Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (160)

Search Parameters:
Keywords = dual-active-bridge DC–DC converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5596 KiB  
Article
Constant Power Charging Control Method for Isolated Vehicle-to-Vehicle Energy Transfer Converter
by Litong Zheng, Haoran Zhang, Xiuyu Zhang and Hongwei Li
Processes 2025, 13(7), 1999; https://doi.org/10.3390/pr13071999 - 24 Jun 2025
Viewed by 380
Abstract
With the proliferation of electric vehicles (EVs), vehicle-to-vehicle (V2V) energy transfer has emerged as a critical technology for dynamic energy complementarity. This technology addresses “range anxiety”, thereby supporting carbon neutrality goals through the enhanced utilization of renewable-powered EVs. In order to achieve fast, [...] Read more.
With the proliferation of electric vehicles (EVs), vehicle-to-vehicle (V2V) energy transfer has emerged as a critical technology for dynamic energy complementarity. This technology addresses “range anxiety”, thereby supporting carbon neutrality goals through the enhanced utilization of renewable-powered EVs. In order to achieve fast, safe V2V charging and improve device portability, it is necessary to optimize the charging mode and simplify the device. Therefore, this paper proposes a hierarchical control strategy for constant power (CP) charging in a V2V device with a dual-active-bridge (DAB) converter topology. First, different from traditional constant voltage (CV) and constant current (CC) charging, a unified nonlinear DAB model integrating CV/CP/CC charging modes is proposed. Furthermore, sensorless current estimation based on finite-time disturbance observers further reduced the size of the device. Finally, a hierarchical control architecture was constructed by combining backstepping control theory, which ensures global stability of multi-stage charging processes through the dynamic adjustment of phase-shift ratios. The effectiveness of the proposed methodology was validated through simulation and hardware-in-the-loop experimental results. Full article
Show Figures

Figure 1

28 pages, 6345 KiB  
Article
Multimodal Switching Control Strategy for Wide Voltage Range Operation of Three-Phase Dual Active Bridge Converters
by Chenhao Zhao, Chuang Huang, Shaoxu Jiang and Rui Wang
Processes 2025, 13(6), 1921; https://doi.org/10.3390/pr13061921 - 17 Jun 2025
Viewed by 303
Abstract
In recent years, to achieve “dual carbon” goals, increasing the penetration of renewable energy has become a critical approach in China’s power sector. Power electronic converters play a key role in integrating renewable energy into the power system. Among them, the Dual Active [...] Read more.
In recent years, to achieve “dual carbon” goals, increasing the penetration of renewable energy has become a critical approach in China’s power sector. Power electronic converters play a key role in integrating renewable energy into the power system. Among them, the Dual Active Bridge (DAB) DC-DC converter has gained widespread attention due to its merits, such as galvanic isolation, bidirectional power transfer, and soft switching. It has been extensively applied in microgrids, distributed generation, and electric vehicles. However, with the large-scale integration of stochastic renewable sources and uncertain loads into the grid, DAB converters are required to operate over a wider voltage regulation range and under more complex operating conditions. Conventional control strategies often fail to meet these demands due to their limited soft-switching range, restricted optimization capability, and slow dynamic response. To address these issues, this paper proposes a multi-mode switching optimized control strategy for the three-port DAB (3p-DAB) converter. The proposed method aims to broaden the soft-switching range and optimize the operation space, enabling high-power transfer capability while reducing switching and conduction losses. First, to address the issue of the narrow soft-switching range at medium and low power levels, a single-cycle interleaved phase-shift control mode is proposed. Under this control, the three-phase Dual Active Bridge can achieve zero-voltage switching and optimize the minimum current stress, thereby improving the operating efficiency of the converter. Then, in the face of the actual demand for wide voltage regulation of the converter, a standardized global unified minimum current stress optimization scheme based on the virtual phase-shift ratio is proposed. This scheme establishes a unified control structure and a standardized control table, reducing the complexity of the control structure design and the gain expression. Finally, both simulation and experimental results validate the effectiveness and superiority of the proposed multi-mode optimized control strategy. Full article
Show Figures

Figure 1

18 pages, 2025 KiB  
Article
Optimized Submodule Capacitor Ripple Voltage Suppression of an MMC-Based Power Electronic Transformer
by Jinmu Lai, Zijian Wu, Xianyi Jia, Yaoqiang Wang, Yongxiang Liu and Xinbing Zhu
Electronics 2025, 14(12), 2385; https://doi.org/10.3390/electronics14122385 - 11 Jun 2025
Viewed by 352
Abstract
Modular multilevel converter (MMC)-based power electronic transformers (PETs) present a promising solution for connecting AC/DC microgrids to facilitate renewable energy access. However, the capacitor ripple voltage in MMC-based PET submodules hinders volume optimization and power density enhancement, significantly limiting their application in distribution [...] Read more.
Modular multilevel converter (MMC)-based power electronic transformers (PETs) present a promising solution for connecting AC/DC microgrids to facilitate renewable energy access. However, the capacitor ripple voltage in MMC-based PET submodules hinders volume optimization and power density enhancement, significantly limiting their application in distribution networks. To address this issue, this study introduces an optimized method for suppressing the submodule capacitor ripple voltage in MMC-based PET systems under normal and grid fault conditions. First, an MMC–PET topology featuring upper and lower arm coupling is proposed. Subsequently, a double-frequency circulating current injection strategy is incorporated on the MMC side to eliminate the double-frequency ripple voltage of the submodule capacitor. Furthermore, a phase-shifting control strategy is applied in the isolation stage of the dual-active bridge (DAB) to transfer the submodule capacitor selective ripple voltages to the isolation stage coupling link, effectively eliminating the fundamental frequency ripple voltage. The optimized approach successfully suppresses capacitor ripples without increasing current stress on the isolated-stage DAB switches, even under grid fault conditions, which are not addressed by existing ripple suppression methods, thereby reducing device size and cost while ensuring reliable operation. Specifically, the peak-to-peak submodule capacitor ripple voltage is reduced from 232 V to 10 V, and the peak current of the isolation-stage secondary-side switch is limited to ±90 A. The second harmonic ripple voltage on the LVDC bus can be decreased from ±5 V to ±1 V with the proposed method under the asymmetric grid voltage condition. Subsequently, a system simulation model is developed in MATLAB/Simulink. The simulation results validated the accuracy of the theoretical analysis and demonstrated the effectiveness of the proposed method. Full article
Show Figures

Figure 1

34 pages, 5161 KiB  
Article
Robust Adaptive Fractional-Order PID Controller Design for High-Power DC-DC Dual Active Bridge Converter Enhanced Using Multi-Agent Deep Deterministic Policy Gradient Algorithm for Electric Vehicles
by Seyyed Morteza Ghamari, Daryoush Habibi and Asma Aziz
Energies 2025, 18(12), 3046; https://doi.org/10.3390/en18123046 - 9 Jun 2025
Viewed by 700
Abstract
The Dual Active Bridge converter (DABC), known for its bidirectional power transfer capability and high efficiency, plays a crucial role in various applications, particularly in electric vehicles (EVs), where it facilitates energy storage, battery charging, and grid integration. The Dual Active Bridge Converter [...] Read more.
The Dual Active Bridge converter (DABC), known for its bidirectional power transfer capability and high efficiency, plays a crucial role in various applications, particularly in electric vehicles (EVs), where it facilitates energy storage, battery charging, and grid integration. The Dual Active Bridge Converter (DABC), when paired with a high-performance CLLC filter, is well-regarded for its ability to transfer power bidirectionally with high efficiency, making it valuable across a range of energy applications. While these features make the DABC highly efficient, they also complicate controller design due to nonlinear behavior, fast switching, and sensitivity to component variations. We have used a Fractional-order PID (FOPID) controller to benefit from the simple structure of classical PID controllers with lower complexity and improved flexibility because of additional filtering gains adopted in this method. However, for a FOPID controller to operate effectively under real-time conditions, its parameters must adapt continuously to changes in the system. To achieve this adaptability, a Multi-Agent Reinforcement Learning (MARL) approach is adopted, where each gain of the controller is tuned individually using the Deep Deterministic Policy Gradient (DDPG) algorithm. This structure enhances the controller’s ability to respond to external disturbances with greater robustness and adaptability. Meanwhile, finding the best initial gains in the RL structure can decrease the overall efficiency and tracking performance of the controller. To overcome this issue, Grey Wolf Optimization (GWO) algorithm is proposed to identify the most suitable initial gains for each agent, providing faster adaptation and consistent performance during the training process. The complete approach is tested using a Hardware-in-the-Loop (HIL) platform, where results confirm accurate voltage control and resilient dynamic behavior under practical conditions. In addition, the controller’s performance was validated under a battery management scenario where the DAB converter interacts with a nonlinear lithium-ion battery. The controller successfully regulated the State of Charge (SOC) through automated charging and discharging transitions, demonstrating its real-time adaptability for BMS-integrated EV systems. Consequently, the proposed MARL-FOPID controller reported better disturbance-rejection performance in different working cases compared to other conventional methods. Full article
(This article belongs to the Special Issue Power Electronics for Smart Grids: Present and Future Perspectives II)
Show Figures

Figure 1

19 pages, 2510 KiB  
Article
Efficiency Optimization Control Strategies for High-Voltage-Ratio Dual-Active-Bridge (DAB) Converters in Battery Energy Storage Systems
by Hui Ma, Jianhua Lei, Geng Qin, Zhihua Guo and Chuantong Hao
Energies 2025, 18(10), 2650; https://doi.org/10.3390/en18102650 - 20 May 2025
Viewed by 518
Abstract
This article introduces a high-efficiency, high-voltage-ratio bidirectional DC–DC converter based on the Dual-Active-Bridge (DAB) topology, specifically designed for applications involving low-voltage, high-capacity cells. Addressing the critical challenge of enhancing bidirectional power transfer efficiency under ultra-high step-up ratios, which is essential for integrating renewable [...] Read more.
This article introduces a high-efficiency, high-voltage-ratio bidirectional DC–DC converter based on the Dual-Active-Bridge (DAB) topology, specifically designed for applications involving low-voltage, high-capacity cells. Addressing the critical challenge of enhancing bidirectional power transfer efficiency under ultra-high step-up ratios, which is essential for integrating renewable energy sources and battery storage systems into modern power grids, an optimized control strategy is proposed. This strategy focuses on refining switching patterns and minimizing conduction losses to improve overall system efficiency. Theoretical analysis revealed significant enhancements in efficiency across various operating conditions. Simulation results further confirmed that the converter achieved exceptional performance in terms of efficiency at extremely high voltage conversion ratios, showcasing full-range Zero-Voltage Switching (ZVS) capabilities and reduced circulating reactive power. Specifically, the proposed method reduced circulating reactive power by up to 22.4% compared to conventional fixed-frequency control strategies, while achieving over 35% overload capability. These advancements reinforce the role of DAB as a key topology for next-generation high-performance power conversion systems, facilitating more efficient integration of renewable energy and energy storage solutions, and thereby contributing to the stability and sustainability of contemporary energy systems. Full article
(This article belongs to the Special Issue Advances in Energy Storage Systems for Renewable Energy: 2nd Edition)
Show Figures

Figure 1

25 pages, 4440 KiB  
Article
PWM–PFM Hybrid Control of Three-Port LLC Resonant Converter for DC Microgrids
by Yi Zhang, Xiangjie Liu, Jiamian Wang, Baojiang Wu, Feilong Liu and Junfeng Xie
Energies 2025, 18(10), 2615; https://doi.org/10.3390/en18102615 - 19 May 2025
Viewed by 519
Abstract
This article proposes a high-efficiency isolated three-port resonant converter for DC microgrids, combining a dual active bridge (DAB)–LLC topology with hybrid Pulse Width Modulat-Pulse Frequency Modulation (PWM-PFM) phase shift control. Specifically, the integration of a dual active bridge and LLC resonant structure with [...] Read more.
This article proposes a high-efficiency isolated three-port resonant converter for DC microgrids, combining a dual active bridge (DAB)–LLC topology with hybrid Pulse Width Modulat-Pulse Frequency Modulation (PWM-PFM) phase shift control. Specifically, the integration of a dual active bridge and LLC resonant structure with interleaved buck/boost stages eliminates cascaded conversion losses. Energy flows bidirectionally between ports via zero-voltage switching, achieving a 97.2% efficiency across 150–300 V input ranges, which is a 15% improvement over conventional cascaded designs. Also, an improved PWM-PFM shift control scheme dynamically allocates power between ports without altering switching frequency. By decoupling power regulation and leveraging resonant tank optimization, this strategy reduces control complexity while maintaining a ±2.5% voltage ripple under 20% load transients. Additionally, a switch-controlled capacitor network and frequency tuning enable resonant parameter adjustment, achieving a 1:2 voltage gain range without auxiliary circuits. It reduces cost penalties compared to dual-transformer solutions, making the topology viable for heterogeneous DC microgrids. Based on a detailed theoretical analysis, simulation and experimental results verify the effectiveness of the proposed concept. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

29 pages, 9574 KiB  
Review
Bidirectional DC-DC Converter Topologies for Hybrid Energy Storage Systems in Electric Vehicles: A Comprehensive Review
by Yan Tong, Issam Salhi, Qin Wang, Gang Lu and Shengyu Wu
Energies 2025, 18(9), 2312; https://doi.org/10.3390/en18092312 - 1 May 2025
Cited by 1 | Viewed by 2077
Abstract
Electric Vehicles (EV) significantly contribute to reducing carbon emissions and promoting sustainable transportation. Among EV technologies, hybrid energy storage systems (HESS), which combine fuel cells, power batteries, and supercapacitors, have been widely adopted to enhance energy density, power density, and system efficiency. Bidirectional [...] Read more.
Electric Vehicles (EV) significantly contribute to reducing carbon emissions and promoting sustainable transportation. Among EV technologies, hybrid energy storage systems (HESS), which combine fuel cells, power batteries, and supercapacitors, have been widely adopted to enhance energy density, power density, and system efficiency. Bidirectional DC-DC converters are pivotal in HESS, enabling efficient energy management, voltage matching, and bidirectional energy flow between storage devices and vehicle systems. This paper provides a comprehensive review of bidirectional DC-DC converter topologies for EV applications, which focuses on both non-isolated and isolated designs. Non-isolated topologies, such as Buck-Boost, Ćuk, and interleaved converters, are featured for their simplicity, efficiency, and compactness. Isolated topologies, such as dual active bridge (DAB) and push-pull converters, are featured for their high voltage gain and electrical isolation. An evaluation framework is proposed, incorporating key performance metrics such as voltage stress, current stress, power density, and switching frequency. The results highlight the strengths and limitations of various converter topologies, offering insights into their optimization for EV applications. Future research directions include integrating wide-bandgap devices, advanced control strategies, and novel topologies to address challenges such as wide voltage gain, high efficiency, and compact design. This work underscores the critical role of bidirectional DC-DC converters in advancing energy-efficient and sustainable EV technologies. Full article
Show Figures

Figure 1

37 pages, 11540 KiB  
Article
Multibattery Charger System Based on a Multilevel Dual-Active-Bridge Power Converter
by José M. Campos-Salazar, Sergio Busquets-Monge, Alber Filba-Martinez and Salvador Alepuz
Electronics 2025, 14(8), 1659; https://doi.org/10.3390/electronics14081659 - 19 Apr 2025
Viewed by 555
Abstract
This work introduces a novel battery charger implemented with a four-level three-phase neutral-point-clamped converter and a four-level single-phase dual-active-bridge converter, which offers the intrinsic advantages of multilevel conversion, provides galvanic isolation and allows bidirectional power flow. A detailed and extensive modeling of the [...] Read more.
This work introduces a novel battery charger implemented with a four-level three-phase neutral-point-clamped converter and a four-level single-phase dual-active-bridge converter, which offers the intrinsic advantages of multilevel conversion, provides galvanic isolation and allows bidirectional power flow. A detailed and extensive modeling of the system is developed, together with the design of appropriate closed-loop control and modulation. The proposed system allows individual charging of each battery pack, ensuring that the full capacity of the battery bank is utilized, even when the battery packs have different state-of-charge levels, differ in nominal capacities, or use different chemistries. Furthermore, the proposed control system manages the overall DC-link voltage and ensures voltage balance across both DC-links in the system. The effectiveness of the proposed system configuration and control has been validated through simulations. The simulation results show good dynamic response in different operating scenarios, confirming the suitability, feasibility, and benefits of the proposed implementation and control approach. Full article
Show Figures

Figure 1

16 pages, 17437 KiB  
Article
A Parallel Dual LLC Resonant Converter with Wide Output Voltage Range for Energy System Applications
by Chih-Chiang Hua, Jian-Bin Lai and Wei-Cheng Hung
Energies 2025, 18(7), 1635; https://doi.org/10.3390/en18071635 - 25 Mar 2025
Viewed by 596
Abstract
This paper proposes a half-bridge parallel dual LLC resonant converter with wide output voltage range. The proposed converter uses a conventional parallel double half-bridge LLC resonant converter. On the primary side of the converter, only one of the two half bridges is used [...] Read more.
This paper proposes a half-bridge parallel dual LLC resonant converter with wide output voltage range. The proposed converter uses a conventional parallel double half-bridge LLC resonant converter. On the primary side of the converter, only one of the two half bridges is used to control the two resonant loops. Due to the resonance of the converter, the active switches can achieve ZVS (zero-voltage switching), and the rectifier diode can also achieve ZCS (zero-current switching), and thus the switching loss is reduced. The current stress can be reduced and power can be distributed on both of the primary side and/or the secondary side. A voltage regulation circuit is designed on the secondary side to achieve the function of wide output voltage. The operation and analysis of the proposed converter are described in detail. The experiments were carried out on a circuit prototype, which is a converter with DC input voltage of 384 V and output voltage of 24–40 V and operating at a switching frequency of 107 kHz. The feasibility and performance of the proposed converter were verified by simulation and experimental results. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 3rd Edition)
Show Figures

Figure 1

15 pages, 5405 KiB  
Article
Off-Grid Smoothing Control Strategy for Dual Active Bridge Energy Storage System Based on Voltage Droop Control
by Chunhui Liu, Cai Xu, Yinfu Bao, Haoran Chen, Xiaolu Chen, Min Chen, Feng Jiang and Zhaopei Liang
Energies 2025, 18(7), 1585; https://doi.org/10.3390/en18071585 - 22 Mar 2025
Viewed by 504
Abstract
Energy storage systems based on dual active bridge (DAB) converters are a critical component of DC microgrid systems. To address power oscillations and system stability issues caused by power deficits during the off-grid operation of DC microgrids, a control strategy for DAB energy [...] Read more.
Energy storage systems based on dual active bridge (DAB) converters are a critical component of DC microgrid systems. To address power oscillations and system stability issues caused by power deficits during the off-grid operation of DC microgrids, a control strategy for DAB energy storage systems based on voltage droop control is proposed. By analyzing the internal operational mechanisms of DAB power electronic converters and integrating voltage droop equations, a small-signal model is constructed to deeply investigate the dynamic characteristics of DAB energy storage systems under off-grid conditions. Using the Nyquist stability criterion, appropriate voltage droop coefficients are selected to enhance system stability. Finally, a DC microgrid model is built on the MATLAB/Simulink simulation platform. Through the rational design of the droop coefficients, the overshoot of the power response is reduced from 28.87% to 4.27%, and settling time is effectively shortened while oscillations are suppressed. The simulation results validate the correctness and effectiveness of the theoretical framework proposed in this study. Full article
(This article belongs to the Special Issue Studies of Microgrids for Electrified Transportation)
Show Figures

Figure 1

21 pages, 2180 KiB  
Article
Advanced Distributed Control of Parallel Resonant CLLC DAB Converters
by David Carmona Vicente, Alba Muñoz Carrero, Eduardo Galván Díez, Juan Manuel Carrasco Solís and Francisco Rodríguez Rubio
Electronics 2025, 14(2), 318; https://doi.org/10.3390/electronics14020318 - 15 Jan 2025
Viewed by 1306
Abstract
The integration of hybrid alternating current (AC) and direct current (DC) networks has gained relevance due to the growing demand for more flexible, efficient, and reliable electrical systems. A key aspect of this integration is the parallelization of power converters, which presents several [...] Read more.
The integration of hybrid alternating current (AC) and direct current (DC) networks has gained relevance due to the growing demand for more flexible, efficient, and reliable electrical systems. A key aspect of this integration is the parallelization of power converters, which presents several technical challenges, such as current sharing imbalances, circulating currents, and control complexity. This paper proposes a distributed control architecture for parallel resonant CLLC dual active bridge (DAB) converters to address these issues in hybrid AC–DC networks and microgrids. The approach includes a master voltage controller to regulate the output voltage and distributed local current controllers to ensure load balance. The approach minimizes the difference between the output and input voltages, allowing for independent control of power flow. Simulation and experimental results show significant improvements. The system stability has been demonstrated experimentally. Transient response has been improved with response time 80% lower using the feed-forward term. The system maintained stability with current sharing deviations below 3% under full and low load conditions. Finally, scalability is ensured by the proposed distributed controller because the central power controller is not affected by the number of units in parallel used in the application. This solution is suitable for advanced hybrid networks and microgrid applications. Full article
(This article belongs to the Special Issue Advanced Control Techniques for Power Converter and Drives)
Show Figures

Figure 1

16 pages, 6563 KiB  
Article
Two-Stage Isolated Bidirectional DC-DC Converter with Low Profile and Double Heat Sink for Battery Charging/Discharging System
by Seong-Yong Hong, Sang-Gyun Ryu, Chan-Bae Park, Hyung-Woo Lee and Jae-Bum Lee
Electronics 2025, 14(2), 283; https://doi.org/10.3390/electronics14020283 - 12 Jan 2025
Viewed by 1440
Abstract
This paper proposes an isolated bidirectional dc-dc converter (IBDC) without a cooling fan with a low profile for a direct connection between a battery and the IBDC. To implement the low-profile IBDC, a dual active bridge (DAB) and two interleaved buck/boost converters are [...] Read more.
This paper proposes an isolated bidirectional dc-dc converter (IBDC) without a cooling fan with a low profile for a direct connection between a battery and the IBDC. To implement the low-profile IBDC, a dual active bridge (DAB) and two interleaved buck/boost converters are adopted in the proposed system. For the IBDC with a low profile and high efficiency, two transformers in the DAB converter are separated in series on their primary side and in parallel on their secondary side. In addition, in two interleaved buck/boost converters, their inputs and outputs are connected in parallel, and interleaving control is applied for a small total of inductor current ripple. Finally, a double heat sink is designed for excellent heat dissipation performance. A 500 W low-profile and fanless prototype with 650 V input and 1 (60 W)~5 V (500 W) output was made to verify its performance of operation, efficiency, and saturation temperature. Full article
(This article belongs to the Special Issue Advanced DC-DC Converter Topology Design, Control, Application)
Show Figures

Figure 1

31 pages, 5397 KiB  
Article
Load Sensitivity Correlation Factor-Based Steady-State Power Flow Allocation Method for Independent DC Bus Structure Multiport Power Electronic Transformer
by Junchi Li, Junyong Wu, Fei Xiong and Liangliang Hao
Electronics 2025, 14(2), 279; https://doi.org/10.3390/electronics14020279 - 11 Jan 2025
Viewed by 1015
Abstract
The independent DC bus structure multiport power electronic transformer (IDBS-MPET) is a novel power electronic transformer designed to integrate multiple DC sources and DC loads. Due to the configuration of DC ports, which are directly constructed by the parallel connection of dual active [...] Read more.
The independent DC bus structure multiport power electronic transformer (IDBS-MPET) is a novel power electronic transformer designed to integrate multiple DC sources and DC loads. Due to the configuration of DC ports, which are directly constructed by the parallel connection of dual active bridge (DAB) converters, the distribution of DC sources and DC loads among the three phases becomes unbalanced. In cases where the load power at certain ports is too high, this imbalance may lead to the over-modulation of the front-end H-bridge (HB). Since the output power at a certain port in the IDBS-MPET is constrained by the loads at other ports, this paper proposes a multiport steady-state power flow allocation method. This method establishes the load sensitivity correlation factor to enable all the ports to adjust power cooperatively based on it. By applying the proposed steady-state power flow allocation method, iterative calculations continuously update the priority of all the ports and their load sensitivity correlation factors. This process ensures that the power flow converges to a steady-state solution. Simulation results for two different IDBS-MPETs demonstrate that the power flow at all the ports effectively meets load requirements, while the front-end HB avoids over-modulation, ensuring the safe and stable operation of the IDBS-MPET. The results validate the effectiveness of the proposed steady-state power flow allocation method. Full article
Show Figures

Figure 1

16 pages, 8869 KiB  
Article
A Modular Power Converter Topology to Interface Removable Batteries with 400 V and 800 V Electric Powertrains
by Duberney Murillo-Yarce, Gabriel D. Colvero, Alexis A. Gómez, Jairo Tuñón Díaz, Alberto Rodríguez and Aitor Vázquez
Electronics 2025, 14(2), 215; https://doi.org/10.3390/electronics14020215 - 7 Jan 2025
Cited by 1 | Viewed by 1085
Abstract
Electric vehicles (EVs) are a sustainable means of transportation, with their onboard batteries being crucial for both performance and energy management. A modular and reconfigurable power converter topology to connect removable batteries to the main DC bus of an EV is proposed in [...] Read more.
Electric vehicles (EVs) are a sustainable means of transportation, with their onboard batteries being crucial for both performance and energy management. A modular and reconfigurable power converter topology to connect removable batteries to the main DC bus of an EV is proposed in this paper. By employing Dual Active Bridge (DAB) converters in an Input Parallel Output Series (IPOS) configuration, the proposed topology is compatible with 400 V and 800 V standards without the need for external switches. The research explored the possibility to apply a very simple control strategy based on independent linear regulators. A theoretical analysis of the IPOS DAB converter is presented and the design of independent control regulators which minimize the coupling effect between the control variables is addressed. The stability of the IPOS DAB converter could be ensured using the proposed simplistic approach, enabling us to drastically simplify the regulator design step. The dynamic performance of the system was confirmed by means of a simulation and experimentally. Full article
(This article belongs to the Special Issue Advanced DC-DC Converter Topology Design, Control, Application)
Show Figures

Figure 1

26 pages, 10530 KiB  
Article
Intrinsic Regularity Analysis and Optimization Control of Current Stress and RMS for Dual-Active Bridge Converter
by Laiyong Zhang, Chunming Tu, Fan Xiao, Bei Liu and Peiqiang Li
Electronics 2024, 13(23), 4802; https://doi.org/10.3390/electronics13234802 - 5 Dec 2024
Cited by 3 | Viewed by 825
Abstract
Currently, current stress optimization control and current effective value optimization control have become the mainstream methods for real-time optimization control of dual-active bridge converters. However, there is still a lack of systematic research on the internal optimization regularities between the two and their [...] Read more.
Currently, current stress optimization control and current effective value optimization control have become the mainstream methods for real-time optimization control of dual-active bridge converters. However, there is still a lack of systematic research on the internal optimization regularities between the two and their respective internal optimization regularities, as well as problems such as the complex derivation of the effective value optimization control variable function. To address these issues, this paper analyzes the optimization results of stress optimization, effective value optimization, and double-objective entropy weight method optimization, and it explores the regularities and connections between the optimization variables of three optimizations in different power segments in different local optimal modes. Based on these regularities, the trigonometric function polar coordinate method is innovatively employed to derive the function expression of the RMS optimization control variable. Firstly, the four local optimal modes obtained from existing research are optimized by double-objective optimization. According to the weight settings, the optimization results of stress optimization, effective value optimization, and double-objective entropy weight method optimization are obtained. Subsequently, the optimization results are analyzed and compared, and the regularities between the optimization variables of these four local modes in different power segments under three optimizations are derived. Then, based on these regularities, the function expressions of the minimum current stress and the minimum effective value, as well as the function expressions of the optimized control variables, are derived by using the trigonometric function polar coordinate method. Finally, by comparing the current stress values and effective values of these four local optimal modes in the full power range, the global optimal mode and global optimal control variables in this range are selected, thereby achieving real-time global optimal control under power or voltage fluctuations. Simulations and experiments confirm the correctness of the theoretical analysis and the effectiveness of the optimization control strategy. Full article
Show Figures

Figure 1

Back to TopTop