Low-Cost Sensor Network for Air Quality Assessment in Cabo Verde Islands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Sensor Network Description
2.3. Data Collection Methods
3. Results and Discussion
3.1. Meteorology
3.2. Pollution Profile
3.3. Time Series and Exceedances of the WHO Air Quality Guidelines (AQG) Levels
3.4. Seasonal Analysis
3.5. Daily Profiles and Weekly Profiles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Borrego, C.; Ginja, J.; Coutinho, M.; Ribeiro, C.; Karatzas, K.; Sioumis, T.; Katsifarakis, N.; Konstantinidis, K.; De Vito, S.; Esposito, E.; et al. Assessment of Air Quality Microsensors versus Reference Methods: The EuNetAir Joint Exercise—Part II. Atmos. Environ. 2018, 193, 127–142. [Google Scholar] [CrossRef]
- Freire, S.M.; Relvas, H.; Lopes, M. Impact of Traffic Emissions on Air Quality in Cabo Verde. Environ. Monit. Assess. 2020, 192, 726. [Google Scholar] [CrossRef] [PubMed]
- Dhital, S.; Kaplan, M.L.; Orza, J.A.G.; Fiedler, S. Atmospheric Dynamics of a Saharan Dust Outbreak Over Mindelo, Cape Verde Islands, Preceded by Rossby Wave Breaking: Multiscale Observational Analyses and Simulations. J. Geophys. Res. Atmos. 2020, 125, e2020JD032975. [Google Scholar] [CrossRef]
- Cardoso, J. Estudo Do Aerossol (Poeira Do Sara) Na Região de Cabo Verde. Ph.D. Thesis, University of Aveiro, Aveiro, Portugal, 2016. [Google Scholar]
- Basith, S.; Manavalan, B.; Shin, T.H.; Park, C.B.; Lee, W.S.; Kim, J.; Lee, G. The Impact of Fine Particulate Matter 2.5 on the Cardiovascular System: A Review of the Invisible Killer. Nanomaterials 2022, 12, 2656. [Google Scholar] [CrossRef] [PubMed]
- Faustini, A.; Rapp, R.; Forastiere, F. Nitrogen Dioxide and Mortality: Review and Meta-Analysis of Long-Term Studies. Eur. Respir. J. 2014, 44, 744–753. [Google Scholar] [CrossRef]
- Gong, X.; Wex, H.; Voigtländer, J.; Wadinga Fomba, K.; Weinhold, K.; Van Pinxteren, M.; Henning, S.; Müller, T.; Herrmann, H.; Stratmann, F. Characterization of Aerosol Particles at Cabo Verde Close to Sea Level and at the Cloud Level-Part 1: Particle Number Size Distribution, Cloud Condensation Nuclei and Their Origins. Atmos. Chem. Phys. 2020, 20, 1431–1449. [Google Scholar] [CrossRef]
- Patey, M.D.; Achterberg, E.P.; Rijkenberg, M.J.; Pearce, R. Aerosol Time-Series Measurements over the Tropical Northeast Atlantic Ocean: Dust Sources, Elemental Composition and Mineralogy. Mar. Chem. 2015, 174, 103–119. [Google Scholar] [CrossRef]
- Jenkins, G.; Gueye, M. Annual and Early Summer Variability in WRF-CHEM Simulated West African PM10 during 1960–2016. Atmos. Environ. 2022, 273, 118957. [Google Scholar] [CrossRef]
- Fomba, K.W.; Müller, K.; Van Pinxteren, D.; Herrmann, H. Aerosol Size-Resolved Trace Metal Composition in Remote Northern Tropical Atlantic Marine Environment: Case Study Cape Verde Islands. Atmos. Chem. Phys. 2013, 13, 4801–4814. [Google Scholar] [CrossRef]
- Penza, M.; Pfister, V.; Suriano, D.; Dipinto, S.; Prato, M.; Cassano, G. Application of Low-Cost Sensors in Stationary and Mobile Nodes for Urban Air Quality Index Monitoring. Eng. Proc. 2023, 48, 62. [Google Scholar] [CrossRef]
- Concas, F.; Mineraud, J.; Lagerspetz, E.; Varjonen, S.; Liu, X.; Puolamäki, K.; Nurmi, P.; Tarkoma, S. Low-Cost Outdoor Air Quality Monitoring and Sensor Calibration. ACM Trans. Sens. Netw. 2021, 17, 20. [Google Scholar] [CrossRef]
- Schilt, U.; Barahona, B.; Buck, R.; Meyer, P.; Kappani, P.; Möckli, Y.; Meyer, M.; Schuetz, P. Low-Cost Sensor Node for Air Quality Monitoring: Field Tests and Validation of Particulate Matter Measurements. Sensors 2023, 23, 794. [Google Scholar] [CrossRef] [PubMed]
- Graça, D.; Reis, J.; Gama, C.; Monteiro, A.; Rodrigues, V.; Rebelo, M.; Borrego, C.; Lopes, M.; Miranda, A.I. Sensors Network as an Added Value for the Characterization of Spatial and Temporal Air Quality Patterns at the Urban Scale. Sensors 2023, 23, 1859. [Google Scholar] [CrossRef] [PubMed]
- Christakis, I.; Sarri, E.; Tsakiridis, O.; Stavrakas, I. Investigation of LASSO Regression Method as a Correction Measurements’ Factor for Low-Cost Air Quality Sensors. Signals 2024, 5, 60–86. [Google Scholar] [CrossRef]
- WHO. Global Air Quality Guidelines. Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; WHO European Centre for Environment and Health: Geneva, Switzerland, 2021. [Google Scholar]
- Hamanaka, R.B.; Mutlu, G.M. Particulate Matter Air Pollution: Effects on the Cardiovascular System. Front. Endocrinol. 2018, 9, 680. [Google Scholar] [CrossRef]
- Clarity Movement Co. Clarity Node-S. Available online: https://www.clarity.io/products/clarity-node-s (accessed on 23 October 2024).
- Kortoçi, P.; Motlagh, N.H.; Zaidan, M.A.; Fung, P.L.; Varjonen, S.; Rebeiro-Hargrave, A.; Niemi, J.V.; Nurmi, P.; Hussein, T.; Petäjä, T.; et al. Air Pollution Exposure Monitoring Using Portable Low-Cost Air Quality Sensors. Smart Health 2022, 23, 100241. [Google Scholar] [CrossRef]
- Zareba, M.; Cogiel, S.; Danek, T.; Weglinska, E. Machine Learning Techniques for Spatio-Temporal Air Pollution Prediction to Drive Sustainable Urban Development in the Era of Energy and Data Transformation. Energies 2024, 17, 2738. [Google Scholar] [CrossRef]
- National Institute of Statistics (INE). Anuário Estatístico 2020; National Institute of Statistics (INE): Praia, Cape Verde, 2022. [Google Scholar]
- de Sousa, I.; Almeida, A.; Moniz, C.; Correia, F.; Oomkens, J.; van der Laan, J.; Cziei, M.; Ribeiro, N.; Carvalho, S. National Adaptation Plan of Cabo Verde; Ministry of Agriculture and Environment; Republic of Cabo Verde: Praia, Cape Verde, 2022. [Google Scholar]
- Python Software Foundation. Python Language Reference; Python Software Foundation: Wilmington, DE, USA, 2023. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- Correia, E. Precipitation Variability During the Rainy Season in Cape Verde; Institute of Geography and Spatial Planning—University of Lisbon (IGOT-ULisboa): Lisboa, Portugal, 1998; pp. 49–61. Available online: https://www.researchgate.net/publication/296275225 (accessed on 25 October 2024).
- Alves, S.d.S.K.; Alves, V.P.A.; Souza, S.N.; Sanches, L.; Gaio, D.C.; Souza, S.G.; De Musis, C.R. Analise Estatística Entre Os Dados de Precipitação Estimada via Satélite TRMM e Dados Observados de Superfície Em Cabo Verde. Rev. Bras. Climatol. 2017, 21, 417–429. [Google Scholar]
- McMullen, N.; Annesi-Maesano, I.; Renard, J.B. Impact of Rain Precipitation on Urban Atmospheric Particle Matter Measured at Three Locations in France between 2013 and 2019. Atmosphere 2021, 12, 769. [Google Scholar] [CrossRef]
- Ouyang, W.; Guo, B.; Cai, G.; Li, Q.; Han, S.; Liu, B.; Liu, X. The Washing Effect of Precipitation on Particulate Matter and the Pollution Dynamics of Rainwater in Downtown Beijing. Sci. Total Environ. 2015, 505, 306–314. [Google Scholar] [CrossRef]
- Wang, R.; Cui, K.; Sheu, H.L.; Wang, L.C.; Liu, X. Effects of Precipitation on the Air Quality Index, PM2.5 Levels and on the Dry Deposition of PCDD/Fs in the Ambient Air. Aerosol Air Qual. Res. 2023, 23, 220417. [Google Scholar] [CrossRef]
- Borck, R.; Schrauth, P. Population Density and Urban Air Quality. Reg. Sci. Urban Econ. 2021, 86, 103596. [Google Scholar] [CrossRef]
- Kim, M.J.; Chang, Y.S.; Kim, S.M. Impact of Income, Density, and Population Size on PM2.5 Pollutions: A Scaling Analysis of 254 Large Cities in Six Developed Countries. Int. J. Environ. Res. Public Health 2021, 18, 9019. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.; Tavares, J. Perfil Urbano Cidade Da Praia Ilha de Santiago: República de Cabo Verde; United Nations Program for Human Settlements, Direcção Geral do Ordenamento do Território e Desenvolvimento Urbano: Praia, Cape Verde, 2013; Volume 153, Available online: https://unhabitat.org/sites/default/files/download-manager-files/Perfil%20Urbano%20Praia.pdf (accessed on 26 October 2024).
- Aghababaeian, H.; Ostadtaghizadeh, A.; Ardalan, A.; Asgary, A.; Akbary, M.; Yekaninejad, M.S.; Stephens, C. Global Health Impacts of Dust Storms: A Systematic Review. Environ. Health Insights 2021, 15. [Google Scholar] [CrossRef] [PubMed]
- Gama, C.; Tchepel, O.; Baldasano, J.M.; Basart, S.; Ferreira, J.; Pio, C.; Cardoso, J.; Borrego, C. Seasonal Patterns of Saharan Dust over Cape Verde—A Combined Approach Using Observations and Modelling. Tellus B Chem. Phys. Meteorol. 2015, 67, 24410. [Google Scholar] [CrossRef]
- Lopes, D.; Semedo, E.; Graça, D.; Rafael, S.; Freire, S.M.; Lopes, M. Survey-Based Atmospheric Emission Inventory for the Residential Sector: Santiago Island, Cabo Verde. Air Qual. Atmos. Health 2023, 16, 1393–1405. [Google Scholar] [CrossRef]
Island | City | Location of the Sensors | Sea Level Elevation (m) | Surrounding Characteristics | |
---|---|---|---|---|---|
Latitude | Longitude | ||||
Santiago | Praia | 14.92445 | −23.50927 | 12± | Busy urban area, close to main roads and high traffic zones. |
Sal | Santa Maria | 16.599833 | −22.907778 | 3± | Coastal area near tourist attractions, moderate traffic. |
Santo Antão | Porto Novo | 17.019283 | −25.064283 | 7± | Small urban center with less traffic, close to the port area. |
São Vicente | Mindelo | 16.886325 | −24.989092 | 5± | Urban area, near a busy port and commercial activities. |
Boa Vista | Sal Rei | 16.175278 | −22.915028 | 6± | Coastal town, low traffic but increasing tourism. |
Fogo | São Filipe | 14.896028 | −24.497056 | 94± | Small urban city, residential and commercial areas, moderate traffic levels. |
Parameter | Technology | Range | Performance After Calibration |
---|---|---|---|
Particulate Matter [µg/m3] | Laser Light Scattering with Remote Calibration | 0–1000 µg/m3 | Accuracy: <100 µg/m3: ±10 µg/m3; ≥100 µg/m3: within ± 10% of measured value. Correlation (R2) with USEPA FEM instrument > 0.8. |
1 µg/m3 resolution | |||
Nitrogen Dioxide NO2 [ppb] | Electrochemical Cell with Remote Calibration | 0–3000 ppb | Accuracy: <200 ppb: ±30 ppb; ≥200 ppb: ±15% of measured value. Correlation (R2) with USEPA FEM instrument > 0.7. |
1 ppb resolution |
City | Population | PM2.5 | PM10 | NO2 |
---|---|---|---|---|
Mindelo | 74,016 | 9.86 | 16.08 | 8.17 |
Porto Novo | 15,914 | 8.17 | 24.76 | 8.27 |
Praia | 142,009 | 24.16 | 40.10 | 18.12 |
Sal Rei | 12,613 | 10.90 | 27.37 | 8.91 |
Santa Maria | 33,347 | 9.15 | 30.44 | 7.24 |
São Filipe | 20,732 | 10.67 | 25.24 | 7.09 |
City | PM2.5 | PM10 | NO2 |
---|---|---|---|
Mindelo | 61 | 13 | 5 |
Porto Novo | 30 | 26 | 9 |
Praia | 336 | 94 | 331 |
Sal Rei | 67 | 36 | 1 |
Santa Maria | 48 | 48 | 0 |
São Filipe | 53 | 18 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Costa, A.Z.; Aniceto, J.P.S.; Lopes, M. Low-Cost Sensor Network for Air Quality Assessment in Cabo Verde Islands. Sensors 2024, 24, 7656. https://doi.org/10.3390/s24237656
da Costa AZ, Aniceto JPS, Lopes M. Low-Cost Sensor Network for Air Quality Assessment in Cabo Verde Islands. Sensors. 2024; 24(23):7656. https://doi.org/10.3390/s24237656
Chicago/Turabian Styleda Costa, Anedito Zico, José P. S. Aniceto, and Myriam Lopes. 2024. "Low-Cost Sensor Network for Air Quality Assessment in Cabo Verde Islands" Sensors 24, no. 23: 7656. https://doi.org/10.3390/s24237656
APA Styleda Costa, A. Z., Aniceto, J. P. S., & Lopes, M. (2024). Low-Cost Sensor Network for Air Quality Assessment in Cabo Verde Islands. Sensors, 24(23), 7656. https://doi.org/10.3390/s24237656