Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = dust flux

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1901 KB  
Proceeding Paper
Direct Radiative Effects of Dust Events over Limassol, Cyprus in 2024 Using Ground-Based Measurements and Modelling
by Georgia Charalampous, Konstantinos Fragkos, Ilias Fountoulakis, Kyriakoula Papachristopoulou, Argyro Nisantzi, Rodanthi-Elisavet Mamouri, Diofantos Hadjimitsis and Stelios Kazadzis
Environ. Earth Sci. Proc. 2025, 35(1), 77; https://doi.org/10.3390/eesp2025035077 - 30 Oct 2025
Viewed by 597
Abstract
Dust plays a significant role in the atmospheric radiative balance by altering both shortwave and longwave radiation fluxes. While deserts are the primary sources of dust emissions, atmospheric circulation can transport dust over long distances, impacting air quality and climate in remote regions. [...] Read more.
Dust plays a significant role in the atmospheric radiative balance by altering both shortwave and longwave radiation fluxes. While deserts are the primary sources of dust emissions, atmospheric circulation can transport dust over long distances, impacting air quality and climate in remote regions. These transport episodes, commonly known as dust events, vary in intensity and effects. Despite extensive research, uncertainties persist regarding their precise radiative impacts. This study examines the direct radiative effects of dust events in 2024 (a year marked by heightened dust activity) over Limassol, Cyprus. A comprehensive approach is employed, integrating radiative transfer modelling, ground-based solar radiation measurements, and dust optical property analysis. The LibRadtran radiative transfer package is used to simulate atmospheric radiative transfer under dust-laden conditions, incorporating key dust optical properties such as Aerosol Optical Depth, Single Scattering Albedo, and the Asymmetry Parameter retrieved from the Limassol’s AERONET station. Observations from solar radiation station at the ERATOSTHENES Centre of Excellence serve as validation for the model. This study quantifies the radiative impact of dust by evaluating changes in surface irradiance, providing valuable insights into the role of dust in atmospheric energy balance. Full article
Show Figures

Figure 1

15 pages, 653 KB  
Article
Basic Vaidya White Hole Evaporation Process
by Qingyao Zhang
Symmetry 2025, 17(10), 1762; https://doi.org/10.3390/sym17101762 - 18 Oct 2025
Viewed by 516
Abstract
We developed a self-consistent double-null description of an evaporating white-hole spacetime by embedding the outgoing Vaidya solution in a coordinate system that remains regular across the future horizon. Starting from the radiation-coordinate form, we specialize in retarded time so that a monotonically decreasing [...] Read more.
We developed a self-consistent double-null description of an evaporating white-hole spacetime by embedding the outgoing Vaidya solution in a coordinate system that remains regular across the future horizon. Starting from the radiation-coordinate form, we specialize in retarded time so that a monotonically decreasing mass function M(u) encodes outgoing positive-energy flux. Expressing the metric in null coordinates (u,v), Einstein’s equations for a single-directional null-dust stress–energy tensor, Tuu=ρ(u), then reduce to one first-order PDE for the areal radius: vr=B(u)12M(u)/r. Its integral, r+2M(u)ln|r2M(u)|=vC(u), defines an implicit foliation of outgoing null cones. The metric coefficient follows algebraically as f(u,v)=12M(u)/r. Residual gauge freedom in B(u) and C(u) is fixed so that u matches the Bondi retarded time at null infinity, while v remains analytic at the apparent horizon, generalizing the Kruskal prescription to dynamical mass loss. In the limit M(u)M, the construction reduces to the familiar Eddington–Finkelstein and Kruskal forms. Our solution, therefore, provides a compact analytic framework for studying white-hole evaporation, Hawking-like energy fluxes, and back-reaction in spherically symmetric settings without encountering coordinate singularities. Full article
(This article belongs to the Special Issue Advances in Black Holes, Symmetry and Chaos)
Show Figures

Figure 1

15 pages, 8138 KB  
Article
Winds over the Red Sea and NE African Summer Climate
by Mark R. Jury
Climate 2025, 13(10), 215; https://doi.org/10.3390/cli13100215 - 17 Oct 2025
Viewed by 995
Abstract
This study analyzes winds over the Red Sea (17 N, 39.5 E) and consequences for the northeast African climate in early summer (May–July). As the Indian SW monsoon commences, NNW winds > 6 m/s are channeled over the Red Sea between 2000 m [...] Read more.
This study analyzes winds over the Red Sea (17 N, 39.5 E) and consequences for the northeast African climate in early summer (May–July). As the Indian SW monsoon commences, NNW winds > 6 m/s are channeled over the Red Sea between 2000 m highlands, forming a low-level jet. Although sea surface temperatures of 30C instill evaporation of 8 mm/day and surface humidity of 20 g/kg, the air mass above the marine layer is dry and dusty (6 g/kg, 100 µg/m3). Land–sea temperature gradients drive afternoon sea breezes and orographic rainfall (~4 mm/day) that accumulate soil moisture in support of short-cycle crops such as teff. Statistical analyses of satellite and reanalysis datasets are employed to reveal the mesoscale structure and temporal response of NE African climate to marine winds via air chemistry data alongside the meteorological elements. The annual cycle of dewpoint temperature often declines from 12C to 4C during the Indian SW monsoon onset, followed by dusty NNW winds over the Red Sea. Consequences of a 14 m/s wind surge in June 2015 are documented via analysis of satellite and meteorological products. Moist convection was stunted, according to Cloudsat reflectivity, creating a dry-east/moist-west gradient over NE Africa (13–14.5 N, 38.5–40 E). Diurnal cycles are studied via hourly data and reveal little change for advected dust and moisture but large amplitude for local heat fluxes. Inter-annual fluctuations of early summer rainfall depend on airflows from the Red Sea in response to regional gradients in air pressure and temperature and the SW monsoon over the Arabian Sea. Lag correlation suggests that stronger NNW winds herald the onset of Pacific El Nino. Full article
Show Figures

Figure 1

30 pages, 14172 KB  
Article
Synoptic and Dynamic Analyses of an Intense Mediterranean Cyclone: A Case Study
by Ahmad E. Samman
Climate 2025, 13(6), 126; https://doi.org/10.3390/cli13060126 - 15 Jun 2025
Viewed by 1848
Abstract
On 3 February 2006, a powerful Mediterranean cyclone instigated a widespread dust storm across Saudi Arabia. Meteorological observations from one station recorded strong westerly to southwesterly winds, with gusts reaching 40 m/s, accompanied by thunderstorms and dust storms. This study delves into the [...] Read more.
On 3 February 2006, a powerful Mediterranean cyclone instigated a widespread dust storm across Saudi Arabia. Meteorological observations from one station recorded strong westerly to southwesterly winds, with gusts reaching 40 m/s, accompanied by thunderstorms and dust storms. This study delves into the formation and development of this significant Mediterranean cyclone, which impacted the Mediterranean basin and the Arabian Peninsula from 26 January to 4 February 2006. Utilizing ECMWF ERA5 reanalysis data, this research analyzes the synoptic and dynamic conditions that contributed to the cyclone’s evolution and intensification. The cyclone originated over the North Atlantic as cold air from higher latitudes and was advected southward, driven by a strong upper-level trough. The initial phase of cyclogenesis was triggered by baroclinic instability, facilitated by an intense upper-level jet stream interacting with a pre-existing low-level baroclinic zone over coastal regions. Upper-level dynamics enhanced surface frontal structures, promoting the formation of the intense cyclone. As the system progressed, low-level diabatic processes became the primary drivers of its evolution, reducing the influence of upper-level baroclinic mechanisms. The weakening of the upper-level dynamics led to the gradual distortion of the low-level baroclinicity and frontal structures, transitioning the system to a more barotropic state during its mature phase. Vorticity analysis revealed that positive vorticity advection and warm air transport toward the developing cyclone played key roles in its intensification, leading to the development of strong low-level winds. Atmospheric kinetic energy analysis showed that the majority of the atmospheric kinetic energy was concentrated at 400 hPa and above, coinciding with intense jet stream activity. The generation of the atmospheric kinetic energy was primarily driven by cross-contour flow, acting as a major energy source, while atmospheric kinetic energy dissipation from grid to subgrid scales served as a major energy sink. The dissipation pattern closely mirrored the generation pattern but with the opposite sign. Additionally, the horizontal flux of the atmospheric kinetic energy was identified as a continuous energy source throughout the cyclone’s lifecycle. Full article
(This article belongs to the Section Weather, Events and Impacts)
Show Figures

Figure 1

14 pages, 705 KB  
Technical Note
Sensing Lunar Dust Density Using Radio Science Signals of Opportunity
by Kamal Oudrhiri, Yu-Ming Yang and Daniel Erwin
Remote Sens. 2025, 17(11), 1940; https://doi.org/10.3390/rs17111940 - 4 Jun 2025
Viewed by 1943
Abstract
Previous lunar missions, such as Surveyor, Apollo, and the Lunar Atmosphere and Dust Environment Explorer (LADEE), have played a pivotal role in advancing our understanding of the lunar exosphere’s dynamics and its relationship with solar wind flux. The insights gained from these missions [...] Read more.
Previous lunar missions, such as Surveyor, Apollo, and the Lunar Atmosphere and Dust Environment Explorer (LADEE), have played a pivotal role in advancing our understanding of the lunar exosphere’s dynamics and its relationship with solar wind flux. The insights gained from these missions have laid a strong foundation for our current knowledge. However, due to insufficient near-surface observations, the scientific community has faced challenges in interpreting the phenomena of lunar dust lofting and levitation. This paper introduces the concept of signals of opportunity (SoOP), which utilizes radio occultation (RO) to retrieve the near-surface dust density profile on the Moon. Gravity Recovery and Interior Laboratory (GRAIL) radio science beacon (RSB) signals are used to demonstrate this method. By mapping the concentration of lunar near-surface dust using RO, we aim to enhance our understanding of how charged lunar dust interacts with surrounding plasma, thereby contributing to future research in this field and supporting human exploration of the Moon. Additionally, the introduced SoOP will be able to provide observational constraints to physical model development related to lunar surface particle sputtering and the reactions of near-surface dust in the presence of solar wind and electrostatically charged dust grains. Full article
Show Figures

Figure 1

23 pages, 6277 KB  
Article
Research on Key Sand Generating Parameters and Remote Sensing Traceability of Dust Storms in the Taklamakan Desert
by Mayibaier Maihamuti, Wen Huo, Yongqiang Liu, Yifei Wang, Fan Yang, Chenglong Zhou, Xinghua Yang and Ali Mamtimin
Remote Sens. 2025, 17(11), 1870; https://doi.org/10.3390/rs17111870 - 28 May 2025
Viewed by 1577
Abstract
This study investigated the dust storm observation data from the Taklimakan Desert in 2018, focusing on analyzing horizontal dust flux (Q), vertical dust flux (F), their relationships with aerosol optical depth (AOD), and the relationship between HYSPLIT backward trajectories and dust storm dispersion [...] Read more.
This study investigated the dust storm observation data from the Taklimakan Desert in 2018, focusing on analyzing horizontal dust flux (Q), vertical dust flux (F), their relationships with aerosol optical depth (AOD), and the relationship between HYSPLIT backward trajectories and dust storm dispersion direction. Key findings include: (1) at the Xiaotang (XT) station, Q values at low heights (1–10 m) exceeded those at higher altitudes, highlighting the role of flat terrain in dust accumulation, while Q values at the Tazhong (TZ) station remained relatively stable, suggesting dust redistribution influenced by undulating topography; (2) vertical dust flux (F) decreased with height, with significant seasonal variations in spring linked to frequent dust events; (3) at station XT, the contribution of F at 5 m height is relatively strong to AOD and its peak precedes AOD by 24–72 h, although the direct correlation is weak; and (4) dust dispersion directions aligned with HYSPLIT trajectories and high Q values corresponded with remotely derived dust dispersion patterns. Full article
Show Figures

Graphical abstract

26 pages, 6186 KB  
Article
Cloud and Aerosol Impacts on the Radiation Budget over China from 2000 to 2023
by Shuai Wang and Bingqi Yi
Remote Sens. 2025, 17(10), 1666; https://doi.org/10.3390/rs17101666 - 9 May 2025
Viewed by 1184
Abstract
Aerosols and clouds influence Earth’s radiative energy budget, but their regional radiative impacts remain insufficiently understood. This study investigates the spatial distribution patterns and long-term trends of radiative fluxes over China from March 2000 to February 2023 using CERES-SYN data. Notable decreasing trends [...] Read more.
Aerosols and clouds influence Earth’s radiative energy budget, but their regional radiative impacts remain insufficiently understood. This study investigates the spatial distribution patterns and long-term trends of radiative fluxes over China from March 2000 to February 2023 using CERES-SYN data. Notable decreasing trends in the net radiative fluxes over China at the top of the atmosphere (−0.38 W m−2 year−1) and the surface (−0.35 W m−2 year−1) during the study period have been observed. Cloud properties from CERES-SYN and aerosol properties from MERRA-2 are used to assess the impacts of aerosols and clouds on radiative flux variations. Results show that aerosols are the primary drivers of radiative flux variations across China, while cloud changes exert notable but regionally dependent influences. In southern China, reductions in black carbon and organic carbon aerosols substantially influence radiative flux variations, along with contributions from changes in mid-high, mid-low, and low clouds. In northern China, decreases in dust and organic carbon aerosols primarily drive radiative flux trends. Over the Tibetan Plateau, variations in mid-high clouds predominantly affect radiative flux changes. In Xinjiang and Inner Mongolia, fluctuations in high, mid-high, and mid-low clouds, along with dust and sulfate aerosols, jointly contribute to the radiative flux variations, although the overall impacts remain relatively small. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

11 pages, 375 KB  
Article
Response of Soil Chemical and Biological Properties to Cement Dust Emissions: Insights for Sustainable Soil Management
by Serdar Bilen, Murat Bilen, Mudahir Ozgul, Ekrem Ozlu and Ugur Simsek
Sustainability 2025, 17(4), 1409; https://doi.org/10.3390/su17041409 - 9 Feb 2025
Viewed by 1662
Abstract
Land use change is associated with both higher fossil fuel usage and global cement production, significantly impacting environmental sustainability. Cement dust emission is the third-largest source of anthropogenic CO2 emissions, right behind fossil fuel usage due to intense agricultural practices like aggressive [...] Read more.
Land use change is associated with both higher fossil fuel usage and global cement production, significantly impacting environmental sustainability. Cement dust emission is the third-largest source of anthropogenic CO2 emissions, right behind fossil fuel usage due to intense agricultural practices like aggressive tillage management. This study’s aim is to determine cement dust emissions impacts on various tillage management methods and the formation of cement dust-affected CO2 emissions, soil pH, soil organic matter content, total nitrogen content, available phosphorus, CaCO3 content, bacteria and fungi populations, and enzyme activities. The target of this study is to evaluate how cement dust emissions impact the soil properties and sustainability of different tillage practices. Composite soils from wheat–sugar beet (potato)–fallow cropping sequences under conventional tillage (CT) and no-till (NT) management were collected (0–30 cm depth) with three replications at varying distances from a cement factory (1, 2, 4, 6, 8, and 10 km). To find differences among individual treatments and distances, a two-way ANOVA was employed along with Duncan’s LSD test comparing the various effects of tillage techniques. The associations between soil chemical and biological properties and CO2 fluxes under the impact of cement dust were examined using Pearson’s correlation analysis. There were notable relationships between soil microbial population, enzyme activities, pH, CaCO3, and CO2 fluxes. The sampling distance from the cement plant had a substantial correlation with soil organic carbon, urease activity, pH, CaCO3, and bacterial populations. According to the study, different tillage methods (CT and NT) affected the diversity and abundance of microorganisms within the soil ecosystem. CT was more beneficial for the microbial population and for sustainable management. Full article
Show Figures

Figure 1

15 pages, 1582 KB  
Article
The Atmospheric Deposition of Polycyclic Aromatic Hydrocarbons in the Metropolitan City of Rome in the Year 2022/2023
by Giuseppe Ianiri, Gaetano Settimo, Maria Eleonora Soggiu, Marco Inglessis, Sabrina Di Giorgi and Pasquale Avino
Atmosphere 2025, 16(1), 20; https://doi.org/10.3390/atmos16010020 - 27 Dec 2024
Cited by 1 | Viewed by 1447
Abstract
The measurement of atmospheric deposition fluxes is an excellent tool for assessing the contamination of territory and the subsequent exposure of the population to major contaminants through the food chain. In this context, the aim of this study was to measure the polycyclic [...] Read more.
The measurement of atmospheric deposition fluxes is an excellent tool for assessing the contamination of territory and the subsequent exposure of the population to major contaminants through the food chain. In this context, the aim of this study was to measure the polycyclic aromatic hydrocarbon (PAH) deposition fluxes in the city of Rome (ISS Station) during the year 2022/2023 at two different heights above the ground (vertical profile), in order to evaluate the influence that the vertical profile has on PAH deposition. Two measuring positions were identified, one at street level and one at a height of 20 m. The collection of bulk atmospheric depositions was carried out approximately every 30 days, and the PAHs were determined according to the indications given in ISTISAN Report 06/38 and Standard UNI EN 15980:2011. The results show that throughout the year, the deposition rates of settleable dust were always higher at the lower (annual average of 48.5 mg m−2 day−1) collection position than at the higher position (annual average of 17.5 mg m−2 day−1). Despite this difference, the concentrations and profiles of the main PAHs analyzed, as indicated in EU Directive 2024/2881, in the dust collected at the two positions were almost similar, showing that the vertical profile did not influence the composition and concentration of PAHs in the collected settleable dust. Furthermore, a comparison of the deposition rates of sedimentable dust and PAHs with the legislative references currently present in Europe was made, highlighting that in the city of Rome during the monitoring period of this study, the values of dust and PAHs were lower than the limit and guide values and were also in line with other Italian urban locations. Full article
(This article belongs to the Special Issue Urban Air Pollution Exposure and Health Vulnerability)
Show Figures

Figure 1

17 pages, 7602 KB  
Article
Low-Cost Sensor Network for Air Quality Assessment in Cabo Verde Islands
by Anedito Zico da Costa, José P. S. Aniceto and Myriam Lopes
Sensors 2024, 24(23), 7656; https://doi.org/10.3390/s24237656 - 29 Nov 2024
Cited by 2 | Viewed by 3351
Abstract
This study explores the application of low-cost sensor networks for air quality monitoring in Cabo Verde islands, utilizing Clarity Node-S sensors to measure fine particulate matter with diameters equal to or smaller than 10 µm (PM10) and 2.5 µm (PM2.5) and nitrogen dioxide [...] Read more.
This study explores the application of low-cost sensor networks for air quality monitoring in Cabo Verde islands, utilizing Clarity Node-S sensors to measure fine particulate matter with diameters equal to or smaller than 10 µm (PM10) and 2.5 µm (PM2.5) and nitrogen dioxide (NO2) gasses, across various locations. The sensors were strategically placed and calibrated to ensure coverage of the whole archipelago and accurate data collection. The results consistently revealed seasonal patterns of dust variation across the archipelago, with concentrations of particulate matter exceeding World Health Organization (WHO) limits in all regions. However, Praia frequently exhibits the highest levels of air pollution, exceeding a 200 µg/m3 daily average, particularly during the dry season. Seasonal variations indicated that pollutants are significantly higher from November to March due to Saharan dust flux (a phenomenon locally know as Bruma Seca). Other cities showed more stable and lower pollutant concentrations. This study highlights the potential of low-cost sensors to provide extensive and real-time air quality data, enabling better environmental assessment and policy formulation. However, the variability in equipment accuracy and the limited geographical coverage remain the main limitations to be overcome. Future research should focus on these issues, and a sensor network integrated with reference methods could be a great asset to enhance data accuracy and improve outcomes of air quality monitoring in the country. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

14 pages, 1078 KB  
Article
A “Wonderful” Reference Dataset of Mira Variables
by Dana K. Baylis-Aguirre, Michelle J. Creech-Eakman and Gerard T. van Belle
Galaxies 2024, 12(6), 72; https://doi.org/10.3390/galaxies12060072 - 31 Oct 2024
Viewed by 2358
Abstract
The conditions in Mira variable atmospheres make them wonderful laboratories to study a variety of stellar physics such as molecule–grain formation, dust production, shock chemistry, stellar winds, mass loss, opacity-driven pulsation, and shocks. We were awarded an NSF grant to analyze over a [...] Read more.
The conditions in Mira variable atmospheres make them wonderful laboratories to study a variety of stellar physics such as molecule–grain formation, dust production, shock chemistry, stellar winds, mass loss, opacity-driven pulsation, and shocks. We were awarded an NSF grant to analyze over a decade of synoptic observations from the Palomar Testbed Interferometer (PTI) of 106 Miras to curate a Mira Reference Dataset. The Miras included in this dataset include M-types, S-types, and C-types, and span a wide range of pulsation periods. PTI measured K-band angular sizes that when combined with a distance allow us to directly determine fundamental stellar parameters such as effective temperature, radial size, and bolometric flux. Supplementing observations with interferometric measurements of the stars opens the Mira laboratory to a wealth of different experiments. We provide two case studies to serve as examples of the power of the Mira Reference Dataset. The first case study describes combining PTI measurements with Spitzer IRS spectra of M-type Miras, which allowed us to fully characterize CO2 gas in their atmospheres. The second case study examines how PTI narrow-band data can be used to study phase-dependent pulsation effects on the stellar atmosphere. We provide a list of all the Miras (with coordinates) included in the set for anyone who would like to add them to their observing programs. All the data we produce and collate for this Mira Reference Dataset will be hosted and curated on a website open to the public so that other researchers and citizen scientists can participate in expanding the utility and body of knowledge on this set of “wonderful” stars. Full article
Show Figures

Figure 1

27 pages, 25123 KB  
Article
Evaluation of Reanalysis and Satellite Products against Ground-Based Observations in a Desert Environment
by Narendra Nelli, Diana Francis, Abdulrahman Alkatheeri and Ricardo Fonseca
Remote Sens. 2024, 16(19), 3593; https://doi.org/10.3390/rs16193593 - 26 Sep 2024
Cited by 12 | Viewed by 3430
Abstract
The Arabian Peninsula (AP) is notable for its unique meteorological and climatic patterns and plays a pivotal role in understanding regional climate dynamics and dust emissions. The scarcity of ground-based observations makes atmospheric data essential, rendering reanalysis and satellite products invaluable for understanding [...] Read more.
The Arabian Peninsula (AP) is notable for its unique meteorological and climatic patterns and plays a pivotal role in understanding regional climate dynamics and dust emissions. The scarcity of ground-based observations makes atmospheric data essential, rendering reanalysis and satellite products invaluable for understanding weather patterns and climate variability. However, the accuracy of these products in the AP’s desert environment has not been extensively evaluated. This study undertakes the first comprehensive validation of reanalysis products—the European Centre for Medium-Range Weather Forecasts’ European Reanalysis version 5 (ERA5) and ERA5 Land (ERA5L), along with Clouds and Earth’s Radiant Energy System (CERES) radiation fluxes—against measurements from the Liwa desert in the UAE. The data, collected during the Wind-blown Sand Experiment (WISE)–UAE field experiment from July 2022 to December 2023, includes air temperature and relative humidity at 2 m, 10 m wind speed, surface pressure, skin temperature, and net radiation fluxes. Our analysis reveals a strong agreement between ERA5/ERA5L and the observed diurnal T2m cycle, despite a warm night bias and cold day bias with a magnitude within 2 K. The wind speed analysis uncovered a bimodal distribution attributed to sea-breeze circulation and the nocturnal low-level jet, with the reanalysis overestimating the nighttime wind speeds by 2 m s−1. This is linked to biases in nighttime temperatures arising from an inaccurate representation of nocturnal boundary layer processes. The daytime cold bias contrasts with the excessive net radiation flux at the surface by about 50–100 W m−2, underscoring the challenges in the physical representation of land–atmosphere interactions. Full article
Show Figures

Figure 1

17 pages, 921 KB  
Article
Characterisation of the Atmosphere in Very High Energy Gamma-Astronomy for Imaging Atmospheric Cherenkov Telescopes
by Dijana Dominis Prester, Jan Ebr, Markus Gaug, Alexander Hahn, Ana Babić, Jiří Eliášek, Petr Janeček, Sergey Karpov, Marta Kolarek, Marina Manganaro and Razmik Mirzoyan
Universe 2024, 10(9), 349; https://doi.org/10.3390/universe10090349 - 30 Aug 2024
Cited by 3 | Viewed by 1743
Abstract
Ground-based observations of Very High Energy (VHE) gamma rays from extreme astrophysical sources are significantly influenced by atmospheric conditions. This is due to the atmosphere being an integral part of the detector when utilizing Imaging Atmospheric Cherenkov Telescopes (IACTs). Clouds and dust particles [...] Read more.
Ground-based observations of Very High Energy (VHE) gamma rays from extreme astrophysical sources are significantly influenced by atmospheric conditions. This is due to the atmosphere being an integral part of the detector when utilizing Imaging Atmospheric Cherenkov Telescopes (IACTs). Clouds and dust particles diminish atmospheric transmission of Cherenkov light, thereby impacting the reconstruction of the air showers and consequently the reconstructed gamma-ray spectra. Precise measurements of atmospheric transmission above Cherenkov observatories play a pivotal role in the accuracy of the analysed data, among which the corrections of the reconstructed energies and fluxes of incoming gamma rays, and in establishing observation strategies for different types of gamma-ray emitting sources. The Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes and the Cherenkov Telescope Array Observatory (CTAO), both located on the Observatorio del Roque de los Muchachos (ORM), La Palma, Canary Islands, use different sets of auxiliary instruments for real-time characterisation of the atmosphere. In this paper, historical data taken by MAGIC LIDAR (LIght Detection And Ranging) and CTAO FRAM (F/Photometric Robotic Telescope) are presented. From the atmospheric aerosol transmission profiles measured by the MAGIC LIDAR and CTAO FRAM aerosol optical depth maps, we obtain the characterisation of the clouds above the ORM at La Palma needed for data correction and optimal observation scheduling. Full article
(This article belongs to the Collection Women Physicists in Astrophysics, Cosmology and Particle Physics)
Show Figures

Figure 1

17 pages, 2982 KB  
Article
Inhibition of Soil Wind-Erosion and Dust by Shelterbelts in the Hilly Area of Loess Plateau and Its Influencing Factors
by Bing Yan, Yue Cui, Mingyuan Fan, Zhixue Li, Libo Sun and Xiaomin Chang
Forests 2024, 15(8), 1413; https://doi.org/10.3390/f15081413 - 13 Aug 2024
Cited by 4 | Viewed by 2560
Abstract
The Loess Plateau is an important source of particulate matter pollution in North China. In order to establish and repair shelterbelts and improve their function of inhibiting wind erosion and dust, four typical shelterbelts (Populus simonii, Pinus tabulaeformis Carr., Pinus tabulaeformis [...] Read more.
The Loess Plateau is an important source of particulate matter pollution in North China. In order to establish and repair shelterbelts and improve their function of inhibiting wind erosion and dust, four typical shelterbelts (Populus simonii, Pinus tabulaeformis Carr., Pinus tabulaeformis Carr. × Populus simonii and Caragana korshinskii Kom.) were selected to investigate the inhibition rate of soil wind-erosion and the reduction rates of PM1, PM2.5 and PM10 by stand type, stand structure and soil properties. A sample plot survey and semi-fixed observation method were used to measure wind speed and particulate matter concentration and to calculate wind protection effect, sand transport rate, vertical flux of particulate matter, wind-erosion inhibition rate and particulate matter reduction rate. The results showed that the Pinus tabulaeformis Carr. forest and Caragana korshinskii Kom. forest had the best windproofing effect, at 2 m (82.9% ± 23.8%) and 0.5 m (54.4% ± 21.5%), respectively. The distribution curve of the sediment flux of shelterbelts is a logarithmic function. The wind-erosion inhibition rate and PM1 reduction rate of the Pinus tabulaeformis Carr. forest were significantly greater than those of other stand types (p < 0.05). The generalized linear mixed model (GLMM) shows that the DBH variation coefficient (CV) can effectively explain the reduction rate of PM1. It is suggested that policies be enacted to add or replace Pinus tabulaeformis Carr. forest in polluted areas to prevent wind erosion and dust. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

17 pages, 7306 KB  
Article
Instrument to Study Plume Surface Interactions (PSI) on the Lunar Surface: Science Motivation, Requirements, Instrument Overview, and Test Plans
by Ariana Bueno, Michael J. Krasowski, Norman Prokop, Lawrence C. Greer, Christina M. Adams and Nilton O. Rennó
Aerospace 2024, 11(6), 439; https://doi.org/10.3390/aerospace11060439 - 29 May 2024
Cited by 3 | Viewed by 4231
Abstract
Safe landings are imperative to accomplish NASA’s Artemis goal to enable human exploration on the Moon, including sample collection missions. However, a process known as plume surface interaction (PSI) presents a significant hazard to lunar landings. PSI occurs when the engine exhaust of [...] Read more.
Safe landings are imperative to accomplish NASA’s Artemis goal to enable human exploration on the Moon, including sample collection missions. However, a process known as plume surface interaction (PSI) presents a significant hazard to lunar landings. PSI occurs when the engine exhaust of a lander interacts with the surface ejecting large amounts of regolith particles at high velocities that can interfere with the landing, disturb the surface, and damage hardware. To better understand PSI, the particle impact event (PIE) sensor is being developed to measure the kinetic energy and the flux of ejecta during landings, to quantify the potential damage, and to quantify the ejecta displaced. Multiple parameters were estimated to define the PIE instrument requirements. These estimates demonstrate that ejecta can travel at velocities of up to 800 m/s and impact the surrounding area with energies of up to 400 µJ. A significant amount of ejecta can be deposited several 10 s of meters away from the landing site, modifying the surface and causing dust-related challenges. The PIE sensor will be launched for the first time in an upcoming lunar lander. Then, PIE measurements will be used to improve PSI prediction capabilities and develop mitigation strategies to ensure safe landings. Full article
(This article belongs to the Special Issue Spacecraft Sample Collection)
Show Figures

Figure 1

Back to TopTop