A Second-Order LADRC-Based Control Strategy for Quadrotor UAVs Using a Modified Crayfish Optimization Algorithm and Fuzzy Logic
Abstract
1. Introduction
2. Quadrotor Modeling
3. Controller Design
3.1. Modified Crayfish Optimization Algorithm
3.2. Fuzzy Control Design
3.3. Position and Attitude Controller Design
3.4. Stability Analysis
4. Simulation and Discussion
4.1. Simulation of Signal Tracking
4.2. Additional Wind Disturbance Simulation
5. Conclusions
- We establish a flight dynamics model for the quadrotor drone, delineating the relationship between various channels and the controller. Based on this, we develop an inner and outer loop control structure, with both loops employing the LADRC strategy enhanced by MCOA-optimized fuzzy control.
- To address the complexity and difficulty in achieving optimal parameters for the LADRC controller, we propose a method using the MCOA to select the initial parameters for the LADRC controller. The MCOA incorporates an environmental updating mechanism and a ghost cooperative learning strategy that improve the ability to escape local optima, thereby facilitating the selection of optimal parameters for the controller.
- In response to external disturbances, we introduce a fuzzy control algorithm based on the existing controller. By modeling fuzzy rules, we achieve real-time dynamic adjustments to the LADRC controller parameters, ensuring that the quadrotor maintains stable control in changing environments despite disturbances.
- The proposed optimization algorithm and integration of fuzzy control were validated through simulations. However, discrepancies may arise in real-world applications due to factors like sensor noise and uncertainties in modeling. Future work will focus on implementing this control strategy in actual flight tests to robustly verify its superiority.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mawanza, J.; Agee, J.; Bhero, E. Finite-time Control for a Quadcopter UAV in the Application of Wildfire Monitoring. IET Control Theory Appl. 2024, 18, 1540–1558. [Google Scholar] [CrossRef]
- Lai, W.-H.; Tsai, S.-T.; Cheng, D.-L.; Liang, Y.-R. Application of Wavelet Scattering and Machine Learning on Structural Health Diagnosis for Quadcopter. Appl. Sci. 2021, 11, 10297. [Google Scholar] [CrossRef]
- Souvanhnakhoomman, S. Review on Application of Drone in Spraying Pesticides and Fertilizers. 2024. Available online: https://arxiv.org/pdf/2402.00020 (accessed on 19 July 2025).
- Yadav, Y.; Kushwaha, S.K.P.; Mokros, M.; Chudá, J.; Pondelík, M. Integration of Iphone Lidar with Quadcopter and Fixed Wing UAV Photogrammetry for the Forestry Applications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-1-W3-2023, 213–218. [Google Scholar] [CrossRef]
- Ke, C.; Cai, K.-Y.; Quan, Q. Uniform Passive Fault-Tolerant Control of a Quadcopter with One, Two, or Three Rotor Failure. IEEE Trans. Robot. 2023, 39, 4297–4311. [Google Scholar] [CrossRef]
- Abdulkareem, A.; Oguntosin, V.; Popoola, O.M.; Idowu, A.A. Modeling and Nonlinear Control of a Quadcopter for Stabilization and Trajectory Tracking. J. Eng. 2022, 2022, 2449901. [Google Scholar] [CrossRef]
- Baharuddin, A.; Basri, M.A.M. Self-Tuning PID Controller for Quadcopter Using Fuzzy Logic. Int. J. Robot. Control Syst. 2023, 3, 728–748. [Google Scholar] [CrossRef]
- Gedefaw, E.A.; Abdissa, C.M.; Lemma, L.N. An Improved Trajectory Tracking Control of Quadcopter Using a Novel Sliding Mode Control with Fuzzy PID Surface. PLoS ONE 2024, 19, e0308997. [Google Scholar] [CrossRef]
- Park, D.; Le, T.-L.; Quynh, N.V.; Long, N.K.; Hong, S.K. Online Tuning of PID Controller Using a Multilayer Fuzzy Neural Network Design for Quadcopter Attitude Tracking Control. Front. Neurorobotics 2021, 14, 619350. [Google Scholar] [CrossRef]
- Alrubyli, Y.; Bonarini, A. Using Q-Learning to Automatically Tune Quadcopter PID Controller Online for Fast Altitude Stabilization. In Proceedings of the 2022 IEEE International Conference on Mechatronics and Automation (ICMA), Guilin, China, 7 August 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 514–519. [Google Scholar]
- Cavus, M.; Dissanayake, D.; Bell, M. Deep-Fuzzy Logic Control for Optimal Energy Management: A Predictive and Adaptive Framework for Grid-Connected Microgrids. Energies 2025, 18, 995. [Google Scholar] [CrossRef]
- Han, J. From PID to Active Disturbance Rejection Control. IEEE Trans. Ind. Electron. 2009, 56, 900–906. [Google Scholar] [CrossRef]
- Wang, H.; Zhuo, J.; Xiong, X. Attitude Control of Quadrotor UAV Based on ADRC. In Proceedings of the 2023 IEEE International Conference on Electrical, Automation and Computer Engineering (ICEACE), Changchun, China, 26–28 December 2023; pp. 8–15. [Google Scholar]
- Cheng, Y.; Dai, L.; Li, A.; Yuan, Y.; Chen, Z. Active Disturbance Rejection Generalized Predictive Control of a Quadrotor UAV via Quantitative Feedback Theory. IEEE Access 2022, 10, 37912–37923. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, J.; Gao, H.; Zhang, Y. Compound Control Method of ADRC and FTUSMC for Quadrotor UAV Attitude System. In Proceedings of the 2023 2nd International Conference on Robotics, Artificial Intelligence and Intelligent Control (RAIIC), Mianyang, China, 11–13 August 2023; pp. 96–103. [Google Scholar]
- Toyota, M.; Tanaka, R. A Design Approach to Linear Active Disturbance Rejection Controller Based on Linear Quadratic Regulator Method for Quadrotor Attitude Control. In Proceedings of the 2021 60th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Tokyo, Japan, 8–10 September 2021; pp. 1202–1208. [Google Scholar]
- Wang, W.; Gao, Z. A Comparison Study of Advanced State Observer Design Techniques. In Proceedings of the 2003 American Control Conference, Denver, CO, USA, 4–6 June 2003; Volume 6, pp. 4754–4759. [Google Scholar]
- Wang, Z.; Zhao, T. Based on Robust Sliding Mode and Linear Active Disturbance Rejection Control for Attitude of Quadrotor Load UAV. Nonlinear Dyn. 2022, 108, 3485–3503. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, G.; Zhao, T. Based on Backpropagation Neural Network and Adaptive Linear Active Disturbance Rejection Control for Attitude of a Quadrotor Carrying a Load. Appl. Sci. 2022, 12, 12698. [Google Scholar] [CrossRef]
- Hwangbo, J.; Sa, I.; Siegwart, R.; Hutter, M. Control of a Quadrotor with Reinforcement Learning. IEEE Robot. Autom. Lett. 2017, 2, 2096–2103. [Google Scholar] [CrossRef]
- Lambert, N.O.; Drew, D.S.; Yaconelli, J.; Levine, S.; Calandra, R.; Pister, K.S.J. Low-Level Control of a Quadrotor with Deep Model-Based Reinforcement Learning. IEEE Robot. Autom. Lett. 2019, 4, 4224–4230. [Google Scholar] [CrossRef]
- Hua, H.; Fang, Y. A Novel Reinforcement Learning-Based Robust Control Strategy for a Quadrotor. IEEE Trans. Ind. Electron. 2023, 70, 2812–2821. [Google Scholar] [CrossRef]
- Pi, C.-H.; Ye, W.-Y.; Cheng, S. Robust Quadrotor Control through Reinforcement Learning with Disturbance Compensation. Appl. Sci. 2021, 11, 3257. [Google Scholar] [CrossRef]
- Sonugür, G.; Gçkçe, C.O.; Koca, Y.B.; Inci, Ş.S. Particle Swarm Optimization Based Optimal PID Controller for Quadcopters; “Prof. Marin Drinov” Publishing House of Bulgarian Academy of Sciences: Sofia, Bulgaria, 2022. [Google Scholar]
- Shauqee, M.N.; Rajendran, P.; Suhadis, N.M. An Explosion Based Algorithm to Solve the Optimization Problem in Quadcopter Control. Aerospace 2021, 8, 125. [Google Scholar] [CrossRef]
- Soyinka, O.K.; Ikpaya, M.N.; Luka, L. Study on PID Gain Parameter Optimization for a Quadcopter under Static Wind Turbulence Using Bio-Inspired Algorithms. Discov. Electron. 2025, 2, 8. [Google Scholar] [CrossRef]
- Jijun, S.; Daogang, P. Application Research on Improved Genetic Algorithm and Active Disturbance Rejection Control on Quadcopters. Meas. Control 2024, 57, 1347–1357. [Google Scholar] [CrossRef]
- Jia, H.; Rao, H.; Wen, C.; Mirjalili, S. Crayfish Optimization Algorithm. Artif. Intell. Rev. 2023, 56, 1919–1979. [Google Scholar] [CrossRef]
- Jia, H.; Zhou, X.; Zhang, J.; Abualigah, L.; Yildiz, A.R.; Hussien, A.G. Modified Crayfish Optimization Algorithm for Solving Multiple Engineering Application Problems. Artif. Intell. Rev. 2024, 57, 127. [Google Scholar] [CrossRef]
NB | NM | NS | ZO | PS | PM | PB | ||
---|---|---|---|---|---|---|---|---|
NB | PB\PB\NB | PB\PB\NB | PM\PM\NM | PM\PM\NM | PS\PS\NS | ZO\ZO\ZO | ZO\ZO\ZO | |
NM | PB\PB\NB | PB\PB\NB | PM\PM\NM | PM\PM\NM | PS\PS\NS | ZO\ZO\ZO | ZO\ZO\ZO | |
NS | PM\PM\NM | PM\PM\NM | PS\PS\NS | PS\PS\NS | PS\ZO\ZO | PS\ZO\ZO | NS\NS\PS | |
ZO | PM\PM\NM | PS\PS\NS | PS\PS\NS | NB\ZO\ZO | NB\NS\PS | NB\NS\PS | NS\NM\PM | |
PS | NS\PS\NS | NS\ZO\NS | NS\ZO\ZO | NS\NS\PS | NS\NM\PM | NM\NM\PM | NM\NM\PB | |
PM | PM\ZO\ZO | PM\ZO\ZO | PB\NS\PS | PB\NM\PM | PB\NM\PM | PB\NB\PB | PB\NB\PB | |
PB | PB\ZO\ZO | PB\NS\PS | PB\NM\PM | PB\NM\PM | PB\NB\PB | PB\NB\PB | PB\NB\PB |
Parameters | Value |
---|---|
Parameters | |||
---|---|---|---|
Control Strategy | (s) | ||
---|---|---|---|
X | Y | Z | |
LADRC | 9.94 | 9.94 | 3.16 |
FuzzyLADRC | 6.77 | 6.77 | 1.245 |
MCOAFuzzy LADRC | 3.505 | 3.505 | 0.85 |
Control Strategy | ITAE | |||
---|---|---|---|---|
x | y | z | psi | |
LADRC | 7.61 | 7.60 | 0.41 | 1.83 × 10−5 |
FuzzyLADRC | 6.97 | 6.81 | 0.34 | 3.32 × 10−7 |
MCOAFuzzy LADRC | 3.64 | 3.65 | 0.21 | 1.85 × 10−8 |
Desired Signal | Desired Value | Time |
---|---|---|
(1.0, 1.0, 1.0) | 0 | |
(0.5, 1.0, 1.0) | 10 | |
(0.5, 0.5, 1.0) | 20 | |
(0.5, 0.5, 1.0) | 30 | |
(1.0, 0.5, 1.0) | 40 | |
(1.0, 1.0, 1.0) | 50 | |
(1.0, 1.0, 0.5) | 60 | |
0 | 0~70 |
Interference Signal | Interference Amplitude | Time |
---|---|---|
3 | 10~15 s 40~45 s | |
1 | 25~35 s | |
3 | 5~10 s | |
50~55 s | ||
1 | 30~40 s | |
3 | 15~20 s | |
50~55 s |
Control Strategy | Maximum Overshoot (Gust Wind) | ||
---|---|---|---|
X | Y | Z | |
LADRC | 17.4% | 16.9% | 11.1% |
FuzzyLADRC | 9.4% | 9.7% | 8.5% |
MCOAFuzzy LADRC | 8.2% | 8.1% | 5.4% |
Control Strategy | Maximum Overshoot (Time-Varying Wind) | |
---|---|---|
X | Y | |
LADRC | 9.1% | 9.3% |
FuzzyLADRC | 4.09% | 4.05% |
MCOAFuzzy LADRC | 1.24% | 1.22% |
Control Strategy | ITAE | |||
---|---|---|---|---|
X | Y | Z | Psi | |
LADRC | 83.72 | 84.59 | 40.37 | 0.0538 |
FuzzyLADRC | 64.16 | 67.08 | 29.42 | 0.0158 |
MCOAFuzzy LADRC | 50.37 | 51.38 | 21.91 | 0.0058 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Wang, G.; Bai, Y. A Second-Order LADRC-Based Control Strategy for Quadrotor UAVs Using a Modified Crayfish Optimization Algorithm and Fuzzy Logic. Electronics 2025, 14, 3124. https://doi.org/10.3390/electronics14153124
Li K, Wang G, Bai Y. A Second-Order LADRC-Based Control Strategy for Quadrotor UAVs Using a Modified Crayfish Optimization Algorithm and Fuzzy Logic. Electronics. 2025; 14(15):3124. https://doi.org/10.3390/electronics14153124
Chicago/Turabian StyleLi, Kelin, Guangzhao Wang, and Yalei Bai. 2025. "A Second-Order LADRC-Based Control Strategy for Quadrotor UAVs Using a Modified Crayfish Optimization Algorithm and Fuzzy Logic" Electronics 14, no. 15: 3124. https://doi.org/10.3390/electronics14153124
APA StyleLi, K., Wang, G., & Bai, Y. (2025). A Second-Order LADRC-Based Control Strategy for Quadrotor UAVs Using a Modified Crayfish Optimization Algorithm and Fuzzy Logic. Electronics, 14(15), 3124. https://doi.org/10.3390/electronics14153124