Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (536)

Search Parameters:
Keywords = dual channel system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6784 KiB  
Article
A Second-Order LADRC-Based Control Strategy for Quadrotor UAVs Using a Modified Crayfish Optimization Algorithm and Fuzzy Logic
by Kelin Li, Guangzhao Wang and Yalei Bai
Electronics 2025, 14(15), 3124; https://doi.org/10.3390/electronics14153124 - 5 Aug 2025
Abstract
To enhance the rapid and stable tracking of a specified trajectory by quadcopter drones, while ensuring a degree of resistance to external wind disturbances, this paper proposes an integrated control strategy that combines an optimization algorithm and fuzzy control. In this system, both [...] Read more.
To enhance the rapid and stable tracking of a specified trajectory by quadcopter drones, while ensuring a degree of resistance to external wind disturbances, this paper proposes an integrated control strategy that combines an optimization algorithm and fuzzy control. In this system, both the position and attitude loops utilize second-order Linear Active Disturbance Rejection Control (LADRC) controllers, supplemented by fuzzy controllers. These controllers have been optimized using a modified crayfish optimization algorithm (MCOA), resulting in a dual-closed-loop control system. In comparisons with both the dual-closed-loop LADRC controller and the dual-closed-loop fuzzy control LADRC controller, the proposed method reduces the rise time by 52.87% in the X-channel under wind-free conditions, reduces the maximum trajectory tracking error by 86.37% under wind-disturbed conditions, and reduces the ITAE exponent by 66.2%, which demonstrates that the newly designed system delivers excellent tracking speed and accuracy along the specified trajectory. Furthermore, it remains effective even in the presence of external disturbances, it can reliably maintain the target position and the attitude angle, demonstrating strong resistance to interference and stability. Full article
Show Figures

Figure 1

25 pages, 3310 KiB  
Article
Real-Time Signal Quality Assessment and Power Adaptation of FSO Links Operating Under All-Weather Conditions Using Deep Learning Exploiting Eye Diagrams
by Somia A. Abd El-Mottaleb and Ahmad Atieh
Photonics 2025, 12(8), 789; https://doi.org/10.3390/photonics12080789 - 4 Aug 2025
Abstract
This paper proposes an intelligent power adaptation framework for Free-Space Optics (FSO) communication systems operating under different weather conditions exploiting a deep learning (DL) analysis of received eye diagram images. The system incorporates two Convolutional Neural Network (CNN) architectures, LeNet and Wide Residual [...] Read more.
This paper proposes an intelligent power adaptation framework for Free-Space Optics (FSO) communication systems operating under different weather conditions exploiting a deep learning (DL) analysis of received eye diagram images. The system incorporates two Convolutional Neural Network (CNN) architectures, LeNet and Wide Residual Network (Wide ResNet) algorithms to perform regression tasks that predict received signal quality metrics such as the Quality Factor (Q-factor) and Bit Error Rate (BER) from the received eye diagram. These models are evaluated using Mean Squared Error (MSE) and the coefficient of determination (R2 score) to assess prediction accuracy. Additionally, a custom CNN-based classifier is trained to determine whether the BER reading from the eye diagram exceeds a critical threshold of 104; this classifier achieves an overall accuracy of 99%, correctly detecting 194/195 “acceptable” and 4/5 “unacceptable” instances. Based on the predicted signal quality, the framework activates a dual-amplifier configuration comprising a pre-channel amplifier with a maximum gain of 25 dB and a post-channel amplifier with a maximum gain of 10 dB. The total gain of the amplifiers is adjusted to support the operation of the FSO system under all-weather conditions. The FSO system uses a 15 dBm laser source at 1550 nm. The DL models are tested on both internal and external datasets to validate their generalization capability. The results show that the regression models achieve strong predictive performance, and the classifier reliably detects degraded signal conditions, enabling the real-time gain control of the amplifiers to achieve the quality of transmission. The proposed solution supports robust FSO communication under challenging atmospheric conditions including dry snow, making it suitable for deployment in regions like Northern Europe, Canada, and Northern Japan. Full article
Show Figures

Figure 1

18 pages, 1239 KiB  
Article
A Digitally Controlled Adaptive Current Interface for Accurate Measurement of Resistive Sensors in Embedded Sensing Systems
by Jirapong Jittakort and Apinan Aurasopon
J. Sens. Actuator Netw. 2025, 14(4), 82; https://doi.org/10.3390/jsan14040082 (registering DOI) - 4 Aug 2025
Abstract
This paper presents a microcontroller-based technique for accurately measuring resistive sensors over a wide dynamic range using an adaptive constant current source. Unlike conventional voltage dividers or fixed-current methods—often limited by reduced resolution and saturation when sensor resistance varies across several decades—the proposed [...] Read more.
This paper presents a microcontroller-based technique for accurately measuring resistive sensors over a wide dynamic range using an adaptive constant current source. Unlike conventional voltage dividers or fixed-current methods—often limited by reduced resolution and saturation when sensor resistance varies across several decades—the proposed system dynamically adjusts the excitation current to maintain optimal Analog-to-Digital Converter (ADC) input conditions. The measurement circuit employs a fixed reference resistor and an inverting amplifier configuration, where the excitation current is generated by one or more pulse-width modulated (PWM) signals filtered through low-pass RC networks. A microcontroller selects the appropriate PWM channel to ensure that the output voltage remains within the ADC’s linear range. To support multiple sensors, an analog switch enables sequential measurements using the same dual-PWM current source. The full experimental implementation uses four op-amps to support modularity, buffering, and dual-range operation. Experimental results show accurate measurement of resistances from 1 kΩ to 100 kΩ, with maximum relative errors of 0.15% in the 1–10 kΩ range and 0.33% in the 10–100 kΩ range. The method provides a low-cost, scalable, and digitally controlled solution suitable for embedded resistive sensing applications without the need for high-resolution ADCs or programmable gain amplifiers. Full article
(This article belongs to the Section Actuators, Sensors and Devices)
Show Figures

Figure 1

16 pages, 4587 KiB  
Article
FAMNet: A Lightweight Stereo Matching Network for Real-Time Depth Estimation in Autonomous Driving
by Jingyuan Zhang, Qiang Tong, Na Yan and Xiulei Liu
Symmetry 2025, 17(8), 1214; https://doi.org/10.3390/sym17081214 - 1 Aug 2025
Viewed by 236
Abstract
Accurate and efficient stereo matching is fundamental to real-time depth estimation from symmetric stereo cameras in autonomous driving systems. However, existing high-accuracy stereo matching networks typically rely on computationally expensive 3D convolutions, which limit their practicality in real-world environments. In contrast, real-time methods [...] Read more.
Accurate and efficient stereo matching is fundamental to real-time depth estimation from symmetric stereo cameras in autonomous driving systems. However, existing high-accuracy stereo matching networks typically rely on computationally expensive 3D convolutions, which limit their practicality in real-world environments. In contrast, real-time methods often sacrifice accuracy or generalization capability. To address these challenges, we propose FAMNet (Fusion Attention Multi-Scale Network), a lightweight and generalizable stereo matching framework tailored for real-time depth estimation in autonomous driving applications. FAMNet consists of two novel modules: Fusion Attention-based Cost Volume (FACV) and Multi-scale Attention Aggregation (MAA). FACV constructs a compact yet expressive cost volume by integrating multi-scale correlation, attention-guided feature fusion, and channel reweighting, thereby reducing reliance on heavy 3D convolutions. MAA further enhances disparity estimation by fusing multi-scale contextual cues through pyramid-based aggregation and dual-path attention mechanisms. Extensive experiments on the KITTI 2012 and KITTI 2015 benchmarks demonstrate that FAMNet achieves a favorable trade-off between accuracy, efficiency, and generalization. On KITTI 2015, with the incorporation of FACV and MAA, the prediction accuracy of the baseline model is improved by 37% and 38%, respectively, and a total improvement of 42% is achieved by our final model. These results highlight FAMNet’s potential for practical deployment in resource-constrained autonomous driving systems requiring real-time and reliable depth perception. Full article
Show Figures

Figure 1

31 pages, 6206 KiB  
Article
High-Redundancy Design and Application of Excitation Systems for Large Hydro-Generator Units Based on ATS and DDS
by Xiaodong Wang, Xiangtian Deng, Xuxin Yue, Haoran Wang, Xiaokun Li and Xuemin He
Electronics 2025, 14(15), 3013; https://doi.org/10.3390/electronics14153013 - 29 Jul 2025
Viewed by 253
Abstract
The large-scale integration of stochastic renewable energy sources necessitates enhanced dynamic balancing capabilities in power systems, positioning hydropower as a critical balancing asset. Conventional excitation systems utilizing hot-standby dual-redundancy configurations remain susceptible to unit shutdown events caused by regulator failures. To mitigate this [...] Read more.
The large-scale integration of stochastic renewable energy sources necessitates enhanced dynamic balancing capabilities in power systems, positioning hydropower as a critical balancing asset. Conventional excitation systems utilizing hot-standby dual-redundancy configurations remain susceptible to unit shutdown events caused by regulator failures. To mitigate this vulnerability, this study proposes a peer-to-peer distributed excitation architecture integrating asynchronous traffic shaping (ATS) and Data Distribution Service (DDS) technologies. This architecture utilizes control channels of equal priority and achieves high redundancy through cross-communication between discrete acquisition and computation modules. This research advances three key contributions: (1) design of a peer-to-peer distributed architectural framework; (2) development of a real-time data interaction methodology combining ATS and DDS, incorporating cross-layer parameter mapping, multi-priority queue scheduling, and congestion control mechanisms; (3) experimental validation of system reliability and redundancy through dynamic simulation. The results confirm the architecture’s operational efficacy, delivering both theoretical foundations and practical frameworks for highly reliable excitation systems. Full article
(This article belongs to the Special Issue Power Electronics in Renewable Systems)
Show Figures

Figure 1

13 pages, 1718 KiB  
Article
Accurate Dual-Channel Broadband RF Attenuation Measurement System with High Attenuation Capability Using an Optical Fiber Assembly for Optimal Channel Isolation
by Anton Widarta
Electronics 2025, 14(15), 2963; https://doi.org/10.3390/electronics14152963 - 24 Jul 2025
Viewed by 182
Abstract
In this study, an accurate attenuation measurement system with high attenuation capability (≥100 dB) is presented, covering a broad radio frequency range from 1 GHz to 25 GHz. The system employs a dual-channel intermediate frequency (IF) substitution method, utilizing a programmable inductive voltage [...] Read more.
In this study, an accurate attenuation measurement system with high attenuation capability (≥100 dB) is presented, covering a broad radio frequency range from 1 GHz to 25 GHz. The system employs a dual-channel intermediate frequency (IF) substitution method, utilizing a programmable inductive voltage divider (IVD) that provides precise voltage ratios at a 1 kHz operating IF, serving as the primary attenuation standard. To ensure optimal inter-channel isolation, essential for accurate high-attenuation measurements, an optical fiber assembly, consisting of a laser diode, a wideband external electro-optic modulator, and a photodetector, is integrated between the channels. A comprehensive performance evaluation is presented, with particular emphasis on the programmable IVD calibration technique, which achieves an accuracy better than 0.001 dB across all attenuation levels, and on the role of the optical fiber assembly in enhancing isolation, demonstrating levels exceeding 120 dB across the entire frequency range. The system demonstrates measurement capabilities with expanded uncertainties (k = 2) of 0.004 dB, 0.008 dB, and 0.010 dB at attenuation levels of 20 dB, 60 dB, and 100 dB, respectively. Full article
(This article belongs to the Special Issue RF/MM-Wave Circuits Design and Applications, 2nd Edition)
Show Figures

Figure 1

22 pages, 6487 KiB  
Article
An RGB-D Vision-Guided Robotic Depalletizing System for Irregular Camshafts with Transformer-Based Instance Segmentation and Flexible Magnetic Gripper
by Runxi Wu and Ping Yang
Actuators 2025, 14(8), 370; https://doi.org/10.3390/act14080370 - 24 Jul 2025
Viewed by 294
Abstract
Accurate segmentation of densely stacked and weakly textured objects remains a core challenge in robotic depalletizing for industrial applications. To address this, we propose MaskNet, an instance segmentation network tailored for RGB-D input, designed to enhance recognition performance under occlusion and low-texture conditions. [...] Read more.
Accurate segmentation of densely stacked and weakly textured objects remains a core challenge in robotic depalletizing for industrial applications. To address this, we propose MaskNet, an instance segmentation network tailored for RGB-D input, designed to enhance recognition performance under occlusion and low-texture conditions. Built upon a Vision Transformer backbone, MaskNet adopts a dual-branch architecture for RGB and depth modalities and integrates multi-modal features using an attention-based fusion module. Further, spatial and channel attention mechanisms are employed to refine feature representation and improve instance-level discrimination. The segmentation outputs are used in conjunction with regional depth to optimize the grasping sequence. Experimental evaluations on camshaft depalletizing tasks demonstrate that MaskNet achieves a precision of 0.980, a recall of 0.971, and an F1-score of 0.975, outperforming a YOLO11-based baseline. In an actual scenario, with a self-designed flexible magnetic gripper, the system maintains a maximum grasping error of 9.85 mm and a 98% task success rate across multiple camshaft types. These results validate the effectiveness of MaskNet in enabling fine-grained perception for robotic manipulation in cluttered, real-world scenarios. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

20 pages, 3978 KiB  
Article
Cotton-YOLO: A Lightweight Detection Model for Falled Cotton Impurities Based on Yolov8
by Jie Li, Zhoufan Zhong, Youran Han and Xinhou Wang
Symmetry 2025, 17(8), 1185; https://doi.org/10.3390/sym17081185 - 24 Jul 2025
Viewed by 253
Abstract
As an important pillar of the global economic system, the cotton industry faces critical challenges from non-fibrous impurities (e.g., leaves and debris) during processing, which severely degrade product quality, inflate costs, and reduce efficiency. Traditional detection methods suffer from insufficient accuracy and low [...] Read more.
As an important pillar of the global economic system, the cotton industry faces critical challenges from non-fibrous impurities (e.g., leaves and debris) during processing, which severely degrade product quality, inflate costs, and reduce efficiency. Traditional detection methods suffer from insufficient accuracy and low efficiency, failing to meet practical production needs. While deep learning models excel in general object detection, their massive parameter counts render them ill-suited for real-time industrial applications. To address these issues, this study proposes Cotton-YOLO, an optimized yolov8 model. By leveraging principles of symmetry in model design and system setup, the study integrates the CBAM attention module—with its inherent dual-path (channel-spatial) symmetry—to enhance feature capture for tiny impurities and mitigate insufficient focus on key areas. The C2f_DSConv module, exploiting functional equivalence via quantization and shift operations, reduces model complexity by 12% (to 2.71 million parameters) without sacrificing accuracy. Considering angle and shape variations in complex scenarios, the loss function is upgraded to Wise-IoU for more accurate boundary box regression. Experimental results show that Cotton-YOLO achieves 86.5% precision, 80.7% recall, 89.6% mAP50, 50.1% mAP50–95, and 50.51 fps detection speed, representing a 3.5% speed increase over the original yolov8. This work demonstrates the effective application of symmetry concepts (in algorithmic structure and performance balance) to create a model that balances lightweight design and high efficiency, providing a practical solution for industrial impurity detection and key technical support for automated cotton sorting systems. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

26 pages, 4203 KiB  
Article
Research on Industrial Process Fault Diagnosis Method Based on DMCA-BiGRUN
by Feng Yu, Changzhou Zhang and Jihan Li
Mathematics 2025, 13(15), 2331; https://doi.org/10.3390/math13152331 - 22 Jul 2025
Viewed by 207
Abstract
With the rising automation and complexity level of industrial systems, the efficiency and accuracy of fault diagnosis have become a critical challenge. The convolutional neural network (CNN) has shown some success in the fault diagnosis field. However, typical convolutional kernels are commonly fixed-sized, [...] Read more.
With the rising automation and complexity level of industrial systems, the efficiency and accuracy of fault diagnosis have become a critical challenge. The convolutional neural network (CNN) has shown some success in the fault diagnosis field. However, typical convolutional kernels are commonly fixed-sized, which makes it difficult to capture multi-scale features simultaneously. Additionally, the use of numerous fixed-size convolutional filters often results in redundant parameters. During the feature extraction process, the CNN often struggles to take inter-channel dependencies and spatial location information into consideration. There are also limitations in extracting various time-scale features. To address these issues, a fault diagnosis method on the basis of a dual-path mixed convolutional attention-BiGRU network (DMCA-BiGRUN) is proposed for industrial processes. Firstly, a dual-path mixed CNN (DMCNN) is designed to capture features at multiple scales while effectively reducing the parameter count. Secondly, a coordinate attention mechanism (CAM) is designed to help the network to concentrate on main features more effectively during feature extraction by combining the channel relationship and position information. Finally, a bidirectional gated recurrent unit (BiGRU) is introduced to process sequences in both directions, which can effectively learn the long-range temporal dependencies of sequence data. To verify the fault diagnosis performance of the proposed method, simulation experiments are implemented on the Tennessee Eastman (TE) and Continuous Stirred Tank Reactor (CSTR) datasets. Some deep learning methods are compared in the experiments, and the results confirm the feasibility and superiority of DMCA-BiGRUN. Full article
Show Figures

Figure 1

13 pages, 3516 KiB  
Article
Research on Fault Diagnosis of High-Voltage Circuit Breakers Using Gramian-Angular-Field-Based Dual-Channel Convolutional Neural Network
by Mingkun Yang, Liangliang Wei, Pengfeng Qiu, Guangfu Hu, Xingfu Liu, Xiaohui He, Zhaoyu Peng, Fangrong Zhou, Yun Zhang, Xiangyu Tan and Xuetong Zhao
Energies 2025, 18(14), 3837; https://doi.org/10.3390/en18143837 - 18 Jul 2025
Viewed by 232
Abstract
The challenge of accurately diagnosing mechanical failures in high-voltage circuit breakers is exacerbated by the non-stationary characteristics of vibration signals. This study proposes a Dual-Channel Convolutional Neural Network (DC-CNN) framework based on the Gramian Angular Field (GAF) transformation, which effectively captures both global [...] Read more.
The challenge of accurately diagnosing mechanical failures in high-voltage circuit breakers is exacerbated by the non-stationary characteristics of vibration signals. This study proposes a Dual-Channel Convolutional Neural Network (DC-CNN) framework based on the Gramian Angular Field (GAF) transformation, which effectively captures both global and local information about faults. Specifically, vibration signals from circuit breaker sensors are firstly transformed into Gramian Angular Summation Field (GASF) and Gramian Angular Difference Field (GADF) images. These images are then combined into multi-channel inputs for parallel CNN modules to extract and fuse complementary features. Experimental validation under six operational conditions of a 220 kV high-voltage circuit breaker demonstrates that the GAF-DC-CNN method achieves a fault diagnosis accuracy of 99.02%, confirming the model’s effectiveness. This work provides substantial support for high-precision and reliable fault diagnosis in high-voltage circuit breakers within power systems. Full article
Show Figures

Figure 1

24 pages, 2613 KiB  
Article
Hierarchical Sensing Framework for Polymer Degradation Monitoring: A Physics-Constrained Reinforcement Learning Framework for Programmable Material Discovery
by Xiaoyu Hu, Xiuyuan Zhao and Wenhe Liu
Sensors 2025, 25(14), 4479; https://doi.org/10.3390/s25144479 - 18 Jul 2025
Viewed by 279
Abstract
The design of materials with programmable degradation profiles presents a fundamental challenge in pattern recognition across molecular space, requiring the identification of complex structure–property relationships within an exponentially large chemical domain. This paper introduces a novel physics-informed deep learning framework that integrates multi-scale [...] Read more.
The design of materials with programmable degradation profiles presents a fundamental challenge in pattern recognition across molecular space, requiring the identification of complex structure–property relationships within an exponentially large chemical domain. This paper introduces a novel physics-informed deep learning framework that integrates multi-scale molecular sensing data with reinforcement learning algorithms to enable intelligent characterization and prediction of polymer degradation dynamics. Our method combines three key innovations: (1) a dual-channel sensing architecture that fuses spectroscopic signatures from Graph Isomorphism Networks with temporal degradation patterns captured by transformer-based models, enabling comprehensive molecular state detection across multiple scales; (2) a physics-constrained policy network that ensures sensor measurements adhere to thermodynamic principles while optimizing the exploration of degradation pathways; and (3) a hierarchical signal processing system that balances multiple sensing modalities through adaptive weighting schemes learned from experimental feedback. The framework employs curriculum-based training that progressively increases molecular complexity, enabling robust detection of degradation markers linking polymer architectures to enzymatic breakdown kinetics. Experimental validation through automated synthesis and in situ characterization of 847 novel polymers demonstrates the framework’s sensing capabilities, achieving a 73.2% synthesis success rate and identifying 42 structures with precisely monitored degradation profiles spanning 6 to 24 months. Learned molecular patterns reveal previously undetected correlations between specific spectroscopic signatures and degradation susceptibility, validated through accelerated aging studies with continuous sensor monitoring. Our results establish that physics-informed constraints significantly improve both the validity (94.7%) and diversity (0.82 Tanimoto distance) of generated molecular structures compared with unconstrained baselines. This work advances the convergence of intelligent sensing technologies and materials science, demonstrating how physics-informed machine learning can enhance real-time monitoring capabilities for next-generation sustainable materials. Full article
(This article belongs to the Special Issue Functional Polymers and Fibers: Sensing Materials and Applications)
Show Figures

Figure 1

25 pages, 6057 KiB  
Article
Physical Implementation and Experimental Validation of the Compensation Mechanism for a Ramp-Based AUV Recovery System
by Zhaoji Qi, Lingshuai Meng, Haitao Gu, Ziyang Guo, Jinyan Wu and Chenghui Li
J. Mar. Sci. Eng. 2025, 13(7), 1349; https://doi.org/10.3390/jmse13071349 - 16 Jul 2025
Viewed by 248
Abstract
In complex marine environments, ramp-based recovery systems for autonomous underwater vehicles (AUVs) often encounter engineering challenges such as reduced docking accuracy and success rate due to disturbances in the capture window attitude. In this study, a desktop-scale physical experimental platform for recovery compensation [...] Read more.
In complex marine environments, ramp-based recovery systems for autonomous underwater vehicles (AUVs) often encounter engineering challenges such as reduced docking accuracy and success rate due to disturbances in the capture window attitude. In this study, a desktop-scale physical experimental platform for recovery compensation was designed and constructed. The system integrates attitude feedback provided by an attitude sensor and dual-motor actuation to achieve active roll and pitch compensation of the capture window. Based on the structural and geometric characteristics of the platform, a dual-channel closed-loop control strategy was proposed utilizing midpoint tracking of the capture window, accompanied by multi-level software limit protection and automatic centering mechanisms. The control algorithm was implemented using a discrete-time PID structure, with gain parameters optimized through experimental tuning under repeatable disturbance conditions. A first-order system approximation was adopted to model the actuator dynamics. Experiments were conducted under various disturbance scenarios and multiple control parameter configurations to evaluate the attitude tracking performance, dynamic response, and repeatability of the system. The results show that, compared to the uncompensated case, the proposed compensation mechanism reduces the MSE by up to 76.4% and the MaxAE by 73.5%, significantly improving the tracking accuracy and dynamic stability of the recovery window. The study also discusses the platform’s limitations and future optimization directions, providing theoretical and engineering references for practical AUV recovery operations. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

21 pages, 4199 KiB  
Article
Time–Frequency-Domain Fusion Cross-Attention Fault Diagnosis Method Based on Dynamic Modeling of Bearing Rotor System
by Shiyu Xing, Zinan Wang, Rui Zhao, Xirui Guo, Aoxiang Liu and Wenfeng Liang
Appl. Sci. 2025, 15(14), 7908; https://doi.org/10.3390/app15147908 - 15 Jul 2025
Viewed by 277
Abstract
Deep learning (DL) and machine learning (ML) have advanced rapidly. This has driven significant progress in intelligent fault diagnosis (IFD) of bearings. However, methods like self-attention have limitations. They only capture features within a single sequence. They fail to effectively extract and fuse [...] Read more.
Deep learning (DL) and machine learning (ML) have advanced rapidly. This has driven significant progress in intelligent fault diagnosis (IFD) of bearings. However, methods like self-attention have limitations. They only capture features within a single sequence. They fail to effectively extract and fuse time- and frequency-domain characteristics from raw signals. This is a critical bottleneck. To tackle this, a dual-channel cross-attention dynamic fault diagnosis network for time–frequency signals is proposed. This model’s intrinsic correlations between time-domain and frequency-domain features, which overcomes single-sequence limitations. The simulation and experimental data validate the method. It achieves over 95% diagnostic accuracy. It effectively captures complex fault patterns. This work provides a theoretical basis for better fault identification in bearing–rotor systems. Full article
Show Figures

Figure 1

35 pages, 2297 KiB  
Article
Secure Cooperative Dual-RIS-Aided V2V Communication: An Evolutionary Transformer–GRU Framework for Secrecy Rate Maximization in Vehicular Networks
by Elnaz Bashir, Francisco Hernando-Gallego, Diego Martín and Farzaneh Shoushtari
World Electr. Veh. J. 2025, 16(7), 396; https://doi.org/10.3390/wevj16070396 - 14 Jul 2025
Viewed by 243
Abstract
The growing demand for reliable and secure vehicle-to-vehicle (V2V) communication in next-generation intelligent transportation systems has accelerated the adoption of reconfigurable intelligent surfaces (RIS) as a means of enhancing link quality, spectral efficiency, and physical layer security. In this paper, we investigate the [...] Read more.
The growing demand for reliable and secure vehicle-to-vehicle (V2V) communication in next-generation intelligent transportation systems has accelerated the adoption of reconfigurable intelligent surfaces (RIS) as a means of enhancing link quality, spectral efficiency, and physical layer security. In this paper, we investigate the problem of secrecy rate maximization in a cooperative dual-RIS-aided V2V communication network, where two cascaded RISs are deployed to collaboratively assist with secure data transmission between mobile vehicular nodes in the presence of eavesdroppers. To address the inherent complexity of time-varying wireless channels, we propose a novel evolutionary transformer-gated recurrent unit (Evo-Transformer-GRU) framework that jointly learns temporal channel patterns and optimizes the RIS reflection coefficients, beam-forming vectors, and cooperative communication strategies. Our model integrates the sequence modeling strength of GRUs with the global attention mechanism of transformer encoders, enabling the efficient representation of time-series channel behavior and long-range dependencies. To further enhance convergence and secrecy performance, we incorporate an improved gray wolf optimizer (IGWO) to adaptively regulate the model’s hyper-parameters and fine-tune the RIS phase shifts, resulting in a more stable and optimized learning process. Extensive simulations demonstrate the superiority of the proposed framework compared to existing baselines, such as transformer, bidirectional encoder representations from transformers (BERT), deep reinforcement learning (DRL), long short-term memory (LSTM), and GRU models. Specifically, our method achieves an up to 32.6% improvement in average secrecy rate and a 28.4% lower convergence time under varying channel conditions and eavesdropper locations. In addition to secrecy rate improvements, the proposed model achieved a root mean square error (RMSE) of 0.05, coefficient of determination (R2) score of 0.96, and mean absolute percentage error (MAPE) of just 0.73%, outperforming all baseline methods in prediction accuracy and robustness. Furthermore, Evo-Transformer-GRU demonstrated rapid convergence within 100 epochs, the lowest variance across multiple runs. Full article
Show Figures

Figure 1

16 pages, 2144 KiB  
Article
Inter-Frequency Aided Acquisition for BeiDou DFMC Receivers: Dual-Frequency Cooperation and Extended Integration
by Zhenyang Ma, Xupeng Zhang, Zhaobin Duan and Yicheng Li
Aerospace 2025, 12(7), 629; https://doi.org/10.3390/aerospace12070629 - 12 Jul 2025
Viewed by 209
Abstract
With the advancement of the third-generation BeiDou Navigation Satellite System (BDS-3), BeiDou dual-frequency multi-constellation (DFMC) receivers exhibit distinct advantages in accuracy and reliability due to their dual-frequency capabilities. However, the integration time imposes constraints on further improvements in sensitivity. To address this limitation, [...] Read more.
With the advancement of the third-generation BeiDou Navigation Satellite System (BDS-3), BeiDou dual-frequency multi-constellation (DFMC) receivers exhibit distinct advantages in accuracy and reliability due to their dual-frequency capabilities. However, the integration time imposes constraints on further improvements in sensitivity. To address this limitation, this study proposes a dual-frequency cooperative acquisition strategy targeting the B1C and B2a signals, with the objective of enhancing acquisition performance in weak signal environments. A dual-channel acquisition architecture was designed, incorporating an inter-frequency Doppler assistance technique to improve acquisition efficiency. Simulation results demonstrate that, compared to conventional fixed short integration time architectures, the proposed cooperative acquisition approach increases the receiver’s acquisition sensitivity by 5.7 dB. Real-world experiments further confirm the effectiveness of this strategy, achieving successful acquisition of the PRN28 signal with 5 ms of coherent integration, thereby highlighting its practical utility. This research offers an innovative solution for high-sensitivity signal acquisition in challenging environments for BeiDou DFMC receivers and provides valuable insights for the advancement of high-precision BeiDou applications. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

Back to TopTop