Hierarchical Sensing Framework for Polymer Degradation Monitoring: A Physics-Constrained Reinforcement Learning Framework for Programmable Material Discovery
Abstract
1. Introduction
2. Related Work
2.1. Graph Neural Networks for Molecular Representation
2.2. Reinforcement Learning for Molecular Generation
2.3. Physics-Informed Sensing Approaches for Materials
2.4. Synthesis of Approaches and Research Gaps
3. Methodology
3.1. Hierarchical Molecular Representation
3.1.1. Dual-Representation Architecture
3.1.2. Graph Encoding Module
3.1.3. Sequence Encoding Module
3.1.4. Feature Fusion and Polymer Representation
3.2. Physics-Constrained Policy Network
3.2.1. Action Space Definition
3.2.2. Soft Actor-Critic with Physics Constraints
3.3. Multi-Objective Reward Engineering
3.3.1. Hierarchical Reward Structure
3.3.2. Degradability Reward Components
3.3.3. Meta-Learning for Weight Optimization
3.4. Training Methodology
3.4.1. Curriculum Learning Strategy
3.4.2. Experience Replay and Exploration
3.4.3. Stability and Convergence
4. Experimental Evaluation
4.1. Experimental Setup
4.1.1. Datasets and Chemical Space
4.1.2. Implementation Details
4.2. Baseline Methods and Evaluation Metrics
4.2.1. Comparative Baselines
4.2.2. Evaluation Metrics
4.3. Polymer Generation Performance
4.4. Physics Constraint Validation
4.5. Ablation Studies
4.6. Multi-Objective Optimization Analysis
4.7. Experimental Synthesis and Validation
4.8. Learned Representation Analysis
Mechanistic Analysis of Structure–Degradation Relationships
4.9. Computational Efficiency Analysis
4.10. Key Findings and Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matyjaszewski, K. Macromolecular engineering: From rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties. Prog. Polym. Sci. 2005, 30, 858–875. [Google Scholar] [CrossRef]
- Haider, T.P.; Völker, C.; Kramm, J.; Landfester, K.; Wurm, F.R. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew. Chem. Int. Ed. 2019, 58, 50–62. [Google Scholar] [CrossRef]
- Gómez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.; Hernández-Lobato, J.M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T.D.; Adams, R.P.; Aspuru-Guzik, A. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 2018, 4, 268–276. [Google Scholar] [CrossRef]
- Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for quantum chemistry. In Proceedings of the International Conference on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 1263–1272. [Google Scholar]
- Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? arXiv 2018, arXiv:1810.00826. [Google Scholar]
- Morgan, D.; Jacobs, R. Opportunities and challenges for machine learning in materials science. Annu. Rev. Mater. Res. 2020, 50, 71–103. [Google Scholar] [CrossRef]
- Kuenneth, C.; Ramprasad, R. polyBERT: A chemical language model to enable fully machine-driven ultrafast polymer informatics. Nat. Commun. 2023, 14, 4099. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Kearnes, S.; Li, L.; Zare, R.N.; Riley, P. Optimization of molecules via deep reinforcement learning. Sci. Rep. 2019, 9, 10752. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Liu, B.; Ying, Z.; Pande, V.; Leskovec, J. Graph convolutional policy network for goal-directed molecular graph generation. In Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, Montréal, QC, Canada, 3–8 December 2018; Curran Associates, Inc.: Red Hook, NY, USA, 2018. [Google Scholar]
- Pei, X.; Luo, Z.; Qiao, L.; Xiao, Q.; Zhang, P.; Wang, A.; Sheldon, R.A. Putting precision and elegance in enzyme immobilisation with bio-orthogonal chemistry. Chem. Soc. Rev. 2022, 51, 7281–7304. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Butler, K.T.; Davies, D.W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature 2018, 559, 547–555. [Google Scholar] [CrossRef]
- Jin, Y.; Sendhoff, B. Pareto-based multiobjective machine learning: An overview and case studies. IEEE Trans. Syst. Man Cybern. Part (Appl. Rev.) 2008, 38, 397–415. [Google Scholar]
- Roijers, D.M.; Vamplew, P.; Whiteson, S.; Dazeley, R. A survey of multi-objective sequential decision-making. J. Artif. Intell. Res. 2013, 48, 67–113. [Google Scholar] [CrossRef]
- Ross, J.; Belgodere, B.; Chenthamarakshan, V.; Padhi, I.; Mroueh, Y.; Das, P. Large-scale chemical language representations capture molecular structure and properties. Nat. Mach. Intell. 2022, 4, 1256–1264. [Google Scholar] [CrossRef]
- Duvenaud, D.K.; Maclaurin, D.; Iparraguirre, J.; Bombarell, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R.P. Convolutional networks on graphs for learning molecular fingerprints. In Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, Montreal, QC, Canada, 7–12 December 2015; Curran Associates, Inc.: Red Hook, NY, USA, 2015. [Google Scholar]
- Gasteiger, J.; Groß, J.; Günnemann, S. Directional message passing for molecular graphs. arXiv 2020, arXiv:2003.03123. [Google Scholar]
- Morris, C.; Ritzert, M.; Fey, M.; Hamilton, W.L.; Lenssen, J.E.; Rattan, G.; Grohe, M. Weisfeiler and leman go neural: Higher-order graph neural networks. Proc. AAAI Conf. Artif. Intell. 2019, 33, 4602–4609. [Google Scholar] [CrossRef]
- Zeng, H.; Zhou, H.; Srivastava, A.; Kannan, R.; Prasanna, V. Graphsaint: Graph sampling based inductive learning method. arXiv 2019, arXiv:1907.04931. [Google Scholar]
- Corso, G.; Cavalleri, L.; Beaini, D.; Liò, P.; Veličković, P. Principal neighbourhood aggregation for graph nets. In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Online, 6–12 December 2020; Curran Associates, Inc.: Red Hook, NY, USA, 2020; pp. 13260–13271. [Google Scholar]
- St John, P.C.; Phillips, C.; Kemper, T.W.; Wilson, A.N.; Guan, Y.; Crowley, M.F.; Nimlos, M.R.; Larsen, R.E. Message-passing neural networks for high-throughput polymer screening. J. Chem. Phys. 2019, 150, 234111. [Google Scholar] [CrossRef]
- Lin, T.S.; Coley, C.W.; Mochigase, H.; Beech, H.K.; Wang, W.; Wang, Z.; Woods, E.; Craig, S.L.; Johnson, J.A.; Kalow, J.A.; et al. BigSMILES: A structurally-based line notation for describing macromolecules. ACS Cent. Sci. 2019, 5, 1523–1531. [Google Scholar] [CrossRef]
- Aldeghi, M.; Coley, C.W. A graph representation of molecular ensembles for polymer property prediction. Chem. Sci. 2022, 13, 10486–10498. [Google Scholar] [CrossRef]
- Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H. Molecular de-novo design through deep reinforcement learning. J. Cheminform. 2017, 9, 48. [Google Scholar] [CrossRef]
- Jin, W.; Barzilay, R.; Jaakkola, T. Junction tree variational autoencoder for molecular graph generation. In Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 2323–2332. [Google Scholar]
- Gottipati, S.K.; Sattarov, B.; Niu, S.; Pathak, Y.; Wei, H.; Liu, S.; Blackburn, S.; Thomas, K.; Coley, C.; Tang, J.; et al. Learning to navigate the synthetically accessible chemical space using reinforcement learning. In Proceedings of the International Conference on Machine Learning, PMLR, Online, 13–18 July 2020; pp. 3668–3679. [Google Scholar]
- Bengio, E.; Jain, M.; Korablyov, M.; Precup, D.; Bengio, Y. Flow network based generative models for non-iterative diverse candidate generation. In Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, Online, 6–14 December 2021; Curran Associates, Inc.: Red Hook, NY, USA, 2021; pp. 27381–27394. [Google Scholar]
- Jørgensen, P.B.; Jacobsen, K.W.; Schmidt, M.N. Neural message passing with edge updates for predicting properties of molecules and materials. arXiv 2018, arXiv:1806.03146. [Google Scholar] [CrossRef]
- Xie, Y.; Shi, C.; Zhou, H.; Yang, Y.; Zhang, W.; Yu, Y.; Li, L. Mars: Markov molecular sampling for multi-objective drug discovery. arXiv 2021, arXiv:2103.10432. [Google Scholar] [CrossRef]
- Liu, S.; Kappes, B.B.; Amin-ahmadi, B.; Benafan, O.; Zhang, X.; Stebner, A.P. Physics-informed machine learning for composition–process–property design: Shape memory alloy demonstration. Appl. Mater. Today 2021, 22, 100898. [Google Scholar] [CrossRef]
- Schütt, K.; Kindermans, P.J.; Sauceda Felix, H.E.; Chmiela, S.; Tkatchenko, A.; Müller, K.R. Schnet: A continuous-filter convolutional neural network for modeling quantum interactions. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; Curran Associates, Inc.: Red Hook, NY, USA, 2017. [Google Scholar]
- Laterre, A.; Fu, Y.; Jabri, M.K.; Cohen, A.S.; Kas, D.; Hajjar, K.; Dahl, T.S.; Kerkeni, A.; Beguir, K. Ranked reward: Enabling self-play reinforcement learning for combinatorial optimization. arXiv 2018, arXiv:1807.01672. [Google Scholar] [CrossRef]
- Gebauer, N.; Gastegger, M.; Schütt, K. Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, Vancouver, BC, Canada, 8–14 December 2019; Curran Associates, Inc.: Red Hook, NY, USA, 2019. [Google Scholar]
- Noé, F.; Tkatchenko, A.; Müller, K.R.; Clementi, C. Machine learning for molecular simulation. Annu. Rev. Phys. Chem. 2020, 71, 361–390. [Google Scholar] [CrossRef]
- Chen, L.; Pilania, G.; Batra, R.; Huan, T.D.; Kim, C.; Kuenneth, C.; Ramprasad, R. Polymer informatics: Current status and critical next steps. Mater. Sci. Eng. R Rep. 2021, 144, 100595. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; Curran Associates, Inc.: Red Hook, NY, USA, 2017. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; (Long and Short Papers). Volume 1, pp. 4171–4186. [Google Scholar]
- Otsuka, S.; Kuwajima, I.; Hosoya, J.; Xu, Y.; Yamazaki, M. PoLyInfo: Polymer database for polymeric materials design. In Proceedings of the 2011 International Conference on Emerging Intelligent Data and Web Technologies, Tirana, Albania, 7–9 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 22–29. [Google Scholar]
- Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450. [Google Scholar] [CrossRef]
- Coley, C.W.; Rogers, L.; Green, W.H.; Jensen, K.F. Computer-assisted retrosynthesis based on molecular similarity. ACS Cent. Sci. 2017, 3, 1237–1245. [Google Scholar] [CrossRef]
- Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 1861–1870. [Google Scholar]
- Bertsekas, D.P. Constrained Optimization and Lagrange Multiplier Methods; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Austin, H.P.; Allen, M.D.; Donohoe, B.S.; Rorrer, N.A.; Kearns, F.L.; Silveira, R.L.; Pollard, B.C.; Dominick, G.; Duman, R.; El Omari, K.; et al. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Natl. Acad. Sci. USA 2018, 115, E4350–E4357. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Shrake, A.; Rupley, J.A. Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J. Mol. Biol. 1973, 79, 351–371. [Google Scholar] [CrossRef]
- Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1126–1135. [Google Scholar]
- Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized experience replay. arXiv 2015, arXiv:1511.05952. [Google Scholar]
- Loshchilov, I.; Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. arXiv 2016, arXiv:1608.03983. [Google Scholar]
- Kim, C.; Chandrasekaran, A.; Huan, T.D.; Das, D.; Ramprasad, R. Polymer genome: A data-powered polymer informatics platform for property predictions. J. Phys. Chem. C 2018, 122, 17575–17585. [Google Scholar] [CrossRef]
- Coley, C.W.; Eyke, N.S.; Jensen, K.F. Autonomous discovery in the chemical sciences part II: Outlook. Angew. Chem. Int. Ed. 2020, 59, 23414–23436. [Google Scholar] [CrossRef] [PubMed]
- Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 2010, 50, 742–754. [Google Scholar] [CrossRef] [PubMed]
- Bento, A.P.; Hersey, A.; Félix, E.; Landrum, G.; Gaulton, A.; Atkinson, F.; Bellis, L.J.; De Veij, M.; Leach, A.R. An open source chemical structure curation pipeline using RDKit. J. Cheminform. 2020, 12, 51. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H.; et al. Gaussian 16 Revision C. 01, 2016; Gaussian Inc.: Wallingford, CT, USA, 2016; Volume 1, p. 572. [Google Scholar]
- ASTM D5511; Standard Test Method for Determining Anaerobic Biodegradation of Plastic Materials Under High-Solids Anaerobic-Digestion Conditions. ASTM International: West Conshohocken, PA, USA, 2012.
- Paszke, A. Pytorch: An imperative style, high-performance deep learning library. arXiv 2019, arXiv:1912.01703. [Google Scholar]
- Wang, M.; Zheng, D.; Ye, Z.; Gan, Q.; Li, M.; Song, X.; Zhou, J.; Ma, C.; Yu, L.; Gai, Y.; et al. Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv 2019, arXiv:1909.01315. [Google Scholar]
- Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.; Freitas, N. Dueling network architectures for deep reinforcement learning. In Proceedings of the International Conference on Machine Learning, New York City, NY, USA, 19–24 June 2016; pp. 1995–2003. [Google Scholar]
- Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101. [Google Scholar]
- Mercado, R.; Rastemo, T.; Lindelöf, E.; Klambauer, G.; Engkvist, O.; Chen, H.; Bjerrum, E.J. Graph networks for molecular design. Mach. Learn. Sci. Technol. 2021, 2, 025023. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, J.; Yoshizoe, K.; Terayama, K.; Tsuda, K. ChemTS: An efficient python library for de novo molecular generation. Sci. Technol. Adv. Mater. 2017, 18, 972–976. [Google Scholar] [CrossRef]
- Nigam, A.; Pollice, R.; Krenn, M.; dos Passos Gomes, G.; Aspuru-Guzik, A. Beyond generative models: Superfast traversal, optimization, novelty, exploration and discovery (STONED) algorithm for molecules using SELFIES. Chem. Sci. 2021, 12, 7079–7090. [Google Scholar] [CrossRef] [PubMed]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Shah, A.; Wilson, A.; Ghahramani, Z. Student-t processes as alternatives to Gaussian processes. In Proceedings of the Artificial Intelligence and Statistics, Reykjavik, Iceland, 22–25 April 2014; pp. 877–885. [Google Scholar]
- Reiser, P.; Neubert, M.; Eberhard, A.; Torresi, L.; Zhou, C.; Shao, C.; Metni, H.; van Hoesel, C.; Schopmans, H.; Sommer, T.; et al. Graph neural networks for materials science and chemistry. Commun. Mater. 2022, 3, 93. [Google Scholar] [CrossRef] [PubMed]
- Preuer, K.; Renz, P.; Unterthiner, T.; Hochreiter, S.; Klambauer, G. Fréchet ChemNet distance: A metric for generative models for molecules in drug discovery. J. Chem. Inf. Model. 2018, 58, 1736–1741. [Google Scholar] [CrossRef]
- Ertl, P.; Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminform. 2009, 1, 8. [Google Scholar] [CrossRef]
- Yang, B.; Mao, J.; Gao, B.; Lu, X. Computer-assisted drug virtual screening based on the natural product databases. Curr. Pharm. Biotechnol. 2019, 20, 293–301. [Google Scholar] [CrossRef]
Method | Validity (%) | Diversity | Novelty (%) | FCD ↓ | Success Rate (%) | Pareto Ratio |
---|---|---|---|---|---|---|
GCPN [9] | 72.3 ± 2.1 | 0.61 ± 0.03 | 78.4 ± 1.8 | 1.47 ± 0.09 | 23.7 ± 2.3 | 0.31 ± 0.04 |
MolDQN [8] | 76.8 ± 1.9 | 0.65 ± 0.02 | 81.2 ± 1.5 | 1.32 ± 0.07 | 28.4 ± 2.1 | 0.35 ± 0.03 |
GraphINVENT [60] | 85.2 ± 1.4 | 0.69 ± 0.02 | 84.7 ± 1.2 | 1.18 ± 0.06 | 34.1 ± 1.9 | 0.42 ± 0.03 |
REINVENT [25] | 68.9 ± 2.5 | 0.58 ± 0.04 | 76.3 ± 2.2 | 1.62 ± 0.11 | 21.5 ± 2.7 | 0.28 ± 0.04 |
ChemTS [61] | 71.4 ± 2.3 | 0.63 ± 0.03 | 79.8 ± 1.7 | 1.54 ± 0.08 | 25.3 ± 2.4 | 0.33 ± 0.03 |
STONED [62] | 79.6 ± 1.7 | 0.66 ± 0.02 | 82.5 ± 1.4 | 1.28 ± 0.07 | 31.2 ± 2.0 | 0.38 ± 0.03 |
NSGA-II [63] | 64.7 ± 3.1 | 0.73 ± 0.02 | 88.3 ± 1.1 | 1.89 ± 0.12 | 19.4 ± 3.2 | 0.67 ± 0.05 |
MOO-SVGP [64] | 59.2 ± 3.4 | 0.74 ± 0.02 | 91.6 ± 0.9 | 2.14 ± 0.15 | 16.8 ± 3.6 | 0.61 ± 0.06 |
PolyBERT+GA [7] | 82.1 ± 1.6 | 0.67 ± 0.02 | 83.9 ± 1.3 | 1.25 ± 0.06 | 36.4 ± 1.8 | 0.44 ± 0.03 |
PINN-Mol [12] | 77.3 ± 2.0 | 0.64 ± 0.03 | 80.7 ± 1.6 | 1.35 ± 0.08 | 29.8 ± 2.2 | 0.37 ± 0.03 |
CGNN [65] | 87.4 ± 1.2 | 0.71 ± 0.02 | 86.1 ± 1.1 | 1.12 ± 0.05 | 38.7 ± 1.6 | 0.46 ± 0.03 |
Ours (HDRL) | 94.7 ± 0.8 | 0.82 ± 0.01 | 89.3 ± 0.9 | 0.87 ± 0.04 | 73.2 ± 1.2 | 0.79 ± 0.02 |
Configuration | Validity (%) | Success Rate (%) | Diversity |
---|---|---|---|
Full HDRL | 94.7 ± 0.8 | 73.2 ± 1.2 | 0.82 ± 0.01 |
w/o Physics Constraints | 87.1 ± 1.3 | 68.4 ± 1.5 | 0.79 ± 0.02 |
w/o Hierarchical Rewards | 89.3 ± 1.1 | 61.7 ± 1.8 | 0.76 ± 0.02 |
w/o Dual Representation | 91.2 ± 1.0 | 65.9 ± 1.6 | 0.78 ± 0.02 |
w/o Curriculum Learning | 88.6 ± 1.2 | 59.3 ± 2.1 | 0.74 ± 0.02 |
w/o Meta-Learning | 92.4 ± 0.9 | 67.8 ± 1.4 | 0.80 ± 0.01 |
GIN Only | 85.7 ± 1.4 | 54.2 ± 2.3 | 0.69 ± 0.03 |
Transformer Only | 83.9 ± 1.6 | 52.8 ± 2.5 | 0.71 ± 0.03 |
Flat RL (SAC) | 81.2 ± 1.8 | 48.6 ± 2.7 | 0.66 ± 0.03 |
Polymer Class | Primary Mechanism | Key Structural Factor | Correlation () | Rate Constant (Month−1) |
---|---|---|---|---|
Biodegradable Polyesters | Enzymatic Hydrolysis | Ester Bond Density | 0.923 | 0.156 ± 0.023 |
Polyamide Systems | Hydrolytic Scission | H-bonding Network | 0.847 | 0.082 ± 0.014 |
Polyurethane Elastomers | Oxidative Degradation | Hard Segment Content | 0.768 | 0.041 ± 0.009 |
Hybrid Materials | Thermal Degradation | Cross-link Density | 0.695 | 0.028 ± 0.006 |
Method | Training Time (h) | Memory (GB) | Inference (ms) |
---|---|---|---|
GCPN | 127 ± 8 | 12.4 ± 0.7 | 145 ± 12 |
MolDQN | 89 ± 6 | 8.9 ± 0.5 | 98 ± 8 |
GraphINVENT | 156 ± 11 | 15.7 ± 0.9 | 178 ± 15 |
REINVENT | 72 ± 5 | 6.2 ± 0.4 | 67 ± 6 |
NSGA-II | 284 ± 19 | 3.8 ± 0.2 | 2340 ± 187 |
PolyBERT+GA | 198 ± 14 | 11.3 ± 0.6 | 892 ± 76 |
Ours (HDRL) | 164 ± 9 | 18.2 ± 1.1 | 134 ± 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Zhao, X.; Liu, W. Hierarchical Sensing Framework for Polymer Degradation Monitoring: A Physics-Constrained Reinforcement Learning Framework for Programmable Material Discovery. Sensors 2025, 25, 4479. https://doi.org/10.3390/s25144479
Hu X, Zhao X, Liu W. Hierarchical Sensing Framework for Polymer Degradation Monitoring: A Physics-Constrained Reinforcement Learning Framework for Programmable Material Discovery. Sensors. 2025; 25(14):4479. https://doi.org/10.3390/s25144479
Chicago/Turabian StyleHu, Xiaoyu, Xiuyuan Zhao, and Wenhe Liu. 2025. "Hierarchical Sensing Framework for Polymer Degradation Monitoring: A Physics-Constrained Reinforcement Learning Framework for Programmable Material Discovery" Sensors 25, no. 14: 4479. https://doi.org/10.3390/s25144479
APA StyleHu, X., Zhao, X., & Liu, W. (2025). Hierarchical Sensing Framework for Polymer Degradation Monitoring: A Physics-Constrained Reinforcement Learning Framework for Programmable Material Discovery. Sensors, 25(14), 4479. https://doi.org/10.3390/s25144479