Effects of Spinal Cord Injury Site on Cardiac Autonomic Regulation: Insight from Analysis of Cardiovascular Beat by Beat Variability during Sleep and Orthostatic Challenge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Protocol
2.2.1. Autonomic Analysis
2.2.2. Sleep Analysis
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hagen, E.M.; Rekand, T.; Gilhus, N.E.; Grønning, M. Traumatic spinal cord injuries—Incidence, mechanisms and course. Tidsskr. Den Nor. Legeforening 2012, 132, 831–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anjum, A.; Yazid, M.D.; Daud, M.F.; Idris, J.; Ng, A.M.H.; Naicker, A.S.; Ismail, O.H.R.; Kumar, R.K.A.; Lokanathan, Y. Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. Int. J. Mol. Sci. 2020, 21, 7533. [Google Scholar] [CrossRef]
- Salavatian, S.; Ardell, S.M.; Hammer, M.; Gibbons, D.; Armour, J.A.; Ardell, J.L. Thoracic spinal cord neuromodulation obtunds dorsal root ganglion afferent neuronal transduction of the ischemic ventricle. Am. J. Physiol. Circ. Physiol. 2019, 317, H1134–H1141. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.; Pozzato, I.; Arora, M.; Middleton, J.; Rodrigues, D.; McBain, C.; Tran, Y.; Davis, G.M.; Gopinath, B.; Kifley, A.; et al. A neuro-cardiac self-regulation therapy to improve autonomic and neural function after SCI: A randomized controlled trial protocol. BMC Neurol. 2021, 21, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Squair, J.W.; Gautier, M.; Mahe, L.; Soriano, J.E.; Rowald, A.; Bichat, A.; Cho, N.; Anderson, M.A.; James, N.D.; Gandar, J.; et al. Neuroprosthetic baroreflex controls haemodynamics after spinal cord injury. Nature 2021, 590, 308–314. [Google Scholar] [CrossRef]
- Langley, J. The Autonomic Nervous System; Heffer & Sons: Cambridge, UK, 1921. [Google Scholar]
- Hess, W.R. The Central Control of the Activity of Internal Organs. In Nobel Lecture Physiology or Medicine 1942–1962; Elsevier Publishing Company: Amsterdam, The Netherlands, 1949. [Google Scholar]
- Fukuda, K.; Kanazawa, H.; Aizawa, Y.; Ardell, J.L.; Shivkumar, K. Cardiac Innervation and Sudden Cardiac Death. Circ. Res. 2015, 116, 2005–2019. [Google Scholar] [CrossRef] [Green Version]
- Levy, M.N. Sympathetic-vagal interactions in the sinus and atrioventricular nodes. Prog. Clin. Biol. Res. 1988, 275, 187–197. [Google Scholar]
- Malliani, A.; Pagani, M.; Lombardi, F.; Cerutti, S. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991, 84, 482–492. [Google Scholar] [CrossRef] [Green Version]
- Saper, C.B. The Central Autonomic Nervous System: Conscious Visceral Perception and Autonomic Pattern Generation. Annu. Rev. Neurosci. 2002, 25, 433–469. [Google Scholar] [CrossRef]
- Manolis, A.A.; Manolis, T.A.; Apostolopoulos, E.J.; Apostolaki, N.E.; Melita, H. The role of the autonomic nervous system in cardiac arrhythmias: The neuro-cardiac axis, more foe than friend? Trends Cardiovasc. Med. 2020, 31, 290–302. [Google Scholar] [CrossRef]
- Shouman, K.; Benarroch, E. Central Autonomic Network. In Autonomic Nervous System and Sleep; Chokroverty, S., Cortelli, P., Eds.; Springer Nature Switzerland AG: Basel, Switzerland, 2021; pp. 9–18. [Google Scholar]
- Pagani, M.; Schwartz, P.J.; Banks, R.; Lombardi, F.; Malliani, A. Reflex responses of sympathetic preganglionic neurones initiated by different cardiovascular receptors in spinal animals. Brain Res. 1974, 68, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Pagani, M.; Pizzinelli, P.; Bergamaschi, M.; Malliani, A. A positive feedback sympathetic pressor reflex during stretch of the thoracic aorta in conscious dogs. Circ. Res. 1982, 50, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, P.J.; Pagani, M.; Lombardi, F.; Malliani, A.; Brown, A.M. A Cardiocardiac Sympathovagal Reflex in the Cat. Circ. Res. 1973, 32, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Armour, J.A. Potential clinical relevance of the ‘little brain’ on the mammalian heart. Exp. Physiol. 2008, 93, 165–176. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, X.; Huang, B.; Wang, Z.; Zhou, L.; Chen, M.; Yu, L.; Jiang, H. Spinal cord stimulation suppresses atrial fibrillation by inhibiting autonomic remodeling. Heart Rhythm. 2015, 13, 274–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, D.; Tran, Y.; Guest, R.; Middleton, J.; Craig, A. Influence of neurological lesion level on heart rate variability and fatigue in adults with spinal cord injury. Spinal Cord 2015, 54, 292–297. [Google Scholar] [CrossRef] [Green Version]
- Previnaire, J.G.; Soler, J.M.; Leclercq, V.; Denys, P. Severity of autonomic dysfunction in patients with complete spinal cord injury. Clin. Auton. Res. 2011, 22, 9–15. [Google Scholar] [CrossRef]
- Draghici, A.E.; Taylor, J.A. Cardiovagal baroreflex gain relates to sensory loss after spinal cord injury. Aut. Neurosci. 2020, 226, 102667. [Google Scholar] [CrossRef] [PubMed]
- Silvani, A.; Calandra-Buonaura, G.; Dampney, R.A.L.; Cortelli, P. Brain–heart interactions: Physiology and clinical implications. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150181. [Google Scholar] [CrossRef]
- Sharif, H.; La Fountaine, M.F.; Wecht, J.M.; Ditor, D.S. A call to reevaluate cardiac autonomic assessment after spinal cord injury. Am. J. Physiol. Circ. Physiol. 2018, 315, H1088–H1090. [Google Scholar] [CrossRef]
- Ahn, A.C.; Tewari, M.; Poon, C.S.; Phillips, R.S. The limits of reductionism in medicine: Could systems biology offer an alternative? PLoS Med. 2006, 3, 709–713. [Google Scholar] [CrossRef] [PubMed]
- Lucini, D.; Solaro, N.; Pagani, M. Autonomic differentiation map: A novel statistical tool for interpretation of Heart Rate Variability. Front Physiol. 2018, 9, 401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somers, V.K.; Dyken, M.E.; Mark, A.L.; Abboud, F.M. Sympathetic-Nerve Activity during Sleep in Normal Subjects. N. Engl. J. Med. 1993, 328, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Pagani, M.; Lombardi, F.; Guzzetti, S.; Rimoldi, O.; Furlan, R.; Pizzinelli, P.; Sandrone, G.; Malfatto, G.; Dell’Orto, S.; Piccaluga, E. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ. Res. 1986, 59, 178–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, M.; John Camm, A.; Thomas Bigger, J.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef] [Green Version]
- Lucini, D.; Pagani, M.; Mela, G.S.; Malliani, A. Sympathetic restraint of baroreflex control of heart period in normotensive and hypertensive subjects. Clin. Sci. 1994, 86, 547–556. [Google Scholar] [CrossRef]
- La Rovere, M.T.; Bigger, J.T., Jr.; Marcus, F.I.; Mortara, A.; Schwartz, P.J. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet 1998, 351, 478–484. [Google Scholar] [CrossRef]
- Ferretti, G.; Iellamo, F.; Pizzinelli, P.; A Kenfack, M.; Lador, F.; Lucini, D.; Porta, A.; Narkiewicz, K.; Pagani, M. Prolonged head down bed rest-induced inactivity impairs tonic autonomic regulation while sparing oscillatory cardiovascular rhythms in healthy humans. J. Hypertens. 2009, 27, 551–561. [Google Scholar] [CrossRef] [Green Version]
- Kerkhof, P.L.M.; Peace, R.A.; Handly, N. Ratiology and a Complementary Class of Metrics for Cardiovascular Investigations. Physiology 2019, 34, 250–263. [Google Scholar] [CrossRef]
- Kyriakides, A.; Poulikakos, D.; Galata, A.; Konstantinou, D.; Panagiotopoulos, E.; Chroni, E. The effect of level of injury and physical activity on heart rate variability following spinal cord injury. J. Spinal Cord Med. 2017, 42, 212–219. [Google Scholar] [CrossRef]
- Corazza, I.; Barletta, G.; Guaraldi, P.; Cecere, A.; Calandra-Buonaura, G.; Altini, E.; Zannoli, R.; Cortelli, P. A new integrated instrumental approach to autonomic nervous system assessment. Comput. Methods Programs Biomed. 2014, 117, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Badilini, F.; Pagani, M.; Porta, A. Heartscope: A software tool addressing autonomic nervous system regulation. Comput. Cardiol. 2005, 32, 259–262. [Google Scholar] [CrossRef]
- Toninelli, G.; Vigo, C.; Vaglio, M.; Porta, A.; Lucini, D.; Badilini, F.; Pagani, M. DynaScope: A Software Tool for the Analysis of Heart Rate Variability During Exercise. Comput. Cardiol. 2012, 39, 181–184. [Google Scholar]
- Porta, A.; Guzzetti, S.; Montano, N.; Furlan, R.; Pagani, M.; Malliani, A.; Cerutti, S. Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series. IEEE Trans. Biomed. Eng. 2001, 48, 1282–1291. [Google Scholar] [CrossRef]
- Pagani, M.; Montano, N.; Porta, A.; Malliani, A.; Abboud, F.M.; Birkett, C.; Somers, V.K. Relationship Between Spectral Components of Cardiovascular Variabilities and Direct Measures of Muscle Sympathetic Nerve Activity in Humans. Circulation 1997, 95, 1441–1448. [Google Scholar] [CrossRef]
- Rechtschaffen, A.; Kales, A. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects; Public Health Service, US Government Printing Office: Washington, DC, USA, 1968.
- Conover, W.J.; Iman, R.L. Rank transformations as a bridge between parametric and nonparametric statistics. Am. Stat. 1981, 35, 124–129. [Google Scholar] [CrossRef]
- Pawelczyk, J.A. Big concepts, small N. J. Physiol. 2006, 3, 607–608. [Google Scholar] [CrossRef] [Green Version]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef] [Green Version]
- Kawada, T.; Yamamoto, H.; Hayama, Y.; Nishikawa, T.; Tanaka, K.; Sugimachi, M. Contrasting open-loop dynamic characteristics of sympathetic and vagal systems during baroreflex-mediated heart rate control in rats. Am. J. Physiol. Integr. Comp. Physiol. 2019, 317, R879–R890. [Google Scholar] [CrossRef]
- Pagani, M.; Guaraldi, P.; Baschieri, F.; Lucini, D.; Cortelli, P. Interpreting heart rate variability in sleep: Why, when, and how? In Autonomc Nervous System and Sleep; Chokroverty, S., Cortelli, P., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Sullivan, G.M.; Feinn, R. Using Effect Size—Or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Katona, P.G.; Jih, F. Respiratory sinus arrhythmia: Noninvasive measure of parasympathetic cardiac control. J. Appl. Physiol. 1975, 39, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Kollai, M.; Koizumi, K. Reciprocal and non-reciprocal action of the vagal and sympathetic nerves innervating the heart. J. Auton. Nerv. Syst. 1979, 1, 33–52. [Google Scholar] [CrossRef] [PubMed]
- Bishop, V.; Lombardi, F.; Malliani, A.; Pagani, M.; Recordati, G. Reflex sympathetic tachycardia during intravenous infusions in chronic spinal cats. Am. J. Physiol. Content 1976, 230, 25–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wecht, J.M.; Krassioukov, A.V.; Alexander, M.; Handrakis, J.P.; McKenna, S.L.; Kennelly, M.; Trbovich, M.; Biering-Sorensen, F.; Burns, S.; Elliott, S.L.; et al. International Standards to document Autonomic Function following SCI (ISAFSCI). Top. Spinal Cord Inj. Rehabil. 2021, 27, 23–49. [Google Scholar] [CrossRef] [PubMed]
- Malmqvist, L.; Biering-Sørensen, T.; Bartholdy, K.; A Krassioukov, A.; Welling, K.-L.; Svendsen, J.H.; A Kruse, A.; Hansen, B. Assessment of autonomic function after acute spinal cord injury using heart rate variability analyses. Spinal Cord 2014, 53, 54–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wecht, J.M. Management of blood pressure disorders in individuals with spinal cord injury. Curr. Opin. Pharmacol. 2021, 62, 60–63. [Google Scholar] [CrossRef]
- Chasan-Taber, L. Writing Grant Proposals in Epidemiology, Preventive Medicine, and Biostatistics; Chapman and Hall: London, UK; CRC: New York, NY, USA, 2022. [Google Scholar]
Groups | Significance | |||||
---|---|---|---|---|---|---|
Indices in the Four Conditions | Control Subjects | Thoracic SCI Patients | Cervical SCI Patients | Between Groups | Between Conditions | Interaction |
Mean | Mean | Mean | ||||
HR 1 (b/min) | 58.62 ± 10.74 | 70.61 ± 10.73 | 60.14 ± 0.75 | 0.148 | 0.000 | 0.019 |
HR 2 | 54.50 ± 7.88 | 66.13 ± 11.38 | 60.44 ± 2.89 | |||
HR 3 | 58.61 ± 8.35 | 69.54 ± 7.96 | 68.69 ± 6.88 | |||
HR 4 | 59.46 ± 9.15 | 69.35 ± 10.47 | 62.45 ± 9.43 | |||
RR 1 (msec) | 1058.28 ± 221.46 | 865.23 ± 128.35 | 997.81 ± 181.13 | 0.202 | 0.000 | 0.026 |
RR 2 | 1123.81 ± 184.06 | 930.46 ± 168.06 | 994.44 ± 46.99 | |||
RR 3 | 1044.32 ± 167.24 | 871.61 ± 97.06 | 880.03 ± 87.94 | |||
RR 4 | 1035.66 ± 200.09 | 882.07 ± 140.89 | 1007.87 ± 78.29 | |||
RRTP 1 (msec2) | 3952 ± 2922 | 3461 ± 5577 | 2062 ± 1532 | 0.233 | 0.011 | 0.129 |
RRTP 2 | 1541 ± 1278 | 1666 ± 1617 | 2009 ± 2529 | |||
RRTP 3 | 3533 ± 2582 | 3711 ± 3180 | 2290 ± 1474 | |||
RRTP 4 | 8117 ± 6406 | 2763 ± 2913 | 2024 ± 754 | |||
RRLFa 1 (msec2) | 1049 ± 894 | 652 ± 557 | 850 ± 1479 | 0.193 | 0.038 | 0.191 |
RRLFa 2 | 247 ± 137 | 595 ± 515 | 293 ± 265 | |||
RRLFa 3 | 768 ± 539 | 622 ± 665 | 91 ± 137 | |||
RRLFa 4 | 891 ± 797 | 1118 ± 1398 | 427 ± 384 | |||
RRHFa 1 (msec2) | 741 ± 680 | 404 ± 607 | 230 ± 216 | 0.390 | 0.556 | 0.669 |
RRHFa 2 | 914 ± 1005 | 542 ± 587 | 268 ± 233 | |||
RRHFa 3 | 796 ± 1168 | 473 ± 473 | 87 ± 78 | |||
RRHFa 4 | 1411 ± 1758 | 570 ± 826 | 287 ± 279 | |||
RRLFnu 1 (nu) | 59.19 ± 17.10 | 69.45 ± 20.42 | 48.08 ± 23.22 | 0.431 | 0.102 | 0.220 |
RRLFnu 2 | 28.26 ± 12.18 | 45.82 ± 31.13 | 50.66 ± 22.49 | |||
RRLFnu 3 | 52.14 ± 27.09 | 49.64 ± 30.69 | 33.71 ± 19.02 | |||
RRLFnu 4 | 42.64 ± 16.92 | 62.12 ± 19.93 | 56.10 ± 33.52 | |||
RRHFnu 1 (nu) | 37.46 ± 18.22 | 24.41 ± 17.25 | 36.21 ± 26.63 | 0.336 | 0.048 | 0.267 |
RRHFnu 2 | 67.92 ± 15.42 | 46.89 ± 26.86 | 43.66 ± 22.52 | |||
RRHFnu 3 | 43.13 ± 25.28 | 42.42 ± 25.92 | 56.81 ± 23.10 | |||
RRHFnu 4 | 52.06 ± 16.04 | 30.32 ± 15.17 | 41.55 ± 33.05 | |||
RRLF/HF 1 (.) | 2.86 ± 3.54 | 6.44 ± 7.73 | 3.40 ± 4.70 | 0.317 | 0.114 | 0.758 |
RRLF/HF 2 | 0.48 ± 0.32 | 2 ± 2.41 | 1.95 ± 2.2 | |||
RRLF/HF 3 | 3.86 ± 6.96 | 3.79 ± 6.24 | 0.94 ± 1.16 | |||
RRLF/HF 4 | 1.02 ± 0.79 | 5.64 ± 9.29 | 8.83 ± 15.64 | |||
RRHFHz 1 (Hz) | 0.27 ± 0.02 | 0.27 ± 0.02 | 0.32 ± 0.02 | 0.077 | 0.003 | 0.940 |
RRHFHz 2 | 0.26 ± 0.03 | 0.25 ± 0.06 | 0.28 ± 0.03 | |||
RRHFHz 3 | 0.27 ± 0.03 | 0.26 ± 0.07 | 0.29 ± 0.03 | |||
RRHFHz 4 | 0.25 ± 0.03 | 0.24 ± 0.04 | 0.27 ± 0.06 | |||
RRRo 1 [.] | 0.32 ± 0.10 | 0.38 ± 0.08 | 0.35 ± 0.21 | 0.035 | 0.000 | 0.230 |
RRRo 2 | 0.18 ± 0.05 | 0.25 ± 0.08 | 0.36 ± 0.21 | |||
RRRo 3 | 0.32 ± 0.13 | 0.48 ± 0.11 | 0.56 ± 0.08 | |||
RRRo 4 | 0.36 ± 0.11 | 0.45 ± 0.12 | 0.41 ± 0.19 | |||
RRP_0v 1 (.) | 25.73 ± 13.32 | 33.30 ± 16.14 | 39.82 ±30.51 | 0.042 | 0.000 | 0.637 |
RRP_0v 2 | 9.52 ± 6.92 | 16.46 ± 6.93 | 29.53 ± 28.27 | |||
RRP_0v 3 | 35.26 ± 15.83 | 47.06 ± 18.95 | 58.08 ± 11.99 | |||
RRP_0v 4 | 29.33 ± 17.28 | 42.67 ± 17.73 | 36.08 ± 23.39 | |||
RRP_2uv 1 (.) | 20.03 ± 7.67 | 11.91 ± 3.35 | 15.08 ± 10.83 | 0.066 | 0.000 | 0.248 |
RRP_2uv 2 | 34.75 ± 11 | 18.73 ± 4.84 | 23.16 ± 16.39 | |||
RRP_2uv 3 | 21.34 ± 13.29 | 8.06 ± 2.67 | 6.19 ± 2.24 | |||
RRP_2uv 4 | 16.67 ± 10.32 | 7.56 ± 3.97 | 15.69 ± 10.75 | |||
SAP 1 (mmHg) | 124.16 ± 8.53 | 137.31 ± 31.34 | 130.61 ± 13.36 | 0.215 | 0.608 | 0.802 |
SAP 2 | 120.76 ± 6.58 | 132.68 ± 21.12 | 135.58 ± 13.46 | |||
SAP 3 | 123.37 ± 10.72 | 134.51 ± 21.99 | 133.48 ± 22.97 | |||
SAP 4 | 119.52 ± 10.55 | 129.55 ± 25.15 | 128.27 ± 16.74 | |||
SAPTP 1 (mmHg2) | 41.95 ± 22.97 | 45.51 ± 41.57 | 13.98 ± 4.66 | 0.297 | 0.437 | 0.055 |
SAPTP 2 | 15.8 ± 9.41 | 49.31 ± 32.56 | 31.45 ± 17.47 | |||
SAPTP 3 | 38.21 ± 20.59 | 101.97 ± 127.03 | 33.69 ± 44.51 | |||
SAPTP 4 | 29.12 ± 14.26 | 35.78 ± 29.54 | 67.91 ± 101.71 | |||
SAPLFa 1 (mmHg2) | 5.15 ± 5.73 | 27.68 ± 35.39 | 4.15 ± 5.01 | 0.004 | 0.036 | 0.093 |
SAPLFa 2 | 4.85 ± 4.66 | 17.45 ± 20.58 | 1.42 ± 1.08 | |||
SAPLFa 3 | 4.32 ± 4.05 | 3.14 ± 2.50 | 0.54 ± 0.76 | |||
SAPLFa 4 | 7.09 ± 13.95 | 11.38 ± 17.21 | 2.22 ± 3.28 | |||
Alpha Index 1 (msec/mmHg) | 17.23 ± 6.61 | 10.66 ± 8.04 | 14.19 ± 4.23 | 0.604 | 0.292 | 0.784 |
Alpha Index 2 | 16.89 ± 13.31 | 22.15 ± 33.05 | 10.16 ± 3.26 | |||
Alpha Index 3 | 16.85 ± 7.36 | 12.10 ± 9.31 | 13.59 ± 16.12 | |||
Alpha Index 4 | 26.82 ± 17.25 | 16.72 ± 12.89 | 19.66 ± 15.92 | |||
BRS 1 (msec/mmHg) | 14.08 ± 5.61 | 11.36 ± 9.35 | 27.33 ± 18.77 | 0.342 | 0.002 | 0.005 |
BRS 2 | 16.79 ± 8.89 | 11.54 ± 10.44 | 5.72 ± 0.08 | |||
BRS 3 | 13.25 ± 7.05 | 13.29 ± 9.97 | 9.64 ± 6.64 | |||
BRS 4 | 24.09 ± 17.28 | 13.94 ± 11.75 | 11.03 ± 0.42 |
Groups | Significance | |||||
---|---|---|---|---|---|---|
Indices in the Two Conditions | Control Subjects | Thoracic SCI Patients | Cervical SCI Patients | Between Groups | Between Conditions | Interaction |
Mean | Mean | Mean | ||||
HR rest (b/min) | 66.39 ± 12.35 | 64.95 ± 9.36 | 52.01 ± 5.71 | 0.039 | 0.001 | 0.480 |
HR tilt | 79.79 ± 14.94 | 86.49 ± 22.79 | 61.63 ± 10.61 | |||
RR rest (msec) | 930.82 ± 177.53 | 938.66 ± 124.48 | 1162.77 ± 125.61 | 0.020 | 0.000 | 0.761 |
RR tilt | 775.31 ± 149.96 | 727.92 ± 159.30 | 994.72 ± 185.71 | |||
RRTP rest (msec2) | 2527 ± 1583 | 5799 ± 5726 | 2152 ± 2047 | 0.526 | 0.005 | 0.246 |
RRTP tilt | 1346 ± 561 | 1243 ± 1162 | 584 ± 175 | |||
RRLFa rest (msec2) | 438 ± 370 | 1612 ± 1148 | 143 ± 187 | 0.101 | 0.003 | 0.002 |
RRLFa tilt | 450 ± 255 | 248 ± 341 | 26 ± 37 | |||
RRHFa rest (msec2) | 841 ± 821 | 983 ± 1430 | 200 ± 208 | 0.561 | 0.011 | 0.519 |
RRHFa tilt | 86 ± 64 | 172 ± 317 | 51 ± 39 | |||
RRLFnu rest (nu) | 39.98 ± 19.87 | 68.78 ± 24.45 | 32.60 ± 18.88 | 0.006 | 0.192 | 0.011 |
RRLFnu tilt | 80.85 ± 9.76 | 59.30 ± 21.00 | 18.17 ± 14.87 | |||
RRHFnu rest (nu) | 52.98 ± 13.23 | 25.56 ± 17.58 | 64.93 ± 21.01 | 0.005 | 0.064 | 0.021 |
RRHFnu tilt | 16.32 ± 9.34 | 33.40 ± 21.75 | 69.09 ± 18.49 | |||
RRLF/HF rest (.) | 0.87 ± 0.54 | 4.43 ± 3.36 | 0.59 ± 0.41 | 0.098 | 0.085 | 0.009 |
RRLF/HF tilt | 7.18 ± 5.58 | 3.02 ± 2.74 | 0.32 ± 0.35 | |||
RRHFHz rest (Hz) | 0.25 ± 0.05 | 0.26 ± 0.02 | 0.23 ± 0.02 | 0.246 | 0.662 | 0.497 |
RRHFHz tilt | 0.26 ± 0.04 | 0.25 ± 0.04 | 0.25 ± 0.03 | |||
RRRo rest (.) | 0.30 ± 0.11 | 0.34 ± 0.11 | 0.38 ± 0.03 | 0.146 | 0.000 | 0.664 |
RRRo tilt | 0.44 ± 0.08 | 0.54 ± 0.15 | 0.53 ± 0.03 | |||
RRP_0v rest (.) | 28.23 ± 15.10 | 30.35 ± 13.28 | 35.77 ± 3.33 | 0.573 | 0.000 | 0.635 |
RRP_0v tilt | 48.02 ± 9.55 | 54.90 ± 9.55 | 51.59 ± 8.57 | |||
RRP_2uv rest (.) | 18.02 ± 13.90 | 13.15 ± 10.92 | 10.94 ± 1.17 | 0.623 | 0.024 | 0.489 |
RRP_2uv tilt | 6.76 ± 3.77 | 5.42 ± 2.57 | 7.45 ± 1.93 | |||
SAP rest (mmHg) | 120.57 ± 5.30 | 128.48 ± 24.19 | 122.11 ± 7.57 | 0.573 | 0.743 | 0.273 |
SAP tilt | 122.12 ± 3.66 | 133.80 ± 24.55 | 115.64 ± 27.64 | |||
SAPTP rest (mmHg2) | 17.89 ± 8.26 | 40.73 ± 26.54 | 25.80 ± 17.70 | 0.313 | 0.006 | 0.182 |
SAPTP tilt | 31.70 ± 5.74 | 45.81 ± 33.09 | 60.81 ± 56.45 | |||
SAPLFa rest (mmHg2) | 3.22 ± 2.27 | 5.90 ± 9.06 | 1.48 ± 0.47 | 0.207 | 0.242 | 0.661 |
SAPLFa tilt | 8.46 ± 3.68 | 6.74 ± 8.59 | 2.74 ± 2.60 | |||
Alpha Index rest (msec/mmHg) | 21.41 ± 9.22 | 22.52 ± 13.63 | 9.54 ± 5.56 | 0.048 | 0.002 | 0.178 |
Alpha Index tilt | 6.94 ± 3.15 | 4.59 ± 2.85 | 2.60 ± 0.53 | |||
BRS rest (msec/mmHg) | 16.41 ± 6.76 | 17.01 ± 12.90 | 13.98 ± 7.24 | 0.474 | 0.005 | 0.657 |
BRS tilt | 7.78 ± 3.06 | 4.56 ± 2.20 | 3.94 ± 1.08 |
Groups | |||
---|---|---|---|
Control Subjects | Thoracic SCI Patients | Cervical SCI Patients | |
Cohen’s d | Cohen’s d | Cohen’s d | |
Tilt-Rest | |||
ΔRRLFnu (nu) | 2.272 | −0.302 | −0.432 |
ΔRRHFnu (nu) | −2.893 | 0.324 | 0.106 |
ΔRRTP (msec2) | 0.814 | 0.933 | 0.720 |
ΔAlpha Index (msec/mmHg) | 1.398 | 1.186 | 1.154 |
ΔLFsap (mmHg2) | 1.338 | 0.058 | 0.579 |
REM Sleep–NREM sleep | |||
ΔRRLFnu (nu) | 0.854 | 0.073 | −0.626 |
ΔRRHFnu (nu) | −0.907 | −0.101 | 0.392 |
ΔRRTP (msec2) | −0.884 | −0.728 | −0.118 |
ΔAlpha Index (msec/mmHg) | 0.003 | 0.270 | −0.205 |
ΔLFsap (mmHg2) | −0.088 | −0.678 | −0.708 |
Wake-sleep | NonREM-REM | Rest-tilt | ||
---|---|---|---|---|
HR | −0.568 * | 0.252 | −0.089 | Correlation index |
0.017 | 0.329 | 0.753 | Significance | |
RR Mean | 0.606 ** | −0.122 | −0.111 | Correlation Index |
0.01 | 0.642 | 0.694 | Significance | |
RR TP | −0.593 * | −0.351 | −0.185 | Correlation Index |
0.012 | 0.168 | 0.51 | Significance | |
RR LFa | −0.308 | −0.602 * | −0.262 | Correlation Index |
0.229 | 0.011 | 0.345 | Significance | |
RR HFa | −0.347 | −0.279 | 0.34 | Correlation Index |
0.173 | 0.277 | 0.215 | Significance | |
RR LFnu | −0.106 | −0.467 | −0.709 ** | Correlation Index |
0.685 | 0.059 | 0.003 | Significance | |
RR HFnu | 0.153 | 0.468 | 0.646 ** | Correlation Index |
0.559 | 0.058 | 0.009 | Significance | |
RR Ro | −0.218 | 0.212 | 0.294 | Correlation Index |
0.4 | 0.414 | 0.288 | Significance | |
SAP Mean | −0.07 | −0.118 | 0.018 | Correlation Index |
0.79 | 0.653 | 0.948 | Significance | |
SAP TP | −0.497 * | −0.336 | 0.089 | Correlation Index |
0.042 | 0.187 | 0.753 | Significance | |
SAP LFa | −0.022 | −0.201 | −0.36 | Correlation Index |
0.933 | 0.44 | 0.188 | Significance | |
AlphaM | −0.171 | −0.16 | 0.116 | Correlation Index |
0.512 | 0.538 | 0.68 | Significance | |
BRS | −0.145 | 0.26 | −0.151 | Correlation Index |
0.653 | 0.415 | 0.59 | Significance | |
RRP_0v | −0.266 | 0.037 | 0.063 | Correlation Index |
0.339 | 0.896 | 0.824 | Significance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guaraldi, P.; Malacarne, M.; Barletta, G.; Scisciolo, G.D.; Pagani, M.; Cortelli, P.; Lucini, D. Effects of Spinal Cord Injury Site on Cardiac Autonomic Regulation: Insight from Analysis of Cardiovascular Beat by Beat Variability during Sleep and Orthostatic Challenge. J. Funct. Morphol. Kinesiol. 2022, 7, 112. https://doi.org/10.3390/jfmk7040112
Guaraldi P, Malacarne M, Barletta G, Scisciolo GD, Pagani M, Cortelli P, Lucini D. Effects of Spinal Cord Injury Site on Cardiac Autonomic Regulation: Insight from Analysis of Cardiovascular Beat by Beat Variability during Sleep and Orthostatic Challenge. Journal of Functional Morphology and Kinesiology. 2022; 7(4):112. https://doi.org/10.3390/jfmk7040112
Chicago/Turabian StyleGuaraldi, Pietro, Mara Malacarne, Giorgio Barletta, Giuseppe De Scisciolo, Massimo Pagani, Pietro Cortelli, and Daniela Lucini. 2022. "Effects of Spinal Cord Injury Site on Cardiac Autonomic Regulation: Insight from Analysis of Cardiovascular Beat by Beat Variability during Sleep and Orthostatic Challenge" Journal of Functional Morphology and Kinesiology 7, no. 4: 112. https://doi.org/10.3390/jfmk7040112
APA StyleGuaraldi, P., Malacarne, M., Barletta, G., Scisciolo, G. D., Pagani, M., Cortelli, P., & Lucini, D. (2022). Effects of Spinal Cord Injury Site on Cardiac Autonomic Regulation: Insight from Analysis of Cardiovascular Beat by Beat Variability during Sleep and Orthostatic Challenge. Journal of Functional Morphology and Kinesiology, 7(4), 112. https://doi.org/10.3390/jfmk7040112