Research on Fault Diagnosis of High-Voltage Circuit Breakers Using Gramian-Angular-Field-Based Dual-Channel Convolutional Neural Network
Abstract
1. Introduction
2. Methodology
2.1. GAF Transformation
2.2. Multi-Channel GAF Image Construction
2.3. Evaluation Metrics
3. Fault Identification Method Based on GAF-DC-CNN
3.1. Vibration Data Collection and GAF Processing
3.2. Construction of DC-CNN
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Zhang, G.; Zhao, C.; Lei, S.; Qin, H.; Yang, J. Mechanical condition identification and prediction of spring operating mechanism of high voltage circuit breaker. IEEE Access 2020, 8, 210328–210338. [Google Scholar] [CrossRef]
- Yang, M.; Wei, L.; Qiu, P.; Hu, G.; Yang, K.; He, X.; Peng, Z.; Zhou, F.; Zhang, Y.; Luo, J.; et al. Evaluation on the Long-Term Operational Reliability of Closing Springs in High-Voltage Circuit Breakers. Energies 2025, 18, 1806. [Google Scholar] [CrossRef]
- Razi-Kazemi, A.A.; Niavesh, K. Condition monitoring of high voltage circuit breakers: Past to future. IEEE Trans. Power Deliv. 2020, 36, 740–750. [Google Scholar] [CrossRef]
- Zhu, Y.; Jiang, Y.; Cao, F.; Wang, P.; Ke, J.; Liu, J.; Nie, Y.; Li, G.; Wei, Y.; Lu, G.; et al. Space charge induced electrofluorochromic behavior for C12-BTBT based thin-film devices. J. Mater. Chem. C 2025, 13, 12027. [Google Scholar] [CrossRef]
- Su, Y.; Lu, Y.; Xie, Z.; Wang, J.; Luo, C. Study on closing spring fatigue characteristics of high voltage circuit breaker. IOP Conf. Ser. Earth Environ. Sci. 2020, 508, 012174. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, G.; Yang, D.; Xu, G.; Xing, Y.; Yao, C.; Abu-Siada, A. Enhanced detection of power transformer winding faults through 3D FRA signatures and image processing techniques. Electr. Pow. Syst. Res. 2025, 242, 111433. [Google Scholar] [CrossRef]
- Wan, S.; Chen, L. Fault diagnosis of high-voltage circuit breakers using mechanism action time and hybrid classifier. IEEE Access 2019, 7, 85146–85157. [Google Scholar] [CrossRef]
- Shao, H.; Jiang, Y.; Zhao, J.; Yang, M.; Wang, X.; Yang, H. Hybrid multi-scale residual network for high-voltage circuit breakers fault diagnosis. Electron. Lett. 2025, 61, e70135. [Google Scholar] [CrossRef]
- Liu, M.; Wang, K.; Sun, L.; Zhen, J. Applying empirical mode decomposition (EMD) and entropy to diagnose circuit breaker faults. Optik 2015, 126, 2338–2342. [Google Scholar] [CrossRef]
- Wu, L. Research on Fault Diagnosis and Maintenance Decision of High Voltage Circuit Breaker. Master’s Thesis, Tianjin University, Tianjin, China, 2019. [Google Scholar]
- Ji, T.; Yi, L.; Tang, W.; Shi, M.; Wu, Q. Multi-map fault diagnosis of high voltage circuit breaker based on mathematical morphology and wavelet entropy. CSEE J. Power Energy Syst. 2019, 5, 130–138. [Google Scholar] [CrossRef]
- Huang, N.; Chen, H.; Cai, G.; Fang, L.; Wang, Y. Mechanical fault diagnosis of high voltage circuit breakers based on variational mode decomposition and multi-layer classifier. Sensors 2016, 16, 1887. [Google Scholar] [CrossRef] [PubMed]
- Sun, L. Research on Deep Residual Network Model and Its Application in Circuit Breaker Fault Diagnosis. Master’s Thesis, Hebei University of Technology, Hebei, China, 2023. [Google Scholar]
- Xu, J.; Zhang, B.; Lin, X.; Li, B.; Teng, Y. Application of energy spectrum entropy vector method and RBF neural networks optimized by the particle swarm in high-voltage circuit breaker mechanical fault diagnosis. High Voltage Eng. 2012, 38, 1299–1306. [Google Scholar]
- Zhao, K.; Yang, J.; Ma, S.; Wang, Y.; Wu, J.; Liang, C. Application of neural network ensemble model in mechanical fault identification of high voltage circuit breaker. High Volt. Appar. 2018, 54, 217–223. [Google Scholar]
- Zhao, L.; Ji, Y.; Wu, Y.; Wu, X.; Ning, W.; Huang, X.; Ren, J. LM-BP fault diagnosis algorithm for spring operating mechanism of high voltage circuit breaker based on motor current. Electr. Meas. Instrum. 2024, 61, 48–55. [Google Scholar]
- Du, T.; Sun, L.; Sun, S.; Chen, F.; Liu, J. Application of deep residual network in circuit breaker fault diagnosis. Instrum. Technol. Sensor 2022, 7, 95–99. [Google Scholar]
- Yan, R.; Lin, C.; Gao, S.; Luo, J.; Li, T.; Xia, Z. Fault diagnosis and analysis of circuit breaker based on wavelet time-frequency representations and convolutional neural network. J. Vib. Shock. 2020, 39, 198–205. [Google Scholar]
- Huang, X.; Hu, X.; Zhu, Y.; Wei, X.; Zhou, Y.; Gao, H. Fault diagnosis of high voltage circuit breaker based on convolutional neural network. Electr. Power Autom. Equip. 2018, 38, 136–140. [Google Scholar]
- Xu, H.; Li, J.; Yuan, H.; Liu, Q.; Fan, S.; Li, T.; Sun, X. Human activity recognition based on Gramian angular field and deep convolutional neural network. IEEE Access 2020, 8, 199393–199405. [Google Scholar] [CrossRef]
- Zhang, G.; Si, Y.; Wang, D.; Yang, W.; Sun, Y. Automated detection of myocardial infarction using a Gramian angular field and principal component analysis network. IEEE Access 2019, 7, 171570–171583. [Google Scholar] [CrossRef]
- Zhou, F.; Ma, Y.; Wang, B.; Lin, G. Dual-channel convolutional neural network for power edge image recognition. J. Cloud Comp. 2021, 10, 18. [Google Scholar] [CrossRef]
- Peng, W.; Zhang, G. Research on fault diagnosis of low-voltage circuit breaker based on vibration and coil current signals. Adv. Technol. Electr. Eng. Energy 2025, 44, 106–115. [Google Scholar]
- Hossain, M.A.; Sajib, M.S.A. Classification of image using convolutional neural network (CNN). Glob. J. Comput. Sci. Technol. 2019, 19, 13–14. [Google Scholar] [CrossRef]
- Cao, J.; Chen, S.; Bao, X.; Cong, L.; Zhou, J. Research on fault diagnosis of circuit breakers based on spectrograms and improved residual networks. Mach. Electron. 2025, 43, 9–15. [Google Scholar]
- Wang, X.; Wang, X.; Jia, X.; Zhang, F.; Li, S.; Hu, Y. Fault identification method of outage transmission line based on convolutional neural network and wavelet packet decomposition. Electr. Meas. Instrum. 2025, 62, 61–67. [Google Scholar]
- Razavi-Far, R.; Chakrabarti, S.; Saif, M.; Zio, E. An integrated imputation-prediction scheme for prognostics of battery data with missing observations. Expert. Syst. Appl. 2019, 115, 709–723. [Google Scholar] [CrossRef]
- Song, J.; Wang, H.; Du, M.; Peng, L.; Zhang, S.; Xu, G. Non-intrusive load identification method based on improved long short term memory network. Energies 2021, 14, 684. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Cong, S.; Zhou, Y. A review of convolutional neural network architectures and their optimizations. Artif. Intell. Rev. 2023, 56, 1905–1969. [Google Scholar] [CrossRef]
Layer Name | Number of Channels | Convolution Kernel/Pooling Window Size | Stride Length | Output Dimensions | Padding |
---|---|---|---|---|---|
GADF: | |||||
Input | 5 | — | — | 128 × 128 × 5 | — |
Conv_1 | 48 | 5 × 5 | 1 | 128 × 128 × 48 | SAME |
Conv_2 | 96 | 4 × 4 | 1 | 128 × 128 × 96 | SAME |
MaxPool_1 | 96 | 2 × 2 | 2 | 64 × 64 × 96 | — |
Conv_3 | 128 | 3 × 3 | 1 | 64 × 64 × 128 | SAME |
Conv_4 | 192 | 3 × 3 | 1 | 64 × 64 × 192 | SAME |
MaxPool_2 | 192 | 2 × 2 | 2 | 32 × 32 × 192 | — |
Conv_5 | 256 | 3 × 3 | 1 | 32 × 32 × 256 | SAME |
MaxPool_3 | 256 | 2 × 2 | 2 | 16 × 16 × 256 | — |
Global Average Pooling | 256 | 16 × 16 | — | 1 × 1 × 256 | — |
FC_1 | — | — | — | 256 | — |
GASF: | |||||
Input | 5 | — | — | 128 × 128 × 5 | — |
Conv_6 | 48 | 5 × 5 | 1 | 128 × 128 × 48 | SAME |
Conv_7 | 96 | 4 × 4 | 1 | 128 × 128 × 96 | SAME |
MaxPool_4 | 96 | 2 × 2 | 2 | 64 × 64 × 96 | — |
Conv_8 | 128 | 3 × 3 | 1 | 64 × 64 × 128 | SAME |
Conv_9 | 192 | 3 × 3 | 1 | 64 × 64 × 192 | SAME |
MaxPool_5 | 192 | 2 × 2 | 2 | 32 × 32 × 192 | — |
Conv_10 | 256 | 3 × 3 | 1 | 32 × 32 × 256 | SAME |
MaxPool_6 | 256 | 2 × 2 | 2 | 16 × 16 × 256 | — |
Global Average Pooling | 256 | 16 × 16 | — | 1 × 1 × 256 | — |
FC_2 | — | — | — | 256 | — |
Integration layer: direct connection method | |||||
FC_3 | — | — | — | 512 | — |
FC_4 | — | — | — | 256 | — |
Output | — | — | — | 6 | — |
Model | Accuracy | Recall | F1 Score | AUC |
---|---|---|---|---|
GAF-DC-CNN | 0.9902 | 0.9971 | 0.9841 | 0.9962 |
GADF-CNN | 0.9523 | 0.9602 | 0.9547 | 0.9974 |
GASF-CNN | 0.9234 | 0.9211 | 0.9484 | 0.9893 |
CNN–LSTM | 0.9004 | 0.8919 | 0.9084 | 0.9692 |
Metric | Mean Value | Standard Deviation |
---|---|---|
Accuracy | 0.9984 | ±0.0042 |
Recall | 0.9943 | ±0.0031 |
F1 Score | 0.9827 | ±0.0038 |
AUC | 0.9951 | ±0.0026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Wei, L.; Qiu, P.; Hu, G.; Liu, X.; He, X.; Peng, Z.; Zhou, F.; Zhang, Y.; Tan, X.; et al. Research on Fault Diagnosis of High-Voltage Circuit Breakers Using Gramian-Angular-Field-Based Dual-Channel Convolutional Neural Network. Energies 2025, 18, 3837. https://doi.org/10.3390/en18143837
Yang M, Wei L, Qiu P, Hu G, Liu X, He X, Peng Z, Zhou F, Zhang Y, Tan X, et al. Research on Fault Diagnosis of High-Voltage Circuit Breakers Using Gramian-Angular-Field-Based Dual-Channel Convolutional Neural Network. Energies. 2025; 18(14):3837. https://doi.org/10.3390/en18143837
Chicago/Turabian StyleYang, Mingkun, Liangliang Wei, Pengfeng Qiu, Guangfu Hu, Xingfu Liu, Xiaohui He, Zhaoyu Peng, Fangrong Zhou, Yun Zhang, Xiangyu Tan, and et al. 2025. "Research on Fault Diagnosis of High-Voltage Circuit Breakers Using Gramian-Angular-Field-Based Dual-Channel Convolutional Neural Network" Energies 18, no. 14: 3837. https://doi.org/10.3390/en18143837
APA StyleYang, M., Wei, L., Qiu, P., Hu, G., Liu, X., He, X., Peng, Z., Zhou, F., Zhang, Y., Tan, X., & Zhao, X. (2025). Research on Fault Diagnosis of High-Voltage Circuit Breakers Using Gramian-Angular-Field-Based Dual-Channel Convolutional Neural Network. Energies, 18(14), 3837. https://doi.org/10.3390/en18143837