Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = dual excitation units

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 6206 KiB  
Article
High-Redundancy Design and Application of Excitation Systems for Large Hydro-Generator Units Based on ATS and DDS
by Xiaodong Wang, Xiangtian Deng, Xuxin Yue, Haoran Wang, Xiaokun Li and Xuemin He
Electronics 2025, 14(15), 3013; https://doi.org/10.3390/electronics14153013 - 29 Jul 2025
Viewed by 253
Abstract
The large-scale integration of stochastic renewable energy sources necessitates enhanced dynamic balancing capabilities in power systems, positioning hydropower as a critical balancing asset. Conventional excitation systems utilizing hot-standby dual-redundancy configurations remain susceptible to unit shutdown events caused by regulator failures. To mitigate this [...] Read more.
The large-scale integration of stochastic renewable energy sources necessitates enhanced dynamic balancing capabilities in power systems, positioning hydropower as a critical balancing asset. Conventional excitation systems utilizing hot-standby dual-redundancy configurations remain susceptible to unit shutdown events caused by regulator failures. To mitigate this vulnerability, this study proposes a peer-to-peer distributed excitation architecture integrating asynchronous traffic shaping (ATS) and Data Distribution Service (DDS) technologies. This architecture utilizes control channels of equal priority and achieves high redundancy through cross-communication between discrete acquisition and computation modules. This research advances three key contributions: (1) design of a peer-to-peer distributed architectural framework; (2) development of a real-time data interaction methodology combining ATS and DDS, incorporating cross-layer parameter mapping, multi-priority queue scheduling, and congestion control mechanisms; (3) experimental validation of system reliability and redundancy through dynamic simulation. The results confirm the architecture’s operational efficacy, delivering both theoretical foundations and practical frameworks for highly reliable excitation systems. Full article
(This article belongs to the Special Issue Power Electronics in Renewable Systems)
Show Figures

Figure 1

15 pages, 4471 KiB  
Article
Reconfigurable Intelligent Surfaces with Dual-Band Dual-Polarization Capabilities for Arbitrary Beam Synthesis Beyond Beam Steering
by Moosung Kim, Geun-Yeong Jun and Minseok Kim
Electronics 2025, 14(14), 2812; https://doi.org/10.3390/electronics14142812 - 12 Jul 2025
Viewed by 281
Abstract
A surface-wave-assisted, dual-band, circularly polarized reconfigurable intelligent surface is proposed that allows arbitrary beam-shaping capability within the [4.35 GHz–4.5 GHz] and [11.8 GHz–12.3 GHz] frequency bands. In particular, alongside the proposed physical design of the surface, a genetic algorithm-based design framework is introduced [...] Read more.
A surface-wave-assisted, dual-band, circularly polarized reconfigurable intelligent surface is proposed that allows arbitrary beam-shaping capability within the [4.35 GHz–4.5 GHz] and [11.8 GHz–12.3 GHz] frequency bands. In particular, alongside the proposed physical design of the surface, a genetic algorithm-based design framework is introduced to enable the synthesis of complex radiation patterns beyond simple beam steering. It is shown that the phase profiles obtained from the proposed optimization scheme naturally lead to the excitation of surface waves, which facilitate arbitrary beam shaping by satisfying the local power conservation condition between the normally impinging and arbitrarily reflected waves. To physically construct the proposed surface, cascaded symmetric unit cells are employed to facilitate circular polarization operation and realize dual-band operation. Furthermore, varactor diodes are incorporated into the design of unit cells so that the reflection phase can be independently and continuously tuned across the two frequency bands, with a tuning range of 300 degrees. The versatility of the proposed surface is demonstrated through design examples that achieve (i) unidirectional beam steering, (ii) multi-directional beam steering, and (iii) sector-beam formation within each frequency band. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

22 pages, 3277 KiB  
Article
Power Oscillation Emergency Support Strategy for Wind Power Clusters Based on Doubly Fed Variable-Speed Pumped Storage Power Support
by Weidong Chen and Jianyuan Xu
Symmetry 2025, 17(6), 964; https://doi.org/10.3390/sym17060964 - 17 Jun 2025
Viewed by 331
Abstract
Single-phase short-circuit faults are severe asymmetrical fault modes in high renewable energy power systems. They can easily cause large-scale renewable energy to enter the low-voltage ride-through (LVRT) state. When such symmetrical or asymmetrical faults occur in the transmission channels of high-proportion wind power [...] Read more.
Single-phase short-circuit faults are severe asymmetrical fault modes in high renewable energy power systems. They can easily cause large-scale renewable energy to enter the low-voltage ride-through (LVRT) state. When such symmetrical or asymmetrical faults occur in the transmission channels of high-proportion wind power clusters, they may trigger the tripping of thermal power units and a transient voltage drop in most wind turbines in the high-proportion wind power area. This causes an instantaneous active power deficiency and poses a low-frequency oscillation risk. To address the deficiencies of wind turbine units in fault ride-through (FRT) and active frequency regulation capabilities, a power emergency support scheme for wind power clusters based on doubly fed variable-speed pumped storage dynamic excitation is proposed. A dual-channel energy control model for variable-speed pumped storage units is established via AC excitation control. This model provides inertia support and FRT energy simultaneously through AC excitation control of variable-speed pumped storage units. Considering the transient stability of the power network in the wind power cluster transmission system, this scheme prioritizes offering dynamic reactive power to support voltage recovery and suppresses power oscillations caused by power deficiency during LVRT. The electromagnetic torque completed the power regulation within 0.4 s. Finally, the effectiveness of the proposed strategy is verified through modeling and analysis based on the actual power network of a certain region in Northeast China. Full article
(This article belongs to the Special Issue Advances in Intelligent Power Electronics with Symmetry/Asymmetry)
Show Figures

Figure 1

19 pages, 7175 KiB  
Article
MFFSNet: A Lightweight Multi-Scale Shuffle CNN Network for Wheat Disease Identification in Complex Contexts
by Mingjin Xie, Jiening Wu, Jie Sun, Lei Xiao, Zhenqi Liu, Rui Yuan, Shukai Duan and Lidan Wang
Agronomy 2025, 15(4), 910; https://doi.org/10.3390/agronomy15040910 - 7 Apr 2025
Viewed by 633
Abstract
Wheat is one of the most essential food crops globally, but diseases significantly threaten its yield and quality, resulting in considerable economic losses. The identification of wheat diseases faces challenges, such as interference from complex environments in the field, the inefficiency of traditional [...] Read more.
Wheat is one of the most essential food crops globally, but diseases significantly threaten its yield and quality, resulting in considerable economic losses. The identification of wheat diseases faces challenges, such as interference from complex environments in the field, the inefficiency of traditional machine learning methods, and difficulty in deploying the existing deep learning models. To address these challenges, this study proposes a multi-scale feature fusion shuffle network model (MFFSNet) for wheat disease identification from complex environments in the field. MFFSNet incorporates a multi-scale feature extraction and fusion module (MFEF), utilizing inflated convolution to efficiently capture diverse features, and its main constituent units are improved by ShuffleNetV2 units. A dual-branch shuffle attention mechanism (DSA) is also integrated to enhance the model’s focus on critical features, reducing interference from complex backgrounds. The model is characterized by its smaller size and fast operation speed. The experimental results demonstrate that the proposed DSA attention mechanism outperforms the best-performing Squeeze-and-Excitation (SE) block by approximately 1% in accuracy, with the final model achieving 97.38% accuracy and 97.96% recall on the test set, which are higher than classical models such as GoogleNet, MobileNetV3, and Swin Transformer. In addition, the number of parameters of this model is only 0.45 M, one-third that of MobileNetV3 Small, which is very suitable for deploying on devices with limited memory resources, demonstrating great potential for practical applications in agricultural production. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

81 pages, 17721 KiB  
Review
Interactive Coupling Relaxation of Dipoles and Wagner Charges in the Amorphous State of Polymers Induced by Thermal and Electrical Stimulations: A Dual-Phase Open Dissipative System Perspective
by Jean Pierre Ibar
Polymers 2025, 17(2), 239; https://doi.org/10.3390/polym17020239 - 19 Jan 2025
Viewed by 929
Abstract
This paper addresses the author’s current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very [...] Read more.
This paper addresses the author’s current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization. Specifically, this paper describes and tries to explain ‘interactive coupling’ between molecular motions in polymers by their dielectric relaxation characteristics when polymeric samples have been submitted to thermally induced polarization by a voltage field followed by depolarization at a constant heating rate. Interactive coupling results from the modulation of the local interactions by the collective aspect of those interactions, a recursive process pursuant to the dynamics of the interplay between the free volume and the conformation of dual-conformers, two fundamental basic units of the macromolecules introduced by this author in the “dual-phase” model of interactions. This model reconsiders the fundamentals of the TSD and TWD results in a different way: the origin of the dipoles formation, induced or permanent dipoles; the origin of the Wagner space charges and the Tg,ρ transition; the origin of the TLL manifestation; the origin of the Debye elementary relaxations’ compensation or parallelism in a relaxation map; and finally, the dual-phase origin of their super-compensations. In other words, this paper is an attempt to link the fundamentals of TSD and TWD activation and deactivation of dipoles that produce a current signal with the statistical parameters of the “dual-phase” model of interactions underlying the Grain-Field Statistics. Full article
Show Figures

Figure 1

22 pages, 7849 KiB  
Article
Array Optimization for a Wave Energy Converter with Adaptive Resonance Using Dual Bayesian Optimization
by Aghamarshana Meduri and HeonYong Kang
J. Mar. Sci. Eng. 2024, 12(12), 2143; https://doi.org/10.3390/jmse12122143 - 24 Nov 2024
Cited by 1 | Viewed by 1126
Abstract
A novel Dual Bayesian optimization strategy is formed for an array of wave energy converters with adaptive resonance to maximize the annual performance through the energy conversion processes from irregular waves to electricity. A wave energy converter with adaptive resonance changes the natural [...] Read more.
A novel Dual Bayesian optimization strategy is formed for an array of wave energy converters with adaptive resonance to maximize the annual performance through the energy conversion processes from irregular waves to electricity. A wave energy converter with adaptive resonance changes the natural frequency of power take-off dynamics for varying irregular waves, resulting in the maximum annual energy production. The first step of the two-step Dual Bayesian optimization determines the geometric layout of the array, which maximizes the first energy conversion to the total array excitation for irregular waves occurring annually. The second step optimizes the operational parameters of individual wave energy converters in the optimized array to maximize the power generation in varying sea states through simultaneous conversion to mechanical and electrical energy. The coupled hydrodynamics are solved in the frequency domain, and the power performance is evaluated by solving the Cummins’ equation in the time domain extended for multiple floating bodies, each strongly coupled with nonlinear power take-off dynamics. The proposed method is applied to a surface-riding wave energy converter, already optimized for single unit operation at individual sea states. Investigating two array layouts, linear and random, the optimized arrays after Step 1 increase the excitation spectral area by up to 40% relative to the single unit operation, indicating the synergy enhancing the first energy conversion. Subsequently, the dual-optimized linear layout attained a q-factor up to 1.13 in commonly occurring sea states, achieving improved average power generation in 60% of the evaluated sea states. The performance of the random layout exhibited the average power fluctuating along the wave spectra with a peak q-factor of 1.07. The individual adaptive resonance is confirmed in the optimized arrays, such that each surface-riding wave energy converter of both layouts adaptively resonates with the peak of the wave excitation spectra, maximizing the power generation for the different irregular waves. Full article
(This article belongs to the Special Issue Feature Papers on Marine Energy in 2024)
Show Figures

Figure 1

14 pages, 3868 KiB  
Article
pNIPAm-Based pH and Thermoresponsive Copolymer Hydrogel for Hydrophobic and Hydrophilic Drug Delivery
by Anandhu Mohan, Madhappan Santhamoorthy, Thi Tuong Vy Phan and Seong-Cheol Kim
Gels 2024, 10(3), 184; https://doi.org/10.3390/gels10030184 - 7 Mar 2024
Cited by 20 | Viewed by 4698
Abstract
The regulated and targeted administration of hydrophobic and hydrophilic drugs is both promising and challenging in the field of drug delivery. Developing a hydrogel which is responsive to dual stimuli is considered a promising and exciting research area of study. In this work, [...] Read more.
The regulated and targeted administration of hydrophobic and hydrophilic drugs is both promising and challenging in the field of drug delivery. Developing a hydrogel which is responsive to dual stimuli is considered a promising and exciting research area of study. In this work, melamine functionalized poly-N-isopropyl acrylamide-co-glycidyl methacrylate copolymer has been developed by copolymerizing glycidyl methacrylate (GMA) monomer with N-isopropyl acrylamide (NIPAm) and further functionalized with melamine units (pNIPAm-co-pGMA-Mela). The prepared pNIPAm-co-pGMA-Mela copolymer hydrogel was characterized using various characterization techniques, including 1H NMR, FTIR, SEM, zeta potential, and particle size analysis. A hydrophobic drug (ibuprofen, Ibu) and hydrophilic drug (5-fluorouracil, 5-Fu) were selected as model drugs. Dual pH and temperature stimuli-responsive drug release behavior of the pNIPAm-co-pGMA-Mela hydrogel was evaluated under different pH (pH 7.4 and 4.0) and temperature (25 °C, 37 °C, and 45 °C) conditions. Furthermore, the in vitro biocompatibility of the developed pNIPAm-co-pGMA-Mela copolymer hydrogel was determined on MDA-MB-231 cells. The pH and temperature-responsive drug delivery study results reveal that the pNIPAm-co-pGMA-Mela hydrogel system is responsive to both pH and temperature stimuli and exhibits about ~100% of Ibu and 5-Fu, respectively, released at pH 4.0/45 °C. Moreover, the MTT assay and hemocompatibility analysis results proved that the pNIPAm-co-pGMA-Mela hydrogel system is biocompatible and hemocompatible, suggesting that that it could be used for drug delivery applications. The experimental results suggest that the proposed pNIPAm-co-pGMA-Mela hydrogel system is responsive to dual pH and temperature stimuli, and could be a promising drug carrier system for both hydrophilic and hydrophobic drug delivery applications. Full article
(This article belongs to the Special Issue Biopolymer Gels as Smart Drug Delivery and Theranostic Systems)
Show Figures

Graphical abstract

24 pages, 7794 KiB  
Article
A New Technique for Connecting a Dual Excitation Synchronous Generator to the Power Grid
by Roberto De Fazio, Ayman Alerksousi, Lorenzo Spongano, Bassam Al-Naami, Abdullah Al-Odienat and Paolo Visconti
Energies 2023, 16(24), 7936; https://doi.org/10.3390/en16247936 - 6 Dec 2023
Viewed by 1913
Abstract
Due to an increasing demand for electric power and changes in the typology of loads, stability has become a major concern in power systems. As the system stability is directly related to the response of the connected generator, recent research has focused on [...] Read more.
Due to an increasing demand for electric power and changes in the typology of loads, stability has become a major concern in power systems. As the system stability is directly related to the response of the connected generator, recent research has focused on enhancing generators’ stability and improving their response to load variations. This study focuses on adding another excitation winding on to the q-axis, perpendicular to the conventional excitation winding on the d-axis, to control both active and reactive power. This paper studies and compares the performance of the dual excitation synchronous generator (DESG) to conventional synchronous generators. The mathematical equations are derived, and a mathematical model is then developed. The experimental tests have been conducted using a laboratory model consisting of a two-phase synchronous generator driven by a DC motor with different loads. The obtained results and radial diagrams for the different loading types are presented and evaluated. Therefore, a new approach has been designed to connect the DESG directly to the power grid without any electronic components using a special coupling that works in one direction. Two perpendicular excitation coils, d and q, were formed from the existing coils, and the tests were carried out on all loads, ensuring that the revolving angle (i.e., the stability angle φ) was fixed. The results show that the proposed method offers significant cost savings, potentially amounting to 15–20% of the unit price. The experimental results confirm that the DESG significantly improves the generator stability by maintaining a constant rotor angle δ, which requires using an automatic angle regulator (AAR) in addition to the conventional automatic voltage regulator (AVR). Full article
Show Figures

Figure 1

16 pages, 2310 KiB  
Article
Dipeptides Containing Pyrene and Modified Photochemically Reactive Tyrosine: Noncovalent and Covalent Binding to Polynucleotides
by Igor Sviben, Mladena Glavaš, Antonija Erben, Thomas Bachelart, Dijana Pavlović Saftić, Ivo Piantanida and Nikola Basarić
Molecules 2023, 28(22), 7533; https://doi.org/10.3390/molecules28227533 - 10 Nov 2023
Viewed by 1466
Abstract
Dipeptides 1 and 2 were synthesized from unnatural amino acids containing pyrene as a fluorescent label and polynucleotide binding unit, and modified tyrosine as a photochemically reactive unit. Photophysical properties of the peptides were investigated by steady-state and time-resolved fluorescence. Both peptides are [...] Read more.
Dipeptides 1 and 2 were synthesized from unnatural amino acids containing pyrene as a fluorescent label and polynucleotide binding unit, and modified tyrosine as a photochemically reactive unit. Photophysical properties of the peptides were investigated by steady-state and time-resolved fluorescence. Both peptides are fluorescent (Φf = 0.3–0.4) and do not show a tendency to form pyrene excimers in the concentration range < 10−5 M, which is important for their application in the fluorescent labeling of polynucleotides. Furthermore, both peptides are photochemically reactive and undergo deamination delivering quinone methides (QMs) (ΦR = 0.01–0.02), as indicated from the preparative photomethanolysis study of the corresponding N-Boc protected derivatives 7 and 8. Both peptides form stable complexes with polynucleotides (log Ka > 6) by noncovalent interactions and similar affinities, binding to minor grooves, preferably to the AT reach regions. Peptide 2 with a longer spacer between the fluorophore and the photo-activable unit undergoes a more efficient deamination reaction, based on the comparison with the N-Boc protected derivatives. Upon light excitation of the complex 2·oligoAT10, the photo-generation of QM initiates the alkylation, which results in the fluorescent labeling of the oligonucleotide. This study demonstrated, as a proof of principle, that small molecules can combine dual forms of fluorescent labeling of polynucleotides, whereby initial addition of the dye rapidly forms a reversible high-affinity noncovalent complex with ds-DNA/RNA, which can be, upon irradiation by light, converted to the irreversible (covalent) form. Such a dual labeling ability of a dye could have many applications in biomedicinal sciences. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

18 pages, 7214 KiB  
Article
A Combined Plasmonic and Electrochemical Aptasensor Based on Gold Nanopit Arrays for the Detection of Human Serum Albumin
by Ruifeng Zhu, Gabriela Figueroa-Miranda, Lei Zhou, Ziheng Hu, Bohdan Lenyk, Sven Ingebrandt, Andreas Offenhäusser and Dirk Mayer
Nanomaterials 2023, 13(16), 2374; https://doi.org/10.3390/nano13162374 - 19 Aug 2023
Cited by 5 | Viewed by 2050
Abstract
Electrochemical and optical platforms are commonly employed in designing biosensors. However, one signal readout can easily lead to inaccuracies due to the effect of nonstandard test procedures, different operators, and experimental environments. We have developed a dual-signal protocol that combined two transducer principles [...] Read more.
Electrochemical and optical platforms are commonly employed in designing biosensors. However, one signal readout can easily lead to inaccuracies due to the effect of nonstandard test procedures, different operators, and experimental environments. We have developed a dual-signal protocol that combined two transducer principles in one aptamer-based biosensor by simultaneously performing electrochemical- and extraordinary optical transmission (EOT)-based plasmonic detection using gold nanopit arrays (AuNpA). Compared with full hole structures, we found that nanopits, that did not fully penetrate the gold film, not only exhibited a better plasmonic bandwidth and refractive index sensitivity both in the finite-difference time-domain simulation and in experiments by shielding the gold/quartz mode but also enlarged the electrochemical active surface area. Therefore, the periodic non-fully penetrating AuNpA were modified with ferrocene-labeled human serum albumin aptamer receptors. The formation of the receptor layer and human serum albumin binding complex induced a conformational change, which resulted in variation in the electron transfer between the electro-active ferrocene units and the AuNpA surface. Simultaneously, the binding event caused a surface plasmon polaritons wavelength shift corresponding to a change in the surface refractive index. Interestingly, although both transducers recorded the same binding process, they led to different limits of detection, dynamic ranges, and sensitivities. The electrochemical transducer showed a dynamic detection range from 1 nM to 600 μM, while the optical transducer covered high concentrations from 100 μM to 600 μM. This study not only provides new insights into the design of plasmonic nanostructures but also potentially opens an exciting avenue for dual-signal disease diagnosis and point-of-care testing applications. Full article
Show Figures

Figure 1

17 pages, 1150 KiB  
Article
A High Performance Reconfigurable Hardware Architecture for Lightweight Convolutional Neural Network
by Fubang An, Lingli Wang and Xuegong Zhou
Electronics 2023, 12(13), 2847; https://doi.org/10.3390/electronics12132847 - 27 Jun 2023
Cited by 3 | Viewed by 2684
Abstract
Since the lightweight convolutional neural network EfficientNet was proposed by Google in 2019, the series of models have quickly become very popular due to their superior performance with a small number of parameters. However, the existing convolutional neural network hardware accelerators for EfficientNet [...] Read more.
Since the lightweight convolutional neural network EfficientNet was proposed by Google in 2019, the series of models have quickly become very popular due to their superior performance with a small number of parameters. However, the existing convolutional neural network hardware accelerators for EfficientNet still have much room to improve the performance of the depthwise convolution, squeeze-and-excitation module and nonlinear activation functions. In this paper, we first design a reconfigurable register array and computational kernel to accelerate the depthwise convolution. Next, we propose a vector unit to implement the nonlinear activation functions and the scale operation. An exchangeable-sequence dual-computational kernel architecture is proposed to improve the performance and the utilization. In addition, the memory architectures are designed to complete the hardware accelerator for the above computing architecture. Finally, in order to evaluate the performance of the hardware accelerator, the accelerator is implemented based on Xilinx XCVU37P. The results show that the proposed accelerator can work at the main system clock frequency of 300 MHz with the DSP kernel at 600 MHz. The performance of EfficientNet-B3 in our architecture can reach 69.50 FPS and 255.22 GOPS. Compared with the latest EfficientNet-B3 accelerator, which uses the same FPGA development board, the accelerator proposed in this paper can achieve a 1.28-fold improvement of single-core performance and 1.38-fold improvement of performance of each DSP. Full article
(This article belongs to the Section Artificial Intelligence Circuits and Systems (AICAS))
Show Figures

Figure 1

22 pages, 4336 KiB  
Article
Novel Rigidochromic and Anti-Kasha Dual Emission Fluorophores Based on D-π-A Dyads as the Promising Materials for Potential Applications Ranging from Optoelectronics and Optical Sensing to Biophotonics and Medicine
by Svetlana A. Lermontova, Maxim V. Arsenyev, Anton V. Cherkasov, Georgy K. Fukin, Andrey V. Afanasyev, Andrey V. Yudintsev, Ilya S. Grigoryev, Elena Yu. Ladilina, Tatyana S. Lyubova, Natalia Yu. Shilyagina, Irina V. Balalaeva, Larisa G. Klapshina and Alexandr V. Piskunov
Int. J. Mol. Sci. 2023, 24(6), 5818; https://doi.org/10.3390/ijms24065818 - 18 Mar 2023
Cited by 6 | Viewed by 2642
Abstract
Today we see an increasing demand for new fluorescent materials exhibiting various sensory abilities due to their broad applicability ranging from the construction of flexible devices to bioimaging. In this paper, we report on the new fluorescent pigments AntTCNE, PyrTCNE, and PerTCNE which [...] Read more.
Today we see an increasing demand for new fluorescent materials exhibiting various sensory abilities due to their broad applicability ranging from the construction of flexible devices to bioimaging. In this paper, we report on the new fluorescent pigments AntTCNE, PyrTCNE, and PerTCNE which consist of 3–5 fused aromatic rings substituted with tricyanoethylene fragments forming D-π-A diad. Our studies reveal that all three compounds exhibit pronounced rigidochromic properties, i.e., strong sensitivity of their fluorescence to the viscosity of the local environment. We also demonstrate that our new pigments belong to a very rare type of organic fluorophores which do not obey the well-known empirical Kasha’rule stating that photoluminescence transition always occurs from the lowest excited state of an emitting molecule. This rare spectral feature of our pigments is accompanied by an even rarer capability of spectrally and temporally well-resolved anti-Kasha dual emission (DE) from both higher and lowest electronic states in non-polar solvents. We show that among three new pigments, PerTCNE has significant potential as the medium-bandgap non-fullerene electron acceptor. Such materials are now highly demanded for indoor low-power electronics and portable devices for the Internet-of-Things. Additionally, we demonstrate that PyrTCNE has been successfully used as a structural unit in template assembling of the new cyanoarylporphyrazine framework with 4 D-π-A dyads framing this macrocycle (Pyr4CN4Pz). Similarly to its structural unit, Pyr4CN4Pz is also the anti-Kasha fluorophore, exhibiting intensive DE in viscous non-polar medium and polymer films, which strongly depends on the polarity of the local environment. Moreover, our studies showed high photodynamic activity of this new tetrapyrrole macrocycle which is combined with its unique sensory capacities (strong sensitivity of its fluorescent properties to the local environmental stimuli such as viscosity and polarity. Thus, Pyr4CN4Pz can be considered the first unique photosensitizer that potentially enables the real-time combination of photodynamic therapy and double-sensory approaches which is very important for modern biomedicine. Full article
Show Figures

Figure 1

11 pages, 1479 KiB  
Article
Generation of Mixed-OAM-Carrying Waves Using Huygens’ Metasurface for Mm-Wave Applications
by Hassan Naseri, Peyman PourMohammadi, Nouredddine Melouki, Fahad Ahmed, Amjad Iqbal and Tayeb A. Denidni
Sensors 2023, 23(5), 2590; https://doi.org/10.3390/s23052590 - 26 Feb 2023
Cited by 14 | Viewed by 3067
Abstract
Antennas that generate orbital angular momentum (OAM) have the potential to significantly enhance the channel capacity of upcoming wireless systems. This is because different OAM modes that are excited from a shared aperture are orthogonal, which means that each mode can carry a [...] Read more.
Antennas that generate orbital angular momentum (OAM) have the potential to significantly enhance the channel capacity of upcoming wireless systems. This is because different OAM modes that are excited from a shared aperture are orthogonal, which means that each mode can carry a distinct stream of data. As a result, it is possible to transmit multiple data streams at the same time and frequency using a single OAM antenna system. To achieve this, there is a need to develop antennas that can create several OAM modes. This study employs an ultrathin dual-polarized Huygens’ metasurface to design a transmit array (TA) that can generate mixed-OAM modes. Two concentrically-embedded TAs are used to excite the desired modes by achieving the required phase difference according to the coordinate position of each unit cell. The prototype of the TA, which operates at 28 GHz and has a size of 11 × 11 cm 2, generates mixed OAM modes of −1 and −2 using dual-band Huygens’ metasurfaces. To the best of the authors’ knowledge, this is the first time that such a low-profile and dual-polarized OAM carrying mixed vortex beams has been designed using TAs. The maximum gain of the structure is 16 dBi. Full article
(This article belongs to the Special Issue Recent Trends and Developments in Antennas)
Show Figures

Figure 1

11 pages, 4422 KiB  
Article
Single Camera-Based Dual-Channel Near-Infrared Fluorescence Imaging system
by Janghoon Choi, Jun-Geun Shin, Yoon-Oh Tak, Youngseok Seo and Jonghyun Eom
Sensors 2022, 22(24), 9758; https://doi.org/10.3390/s22249758 - 13 Dec 2022
Cited by 5 | Viewed by 2803
Abstract
In this study, we propose a single camera-based dual-channel near-infrared (NIR) fluorescence imaging system that produces color and dual-channel NIR fluorescence images in real time. To simultaneously acquire color and dual-channel NIR fluorescence images of two fluorescent agents, three cameras and additional optical [...] Read more.
In this study, we propose a single camera-based dual-channel near-infrared (NIR) fluorescence imaging system that produces color and dual-channel NIR fluorescence images in real time. To simultaneously acquire color and dual-channel NIR fluorescence images of two fluorescent agents, three cameras and additional optical parts are generally used. As a result, the volume of the image acquisition unit increases, interfering with movements during surgical procedures and increasing production costs. In the system herein proposed, instead of using three cameras, we set a single camera equipped with two image sensors that can simultaneously acquire color and single-channel NIR fluorescence images, thus reducing the volume of the image acquisition unit. The single-channel NIR fluorescence images were time-divided into two channels by synchronizing the camera and two excitation lasers, and the noise caused by the crosstalk effect between the two fluorescent agents was removed through image processing. To evaluate the performance of the system, experiments were conducted for the two fluorescent agents to measure the sensitivity, crosstalk effect, and signal-to-background ratio. The compactness of the resulting image acquisition unit alleviates the inconvenient movement obstruction of previous devices during clinical and animal surgery and reduces the complexity and costs of the manufacturing process, which may facilitate the dissemination of this type of system. Full article
(This article belongs to the Special Issue Biomedical Sensors-Recent Advances and Future Challenges 2022)
Show Figures

Figure 1

16 pages, 1260 KiB  
Article
Effects of Spinal Cord Injury Site on Cardiac Autonomic Regulation: Insight from Analysis of Cardiovascular Beat by Beat Variability during Sleep and Orthostatic Challenge
by Pietro Guaraldi, Mara Malacarne, Giorgio Barletta, Giuseppe De Scisciolo, Massimo Pagani, Pietro Cortelli and Daniela Lucini
J. Funct. Morphol. Kinesiol. 2022, 7(4), 112; https://doi.org/10.3390/jfmk7040112 - 9 Dec 2022
Cited by 3 | Viewed by 2189
Abstract
Purpose: The goal of this study on Spinal Cord Injury (SCI) patients with cervical or thoracic lesion was to assess whether disturbances of ANS control, according to location, might differently affect vagal and sympatho-vagal markers during sleep and orthostatic challenge. We analyzed with [...] Read more.
Purpose: The goal of this study on Spinal Cord Injury (SCI) patients with cervical or thoracic lesion was to assess whether disturbances of ANS control, according to location, might differently affect vagal and sympatho-vagal markers during sleep and orthostatic challenge. We analyzed with linear and nonlinear techniques beat-by-beat RR and arterial pressure (and respiration) variability signals, extracted from a polysomnographic study and a rest–tilt test. We considered spontaneous or induced sympathetic excitation, as obtained shifting from non-REM to REM sleep or from rest to passive tilt. We obtained evidence of ANS cardiac (dys)regulation, of greater importance for gradually proximal location (i.e., cervical) SCI, compatible with a progressive loss of modulatory role of sympathetic afferents to the spinal cord. Furthermore, in accordance with the dual, vagal and sympathetic bidirectional innervation, the results suggest that vagally mediated negative feedback baroreflexes were substantially maintained in all cases. Conversely, the LF and HF balance (expressed specifically by normalized units) appeared to be negatively affected by SCI, particularly in the case of cervical lesion (group p = 0.006, interaction p = 0.011). Multivariate analysis of cardiovascular variability may be a convenient technique to assess autonomic responsiveness and alteration of functionality in patients with SCI addressing selectively vagal or sympathetic alterations and injury location. This contention requires confirmatory studies with a larger population. Full article
(This article belongs to the Special Issue Role of Exercises in Musculoskeletal Disorders—5th Edition)
Show Figures

Figure 1

Back to TopTop