelectronic applications, optical properties, carrier dynamics, and photoresponse characteristics are summarized, underscoring high absorption coefficients exceeding 104 cm−1 and bandgap tunability across the visible to near-infrared range, together with interface engineering strategies for thin-film photovoltaics and broadband photodetectors. Emerging applications beyond energy conversion, including phase-change memory and electrochemical energy storage, are also reviewed. Finally, key challenges related to selenium volatility, performance reproducibility, long-term stability, and scalable manufacturing are identified. Overall, this review provides a process-oriented and application-driven framework to guide the rational design, synthesis optimization, and device integration of SnSe-based materials. Full article
(This article belongs to the Special Issue Advancements in Lasers: Applications and Future Trends)
Show Figures

Figure 1

21 pages, 3813 KB  
Article
Three-Electrode Dynamic Electrochemical Impedance Spectroscopy as an Innovative Diagnostic Tool for Advancing Redox Flow Battery Technology
by Eliza Hałas, Wojciech Bącalski, Łukasz Gaweł, Paweł Ślepski and Joanna Krakowiak
Energies 2026, 19(1), 256; https://doi.org/10.3390/en19010256 - 3 Jan 2026
Viewed by 218
Abstract
Vanadium redox flow batteries (VRFBs) experience performance losses driven by electrode ageing, yet the underlying mechanisms remain poorly resolved under operational conditions. This work presents a novel application of dynamic electrochemical impedance spectroscopy (DEIS) in both full-cell and three-electrode configurations to monitor kinetic [...] Read more.
Vanadium redox flow batteries (VRFBs) experience performance losses driven by electrode ageing, yet the underlying mechanisms remain poorly resolved under operational conditions. This work presents a novel application of dynamic electrochemical impedance spectroscopy (DEIS) in both full-cell and three-electrode configurations to monitor kinetic and transport processes throughout complete charge–discharge cycles. Carbon felt electrodes subjected to thermal activation, chemical degradation, and electrochemical ageing were systematically examined to capture a broad range of ageing-induced modifications. Complementary electrochemical impedance spectroscopy (EIS) measurements at selected states of charge were performed to highlight the substantial differences between spectra recorded under load and at open-circuit conditions. The results reveal that the impedance response of the full cell is dominated by processes occurring at the negative electrode, and that ageing leads to increased charge-transfer resistance and enhanced state of charge-dependent variation. X-ray photoelectron spectroscopy (XPS) analysis confirms significant modifications in surface chemistry, including variations in the sp2/sp3 carbon distribution and the enrichment of oxygen-containing functional groups, which correlate with the observed electrochemical behavior. Overall, this study demonstrates—for the first time under realistic VRFB cycling conditions—that DEIS provides unique diagnostic capabilities, enabling mechanistic insights into electrode ageing that are inaccessible to conventional impedance approaches. Full article
(This article belongs to the Special Issue Innovations and Challenges in New Battery Generations)
Show Figures

Figure 1

27 pages, 6323 KB  
Article
Multivariate Analysis and Hydrogeochemical Evolution of Groundwater in a Geologically Controlled Aquifer System: A Case Study in North Central Province, Sri Lanka
by Uthpala Hansani, Sapumal Asiri Witharana, Prasanna Lakshitha Dharmapriya, Pushpakanthi Wijekoon, Zhiguo Wu, Xing Chen, Shameen Jinadasa and Rohan Weerasooriya
Water 2026, 18(1), 89; https://doi.org/10.3390/w18010089 - 30 Dec 2025
Viewed by 302
Abstract
This study investigates the coupled relationship between groundwater chemistry, lithology, and structural features in the dry zone of Netiyagama, Sri Lanka, within a fractured crystalline basement. Groundwater chemistry fundamentally reflects geological conditions determined by rock-water interactions, we hypothesized that the specific spatial patterns [...] Read more.
This study investigates the coupled relationship between groundwater chemistry, lithology, and structural features in the dry zone of Netiyagama, Sri Lanka, within a fractured crystalline basement. Groundwater chemistry fundamentally reflects geological conditions determined by rock-water interactions, we hypothesized that the specific spatial patterns of groundwater chemistry in heterogeneous fractured systems are distinctly controlled by integrated effects of lithological variations, structurally driven flow pathways, aquifer stratification, and geochemical processes, including cation exchange and mineral-specific weathering. To test this, we integrated hydrogeochemical signatures with mapped hydrogeological data and applied multi-stage multivariate analyses, including Piper diagrams, Hierarchical Cluster Analysis (HCA), and Principal Component Analysis (PCA), and various bivariate plots. Piper diagrams identified five distinct hydrochemical facies, but these did not correlate directly with specific rock types, highlighting the limitations of traditional methods in heterogeneous settings. Employing a multi-stage multivariate analysis, we identified seven clusters (C1–C7) that exhibited unique spatial distributions across different rock types and provided a more refined classification of groundwater chemistries. These clusters align with a three-unit aquifer framework (shallow weathered zone, intermittent fracture zone at ~80–100 m MSL, and deeper persistent fractures) controlled by a regional syncline and lineaments. Further analysis through bivariate diagrams revealed insights into dominant weathering processes, cation-exchange mechanisms, and groundwater residence times across the identified clusters. Recharge-type clusters (C1, C2, C5) reflect plagioclase-dominated weathering and short flow paths; transitional clusters (C3, C7) show mixed sources and increasing exchange; evolved clusters (C4, C6) exhibit higher mineralization and longer residence. Overall, the integrated workflow (facies plots + PCA/HCA + bivariate/process diagrams) constrains aquifer dynamics, recharge pathways, and flow-path evolution without additional drilling, and provides practical guidance for well siting and treatment. Full article
Show Figures

Figure 1

29 pages, 1543 KB  
Review
Biodiversity-Driven Natural Products and Bioactive Metabolites
by Giancarlo Angeles Flores, Gaia Cusumano, Roberto Venanzoni and Paola Angelini
Plants 2026, 15(1), 104; https://doi.org/10.3390/plants15010104 - 29 Dec 2025
Viewed by 288
Abstract
Natural products represent one of the most diverse and functionally sophisticated groups of bioactive molecules found across plants, fungi, bacteria, and marine organisms. Recent advances in genomics, metabolomics, and chemical ecology have fundamentally redefined how these compounds are generated, regulated, and functionally deployed [...] Read more.
Natural products represent one of the most diverse and functionally sophisticated groups of bioactive molecules found across plants, fungi, bacteria, and marine organisms. Recent advances in genomics, metabolomics, and chemical ecology have fundamentally redefined how these compounds are generated, regulated, and functionally deployed in nature. Increasing evidence reveals that chemical diversity arises not solely from taxonomic lineage but from ecological pressures, evolutionary innovation, and multi-organism interactions that shape biosynthetic pathways over time. Hybrid metabolic architectures, context-dependent activation of biosynthetic gene clusters, and cross-kingdom metabolic integration collectively portray a biosynthetic landscape far more dynamic and interconnected than previously understood. At the same time, mechanistic studies demonstrate that natural products rarely act through single-target interactions. Instead, they influence redox dynamics, membrane architecture, chromatin accessibility, and intracellular signaling in distributed and synergistic ways that reflect both ecological function and evolutionary design. This review synthesizes emerging insights into the evolutionary drivers, ecological determinants, and mechanistic foundations of natural product diversity, highlighting the central role of silent biosynthetic gene clusters, meta-organismal chemistry, and network-level modes of action. By integrating these perspectives, we outline a conceptual and methodological framework capable of unlocking the vast biosynthetic potential that remains dormant within natural systems. Collectively, these advances reposition natural product research as a deeply integrative discipline at the intersection of molecular biology, ecology, evolution, and chemical innovation. Full article
Show Figures

Graphical abstract

44 pages, 5018 KB  
Review
Essential Oils as Antioxidants: Mechanistic Insights from Radical Scavenging to Redox Signaling
by Yeqin Huang, Haniyeh Ebrahimi, Elena Berselli, Mario C. Foti and Riccardo Amorati
Antioxidants 2026, 15(1), 37; https://doi.org/10.3390/antiox15010037 - 26 Dec 2025
Cited by 1 | Viewed by 703
Abstract
Essential oils (EOs) are complex volatile mixtures that exhibit antioxidant activity through both chemical and biological pathways. Phenolic constituents act as efficient chain-breaking radical-trapping antioxidants, whereas some non-phenolic terpenes operate through distinct mechanisms. Notably, γ-terpinene functions via a “radical export” pathway, generating hydroperoxyl [...] Read more.
Essential oils (EOs) are complex volatile mixtures that exhibit antioxidant activity through both chemical and biological pathways. Phenolic constituents act as efficient chain-breaking radical-trapping antioxidants, whereas some non-phenolic terpenes operate through distinct mechanisms. Notably, γ-terpinene functions via a “radical export” pathway, generating hydroperoxyl radicals that intercept lipid peroxyl radicals and accelerate chain termination. Recent methodological advances, such as inhibited autoxidation kinetics, oxygen-consumption assays, and fluorescence-based lipid peroxidation probes, have enabled more quantitative evaluation of these activities. Beyond direct radical chemistry, EOs also regulate redox homeostasis by modulating signaling networks such as Nrf2/Keap1, thereby activating antioxidant response element–driven enzymatic defenses in cell and animal models. Phenolic constituents and electrophilic compounds bearing an α,β-unsaturated carbonyl structure may directly activate Nrf2 by modifying Keap1 cysteine residues, whereas non-phenolic terpenes likely depend on oxidative metabolism to form active electrophilic species. Despite broad evidence of antioxidant efficacy, molecular characterization of EO–protein interactions remains limited. This review integrates radical-chain dynamics with redox signaling biology to clarify the mechanistic basis of EO antioxidant activity and to provide a framework for future research. Full article
(This article belongs to the Special Issue Antioxidant Potential of Essential Oils)
Show Figures

Figure 1

18 pages, 2001 KB  
Article
Fine-Tuning Side Chain Substitutions: Impacts on the Lipophilicity–Solubility–Permeability Interplay in Macrocyclic Peptides
by Yangping Deng, Hengwei Bian, Hongbo Li, Yingjun Cui, Sizheng Li, Jing Li, Li Chen, Xuemei Zhang, Zhuo Shen, Fengyue Li, Yue Chen and Haohao Fu
Mar. Drugs 2026, 24(1), 13; https://doi.org/10.3390/md24010013 - 25 Dec 2025
Viewed by 507
Abstract
Macrocyclic drugs are promising for targeting undruggable proteins, including those in cancer. Our prior work identified BE-43547A2 (BE) as a selective inhibitor of pancreatic cancer stem cells in PANC-1 cultures, but its high lipophilicity limits clinical application. To address this, we designed [...] Read more.
Macrocyclic drugs are promising for targeting undruggable proteins, including those in cancer. Our prior work identified BE-43547A2 (BE) as a selective inhibitor of pancreatic cancer stem cells in PANC-1 cultures, but its high lipophilicity limits clinical application. To address this, we designed derivatives retaining BE’s backbone while modifying tail groups to improve its properties. A concise total synthesis enabled a versatile late-stage intermediate (compound 17), serving as a platform for efficient diversification of BE analogs via modular click chemistry. This approach introduced a central triazole ring connected by flexible alkyl spacers. Key properties, including lipophilicity, solubility, and Caco-2 permeability, were experimentally determined. These derivatives exhibited reduced lipophilicity and improved solubility but unexpectedly lost cellular activity. Direct target engagement studies using MicroScale Thermophoresis (MST) revealed compound-dependent deactivation mechanisms: certain derivatives retained binding to eEF1A1 with only modestly reduced affinity (e.g., compound 29), while others showed no detectable binding (e.g., compound 31). Microsecond-scale molecular dynamics simulations and free-energy calculations showed that, for derivatives retaining target affinity, tail modifications disrupted the delicate balance of drug–membrane and drug–solvent interactions, resulting in substantially higher transmembrane free-energy penalties (>5 kcal/mol) compared to active compounds (<2 kcal/mol). These insights emphasize the need to simultaneously preserve both target engagement and optimal permeability when modifying side chains in cell-permeable macrocyclic peptides, positioning compound 17 as a robust scaffold for future lead optimization. This work furnishes a blueprint for balancing drug-like properties with therapeutic potency in macrocyclic therapeutics. Full article
(This article belongs to the Section Synthesis and Medicinal Chemistry of Marine Natural Products)
Show Figures

Graphical abstract

24 pages, 1329 KB  
Review
Geotechnical Controls on Land Degradation in Drylands: Indicators and Mitigation for Infrastructure and Renewable Energy
by Hani S. Alharbi
Sustainability 2026, 18(1), 242; https://doi.org/10.3390/su18010242 - 25 Dec 2025
Viewed by 337
Abstract
Land degradation in drylands increasingly threatens infrastructure and the performance of renewable energy (RE) systems through coupled hydro-chemo-mechanical changes in soil fabric, density, matric suction, and pore–water chemistry. A key gap is the limited integration of unsaturated soil mechanics with practical indicator sets [...] Read more.
Land degradation in drylands increasingly threatens infrastructure and the performance of renewable energy (RE) systems through coupled hydro-chemo-mechanical changes in soil fabric, density, matric suction, and pore–water chemistry. A key gap is the limited integration of unsaturated soil mechanics with practical indicator sets used in engineering screening and operations. This narrative review synthesizes evidence from targeted searches of Scopus, Web of Science, and Google Scholar. Searches are complemented by key organizational reports and standards, as well as citation tracking. Priority is given to sources that report mechanisms linked to measurable indicators, thresholds, tests, or models relevant to dryland infrastructure. The synthesis uses the soil-water characteristic curve (SWCC) and hydraulic conductivity k(θ) to connect hydraulic state to strength and deformation and couples these with chemical indices, including electrical conductivity (EC), exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR). Practical diagnostics include the dynamic cone penetrometer (DCP) and California Bearing Ratio (CBR) tests, infiltration and crust-strength tests, monitoring with unmanned aerial vehicles (UAVs), geophysics, and in situ moisture and suction sensing. The contribution is an indicator-driven, practice-oriented framework linking mechanisms, monitoring, and mitigation for photovoltaic (PV), concentrating solar power (CSP), wind, transmission, and well-pad corridors. This framework is implemented by consistently linking unsaturated soil state (SWCC, k(θ), and matric suction) to degradation processes, measurable indicator/test sets, and trigger-based interventions across the review. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

20 pages, 5425 KB  
Article
Structure, Function and Dynamics of mCoral, a pH-Responsive Engineered Variant of the mCherry Fluorescent Protein with Improved Hydrogen Peroxide Tolerance
by Athena Zitti, Ozan Aksakal, Danoo Vitsupakorn, Pierre J. Rizkallah, Halina Mikolajek, James A. Platts, Georgina E. Menzies and D. Dafydd Jones
Int. J. Mol. Sci. 2026, 27(1), 154; https://doi.org/10.3390/ijms27010154 - 23 Dec 2025
Viewed by 266
Abstract
The red fluorescent protein mCherry is one of the most widely used fluorescent proteins in biology. Here, we have changed the chromophore chemistry by converting the thioether group of M66 to a thiol group through mutation to cysteine. The new variant, termed mCoral [...] Read more.
The red fluorescent protein mCherry is one of the most widely used fluorescent proteins in biology. Here, we have changed the chromophore chemistry by converting the thioether group of M66 to a thiol group through mutation to cysteine. The new variant, termed mCoral (due to its orange fluorescence hue), has similar brightness to mCherry but improved resistance to hydrogen peroxide. The variant is also responsive to pH with low and high pKa forms that have distinct spectral properties, which DFT analysis suggests is due to protonation state changes in the newly introduced thiol group, as well as the phenol group. The structure of mCoral reveals that the M66C mutation creates a space within the β-barrel structure that is filled by a water molecule, which makes new polar interactions, including the backbone carbonyl group of F65. Molecular dynamics simulations suggest that this additional water molecule, together with local solvation around the chromophore, could play a role in promoting planarity of the full conjugated system comprising the chromophore. The mCoral chromophore makes slightly more H-bonds with water than mCherry. The main water exit point for mCherry is also narrower in mCoral, providing a potential explanation for increased resistance to hydrogen peroxide. Overall, a small structural change to mCherry has resulted in a new fluorescent protein with potentially useful characteristics and an insight into the role of dynamics and water in defining the structure–function relationship in red fluorescent proteins. Full article
(This article belongs to the Special Issue Biomolecular Structure, Function and Interactions: 2nd Edition)
Show Figures

Graphical abstract

45 pages, 6602 KB  
Review
Four-Dimensional Printing of Shape Memory Polymers for Biomedical Applications: Advances in DLP and SLA Manufacturing
by Raj Kumar Pittala, Marc Anthony Torres, Neha Reddy, Sara Swank and Melanie Ecker
Polymers 2026, 18(1), 24; https://doi.org/10.3390/polym18010024 - 22 Dec 2025
Viewed by 467
Abstract
Shape memory polymers (SMPs) represent an innovative class of materials that possess programmed, reversible shape-changing capabilities in response to external stimuli. The recent emergence of SMPs’ advanced manufacturing, specifically 4D printing, has created exceptional opportunities for use in biomedical engineering. This review presents [...] Read more.
Shape memory polymers (SMPs) represent an innovative class of materials that possess programmed, reversible shape-changing capabilities in response to external stimuli. The recent emergence of SMPs’ advanced manufacturing, specifically 4D printing, has created exceptional opportunities for use in biomedical engineering. This review presents a critical synthesis of the latest advances in the chemistry, biomedical applications, manufacturing strategies, and clinical translation of SMPs, highlighting vat photopolymerization techniques, such as stereolithography (SLA) and digital light processing (DLP). Notably, 4D-printed SMPs can promote spatiotemporally controlled architectures, and applications include minimally invasive implants, dynamic tissue scaffolds, and multifunctional drug delivery. This paper focuses on recent advances in resin design, multi-responsive and nanocomposite resins, AI-guided material discovery, and emerging biocompatible and biodegradable formulations, while outlining current roadblocks to clinical implementation, including cytotoxicity, sterilization, regulatory compliance, and device shelf-life. Our goal is to elucidate the relationship between material design, processing, and biomedical performance to inform researchers of potential future directions for 4D-printed SMPs and next-generation, patient-centered medical devices. Full article
Show Figures

Graphical abstract

Back to TopTop