Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = dry friction clutch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 5652 KiB  
Article
Modeling of Dry Clutch Wear for a Wide Range of Operating Parameters
by Krunoslav Haramina, Branimir Škugor, Matija Hoić, Nenad Kranjčević, Joško Deur and Andreas Tissot
Appl. Sci. 2025, 15(15), 8150; https://doi.org/10.3390/app15158150 - 22 Jul 2025
Viewed by 290
Abstract
The paper presents an experimentally validated regression model for dry clutch friction lining wear, accounting for the influence of clutch temperature, initial slip speed, torque, and closing time. The experimental data have been collected by using a custom-designed disk-on-disk computer-controlled tribometer and conducting [...] Read more.
The paper presents an experimentally validated regression model for dry clutch friction lining wear, accounting for the influence of clutch temperature, initial slip speed, torque, and closing time. The experimental data have been collected by using a custom-designed disk-on-disk computer-controlled tribometer and conducting repetitive real operation-like clutch closing cycles for different levels of the above operating parameters. The model is designed to be cycle-wise, predicting cumulative worn volume expectation and standard deviation after each closing cycle. It is organized around three distinctive submodels, which provide predictions of: (i) wear rate expectation, (ii) wear rate variance, and (iii) elevated wear rate during run-in operation. Finally, the wear rate expectation and variance submodels and the overall, cumulative worn volume model are validated on independent experimental datasets. The main novelty of the presented research lies in the development of stochastic multi-input cycle-wise dry cutch wear model for clutch design and monitoring applications. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

15 pages, 7157 KiB  
Article
The Optimization and Control of the Engagement Pressure for a Helicopter Dry Clutch
by Yangyang Xiao, Qunming Li and Huisi Liu
Machines 2024, 12(8), 533; https://doi.org/10.3390/machines12080533 - 6 Aug 2024
Cited by 2 | Viewed by 1326
Abstract
The engagement quality of a helicopter dry clutch has a significant impact on the service life and overall flight performance of the helicopter. The engagement oil pressure is an important factor affecting the clutch engagement quality. Firstly, a nonlinear input–output dynamic model for [...] Read more.
The engagement quality of a helicopter dry clutch has a significant impact on the service life and overall flight performance of the helicopter. The engagement oil pressure is an important factor affecting the clutch engagement quality. Firstly, a nonlinear input–output dynamic model for the dry clutch is developed to investigate the optimization and control of dry clutch engagement pressure in this paper. Secondly, to efficiently obtain the optimal pressure curve, an optimal method combining the developed dynamic model with the state feedback gain of a linear quadratic optimization regulator (LQR) solver is proposed. Thirdly, considering that hydraulic actuators may struggle with tracking certain pressure curves, a hydraulic actuator for accurately tracking pressure curves based on fuzzy PID is proposed. The simulation results indicate that the developed hydraulic actuator exhibits an excellent tracking performance. Moreover, compared with linear and segmented pressure curves, the optimal pressure curve derived from the proposed method significantly reduces jerk, friction work, and engagement duration, resulting in improved helicopter dry clutch engagement quality. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

25 pages, 9757 KiB  
Article
Redesign of a Disc-on-Disc Computer Numerical Control Tribometer for a Wide-Range and Shudder-Resistant Operation
by Matija Hoić, Mario Hrgetić, Nenad Kranjčević, Joško Deur and Andreas Tissot
Machines 2024, 12(1), 14; https://doi.org/10.3390/machines12010014 - 26 Dec 2023
Cited by 1 | Viewed by 1809
Abstract
The paper presents a redesign of the custom disc-on-disc-type tribometer intended for the experimental characterization of the friction and wear of automotive dry clutch friction lining. The redesign is aimed at expanding the operating range at which the machine is not sensitive to [...] Read more.
The paper presents a redesign of the custom disc-on-disc-type tribometer intended for the experimental characterization of the friction and wear of automotive dry clutch friction lining. The redesign is aimed at expanding the operating range at which the machine is not sensitive to shudder vibrations. This is achieved through a set of hardware and software upgrade measures. First, the natural frequency of the normal load-generation linear axis of the machine is increased by enlarging its bending stiffness and reducing the suspended mass. The former is realized by replacing the single, two-axial force/torque piezoelectric sensor with a set of three three-axial piezoelectric force sensors, adding a set of stiff linear guides, and reducing the lengths of the cantilevers of lateral forces acting on the linear axis guide system. The latter is accomplished by reducing the overall dimensions of the cooling disc and redesigning the thermal insulation components. The shudder sensitivity resistance is further reduced through individual normal force-readings-based adjustment of parallelism between friction contact surfaces and the increase in the stiffness of eccentrically positioned water-cooling pipes. Finally, the stability of the coefficient of friction and, consequently, the wear process are boosted by adjusting the control routines to minimize the circumferential and/or radial temperature gradients. These adjustments include the introduction of a clutch lock-up interval at the end of the clutch closing cycle, a minimum cooling delay inserted between two closing cycles, and maximum normal force demand of the clutch torque controller. The performance gain of the upgraded tribometer is demonstrated through a study of the dry clutch friction plate static wear experimental characterization for a wide range of operating conditions. Full article
(This article belongs to the Special Issue Advances in Vehicle Brake and Clutch Systems)
Show Figures

Figure 1

25 pages, 15353 KiB  
Article
An Experimental Investigation and Numerical Analysis of the Thermal Behavior of a Clutch System Using the Frictional Facing of Functionally Graded Materials
by Nasr A. Jabbar, Ihsan Y. Hussain, Oday I. Abdullah and M. N. Mohammed
Designs 2023, 7(6), 125; https://doi.org/10.3390/designs7060125 - 29 Oct 2023
Cited by 7 | Viewed by 2850
Abstract
The friction clutch design strongly depends upon the frictional heat generated between contact surfaces during slipping at the beginning of the engagement. Firstly, the frictional heat generated reduces the performance of the clutch system and then leads to premature failure for contacting surfaces [...] Read more.
The friction clutch design strongly depends upon the frictional heat generated between contact surfaces during slipping at the beginning of the engagement. Firstly, the frictional heat generated reduces the performance of the clutch system and then leads to premature failure for contacting surfaces in some cases. The experimental effort in this work included manufacturing friction facing from functionally graded material (FGM) (aluminum and silicon carbide) for the clutch system. For this purpose, a special test rig was developed to investigate the thermal behavior of FGM and compare it with other frictional materials. The Taguchi L9 orthogonal design was selected to analyze the effect of the three factors (rotational, speed, torque, and the type of the frictional material) with three levels on the surface temperature of the contacting surfaces. A three-dimensional finite element model was built to validate the experimental results where the difference between them did not exceed 5.2%. The experimental results showed that the temperatures grew with the disc radius. Furthermore, the surfaces of the pressure plates and the flywheel were affected by frictional heat flow, and this effect increased when increasing the sliding speed. The lowest temperatures occurred when using FGM, which was lower than the other materials by 10%. This study presented an integrated approach consisting of design, manufacturing, and testing to study the complex frictional materials’ effect on the clutch system’s tribological performance. Full article
(This article belongs to the Section Mechanical Engineering Design)
Show Figures

Figure 1

16 pages, 13276 KiB  
Article
A New Multi-Physics Coupled Method for the Temperature Field of Dry Clutch Assembly
by Jun Chen, Jiali Yu and Yubing Gong
Appl. Sci. 2023, 13(20), 11165; https://doi.org/10.3390/app132011165 - 11 Oct 2023
Cited by 2 | Viewed by 1351
Abstract
The temperature field of the clutch assembly is critical for the clutch design and operation life. Current modeling methods of the temperature of the clutch assembly suffer from insufficient accuracy or a limited time scale for the complicated multi-physics coupling between the contact [...] Read more.
The temperature field of the clutch assembly is critical for the clutch design and operation life. Current modeling methods of the temperature of the clutch assembly suffer from insufficient accuracy or a limited time scale for the complicated multi-physics coupling between the contact force, friction-generated heat, heat transfer, and thermal deformation in the clutch assembly in harsh operation conditions. In order to improve the accuracy of temperature field simulation and achieve long-term time scale, a new approach to modeling the temperature is proposed based on CFD simulation and decoupling technology. Firstly, the flow-thermal bi-directional coupling method is employed to determine the convective boundary conditions between the clutch assembly and the ambient air, improving the model’s accuracy. Secondly, the thermal-solid decoupling method is then used to reduce the computational time. The temperature of the clutch assembly during the continuous engagement and disengagement process is performed using this approach and verified by the rig test. The results demonstrate that the temperature of the outer, middle, and inner diameters of the pressure plate by the model agrees well with that by the rig test. For the first engagement and disengagement processes, the proportion of simulated temperature deviations exceeding 5 °C from the measured data is only 3.03%. For the last engagement and disengagement process, while the maximum temperature of the clutch is above 350 °C, the maximum temperature deviation between simulation and measurement is 4.99%. It proves that the approach proposed for modeling the dry clutch assembly temperature field has high accuracy while achieving long-term time-scale simulation. Full article
Show Figures

Figure 1

23 pages, 7640 KiB  
Article
Study on the Engagement Characteristics and Control Strategy of High Speed Difference Dry Friction Clutch
by Chu Zhu, Zhi Chen, Zongcai Shi and Yingdong Zhang
Machines 2023, 11(3), 407; https://doi.org/10.3390/machines11030407 - 21 Mar 2023
Cited by 3 | Viewed by 2724
Abstract
In the short/vertical take-off and landing aircraft propulsion system, the vertical take-off/landing and rapid flight are switched through the engagement and disconnection of the dry friction clutch. The smooth and rapid connection of the friction clutch is crucial for the mobility and reliability [...] Read more.
In the short/vertical take-off and landing aircraft propulsion system, the vertical take-off/landing and rapid flight are switched through the engagement and disconnection of the dry friction clutch. The smooth and rapid connection of the friction clutch is crucial for the mobility and reliability of this type of aircraft. However, the friction clutch vibrates and generates a large amount of heat at high speed, which affects the engagement performance of the clutch. In practice, when the engagement pressure rises quickly, the clutch engagement time is short, and the temperature rise is small, but the impact torque is large, and vice versa. In view of this problem, with a short/vertical take-off aircraft dry friction clutch as the research object, considering the nonlinear variation of friction coefficient and lift fan load torque, the dynamics model and temperature field model of the high speed difference dry friction clutch are established to analyze the clutch engagement time, impact torque, and temperature change. The engagement test at the high speed of the clutch shows that the simulation results of the kinetic model and temperature field model are consistent with the test results. To realize low temperature rise, low impact torque, and short engagement time, the variable slope engagement pressure control method is proposed. Compared with the traditional fixed slope engagement pressure, the proposed variable slope engagement pressure can reduce the engagement time, impact torque and temperature rise simultaneously. The research results can provide a reference for the friction clutch engagement control of short-range take-off and landing aircraft, reduce the development cost of such aircraft, and improve the reliability of the design. Full article
(This article belongs to the Special Issue Dynamic Stability Analysis of Aerospace Structures)
Show Figures

Figure 1

16 pages, 5039 KiB  
Article
Effects of Automotive Test Parameters on Dry Friction Fiber-Reinforced Clutch Facing Surface Microgeometry and Wear—Part 3 Tribological Parameter Correlations and Simulation of Thermo-Mechanical Tribological Contact Behavior
by Gábor Kalácska and Roland Biczó
Polymers 2023, 15(5), 1255; https://doi.org/10.3390/polym15051255 - 1 Mar 2023
Viewed by 1782
Abstract
Correlations among previously determined tribological properties, such as the coefficient of friction values, wear and surface roughness differences of hybrid composite dry friction clutch facings are revealed after pin-on-disk test apparatus examinations under three pv loads, where samples are cut from a reference, [...] Read more.
Correlations among previously determined tribological properties, such as the coefficient of friction values, wear and surface roughness differences of hybrid composite dry friction clutch facings are revealed after pin-on-disk test apparatus examinations under three pv loads, where samples are cut from a reference, unused, and several differently aged and dimensioned, used—according to two different trends: dry friction fiber-reinforced hybrid composite clutch facings. In ‘normal use’ facings, increasing specific wear trend is detected as a function of activation energy according to a second-degree function, while a logarithmic trend line can be fitted to the values of the clutch killer facings, showing that even at low activation energy levels, significant (~3%) wear occurs. The specific wear rate also varies as a function of the radius of the friction facing, with the relative wear values measured on the working friction diameter being higher regardless of the usage trend. In terms of surface roughness variation measured in the radial direction, normal use facings show a varying roughness difference according to a third-degree function, while clutch killer facings follow a second-degree or logarithmic trend depending on the diameter (di or dw). From the statistical analysis of the steady-state, we find three different clutch engagement phase characterizing pv level pin-on-disk tribological test results for the specific wear of the clutch killer and normal use facings, and significantly different trend curves with three different sets of functions were obtained, showing that the wear intensity can be described as a function of the pv value and the friction diameter. In terms of radial direction surface roughness difference, the values of clutch killer and normal use samples can be described by three different sets of function showing the effects of the friction radius and pv. Full article
(This article belongs to the Special Issue Advances in the Mechanical Behavior of Polymeric Materials)
Show Figures

Figure 1

18 pages, 9168 KiB  
Article
Synthesis of the Energy-Saving Dry Dual Clutch Control Mechanism
by Nikolay Sergienko, Pavel Kalinin, Ivan Pavlenko, Marek Ochowiak, Vitalii Ivanov, Anton Sergienko, Natalia Pavlova, Yevheniia Basova, Oksana Titarenko, Aleksandr Nazarov, Andżelika Krupińska, Magdalena Matuszak and Sylwia Włodarczak
Appl. Sci. 2023, 13(2), 829; https://doi.org/10.3390/app13020829 - 6 Jan 2023
Cited by 9 | Viewed by 2822
Abstract
A promising direction in developing up-to-date transport vehicles is the use of transmissions, an essential element of which is a dual-clutch. Improving functional performance, energy efficiency, and environmental friendliness are relevant and require appropriate research. The object of study is a dry dual-clutch [...] Read more.
A promising direction in developing up-to-date transport vehicles is the use of transmissions, an essential element of which is a dual-clutch. Improving functional performance, energy efficiency, and environmental friendliness are relevant and require appropriate research. The object of study is a dry dual-clutch working with a manual transmission with high energy efficiency. In the proposed design scheme, a rotary lever and a movable carriage can change the structural diagram of the force interaction between the pressure spring and the clutch discs. The developed mathematical model of the clutches control mechanism allowed for analyzing the process of controlling the dual-clutch transmissions (DCT) and obtaining functional dependencies between pushing forces in friction pairs and the carriage position. As a result, a method for synthesizing DCT was proposed to ensure the transmission of a given torque. Furthermore, it was determined and numerically proven that the same radial movement of the carriage when switching-on the clutches does not guarantee equal loading for the frictional discs of each clutch. This fact increases the uneven dynamics of torque and disc wear. Overall, the synthesis of the energy-saving dry dual-clutch control mechanism providing the same clutch margin for each clutch was developed. The method can be generalized and applied to designing dry dual-clutch transmissions for machines of various purposes. Full article
(This article belongs to the Special Issue Renewable Energy Systems 2023)
Show Figures

Figure 1

13 pages, 4250 KiB  
Article
Influences of the Contact State between Friction Pairs on the Thermodynamic Characteristics of a Multi-Disc Clutch
by Liang Yu, Changsong Zheng, Liyong Wang, Jianpeng Wu and Ran Jia
Materials 2022, 15(21), 7758; https://doi.org/10.3390/ma15217758 - 3 Nov 2022
Cited by 3 | Viewed by 2375
Abstract
The relationship between clutch thermodynamic characteristics and contact states of friction components is explored numerically and experimentally. The clutch thermodynamic numerical model is developed with consideration of the contact state and oil film between friction pairs. The clutch bench test is conducted to [...] Read more.
The relationship between clutch thermodynamic characteristics and contact states of friction components is explored numerically and experimentally. The clutch thermodynamic numerical model is developed with consideration of the contact state and oil film between friction pairs. The clutch bench test is conducted to verify the variation of the clutch thermodynamic characteristics from the uniform contact (UCS) to the intermittent contact (ICS). The results show that the oil film decreases gradually with increasing temperature; the lubrication state finally changes from hydrodynamic lubrication to dry friction, where the friction coefficient shows an increasing trend before a decrease. Thus, the friction torque in UCS gradually increases after the applied pressure stabilizes. When the contact state changes to ICS, the contact pressure increases suddenly and the oil film decreases rapidly in the local contact area, bringing about a sharp increase in friction torque; subsequently, the circumferential and radial temperature differences of friction components expand dramatically. However, if the contact zone is already in the dry friction state, friction torque declines directly, resulting in clutch failure. The conclusions can potentially be used for online monitoring and fault diagnosis of the clutch. Full article
Show Figures

Figure 1

24 pages, 11152 KiB  
Article
Effects of Automotive Test Parameters on Dry Friction Fiber-Reinforced Clutch Facing Surface Microgeometry and Wear—Part 2
by Roland Biczó and Gábor Kalácska
Polymers 2022, 14(9), 1757; https://doi.org/10.3390/polym14091757 - 26 Apr 2022
Cited by 3 | Viewed by 2192
Abstract
Coefficient of friction values, wear and surface roughness differences are revealed using pin-on-disc test apparatus examinations under three pv loads, where samples are cut from a reference, unused, and several differently aged and dimensioned, used, dry friction fiber-reinforced hybrid composite clutch facings. Tests [...] Read more.
Coefficient of friction values, wear and surface roughness differences are revealed using pin-on-disc test apparatus examinations under three pv loads, where samples are cut from a reference, unused, and several differently aged and dimensioned, used, dry friction fiber-reinforced hybrid composite clutch facings. Tests are characterized by surface activation energy and separated into Trend 1, ‘clutch killer’, and 2, ‘moderate’, groups from our previous study. The results reveal that acceptable, 0.41–0.58, coefficient of friction values among Trend 1 specimens cannot be reached during high pv tests, though the −0.19–−0.11 difference of minimum and maximum pv results disappears when activation energy reaches 179 MJ. The maximum pv friction coefficient can decrease by up to 30% at working diameter due to clutch killer test circumstances, as 179 MJ surface activation energy is applied, while by moderate tests such losses can only be detected close to 2000 MJ energy values among small-sized facings. Besides that, Trend 2 specific wear values are the third of trend 1 results at inner diameter specimens. Compared to reference facing values, specific wear results at working diameter under maximum pv decrease by 47–100%, while increasing specific wear during lifetime can only be detected at the inner diameter of facings enduring clutch killer tests or that are small-sized facings. Among Trend 1 radial and tangential Ra delta results, inner diameter samples provide more decreasing surface roughness data, while by Trend 2 values, the opposite relation is detected. Apart from the effects of activation energy, mileage and driver profile, facing size and friction diameter influence is also revealed. Full article
(This article belongs to the Special Issue Polymer Gears, Mechanisms and Transmissions)
Show Figures

Figure 1

23 pages, 7989 KiB  
Article
Characterization of the Thermal Behavior of a Complex Composite (Clutch Facing) Combining Digital Image Stereo Correlation and Numerical Approach
by Camille Flament, Bruno Berthel, Michelle Salvia, Gérard Grosland and Isabelle Alix
Materials 2022, 15(7), 2582; https://doi.org/10.3390/ma15072582 - 31 Mar 2022
Cited by 2 | Viewed by 2009
Abstract
Car clutch facings are complex fiber-reinforced composites. The coefficient of thermal expansion (CTE) of the composite is one of the main thermal properties, which affects dry clutch engagement process due to heat associated with friction. In the case of clutch facing, which only [...] Read more.
Car clutch facings are complex fiber-reinforced composites. The coefficient of thermal expansion (CTE) of the composite is one of the main thermal properties, which affects dry clutch engagement process due to heat associated with friction. In the case of clutch facing, which only exists in its final form as a non-planar annular disc, it is difficult to define an elementary representative volume. The objective of this work was to develop a method for identifying the CTE distributions on the entire part. A device allowing measuring the strain fields by digital image correlation (DIC) under homogeneous thermal loading (up to 300 °C) was developed. The experimental results highlight the heterogeneity and the orthotropic nature of the material behavior and the influence of the angle between the fibers on the CTE. To take into account that the measured strain fields are related to the CTE, but also to the shape of the part, different approaches to identify the CTE were considered: direct measurements, classical laminate theory (CLT) and finite element method updating (FEMU). Only the FEMU allows an accurate identification of the CTE distributions. Nevertheless, the CLT respects the orders of magnitude and remains a useful tool for the design of clutches. Full article
(This article belongs to the Special Issue Organic Matrix Composites and Multifunctional Materials)
Show Figures

Figure 1

10 pages, 3334 KiB  
Article
Three-Dimensional Finite Element Analysis of Contact Problem in Dry Friction Clutches
by Laith A. Sabri, Nadica Stojanović, Adolfo Senatore, Muhsin Jaber Jweeg, Azher M. Abed and Oday I. Abdullah
Lubricants 2021, 9(12), 115; https://doi.org/10.3390/lubricants9120115 - 27 Nov 2021
Cited by 5 | Viewed by 5325
Abstract
We present an investigation through numerical analysis (FEM) of the solution of the contact problem in friction clutch systems during engagement manoeuver. The case of high contact pressure between the sliding elements of a clutch system (flywheel, friction clutch and pressure plate) has [...] Read more.
We present an investigation through numerical analysis (FEM) of the solution of the contact problem in friction clutch systems during engagement manoeuver. The case of high contact pressure between the sliding elements of a clutch system (flywheel, friction clutch and pressure plate) has been also considered. A finite element model of a dry friction clutch system (single disc) to estimate the distributions of the contact pressure between the contact elements of the clutch system under different working conditions has been developed and the main findings are discussed. Furthermore, the effect of modules of elasticity (contact stiffness) on the distribution of contact pressure of the mating surfaces was investigated. Also, the results encompass the deformations of the contacting surfaces for different cases. This work could provide a fundamental intermediate step to obtain a partial solution to the thermos-elastic problem in order to compute the thermal-driven deformations and stresses in the automotive clutches and brakes under different working conditions. Full article
(This article belongs to the Special Issue Automotive Tribology II)
Show Figures

Graphical abstract

13 pages, 3563 KiB  
Article
Analytical and Numerical Solutions for the Thermal Problem in a Friction Clutch System
by Laith A. Sabri, Katarzyna Topczewska, Muhsin Jaber Jweeg, Oday I. Abdullah and Azher M. Abed
Computation 2021, 9(11), 122; https://doi.org/10.3390/computation9110122 - 15 Nov 2021
Cited by 7 | Viewed by 3626
Abstract
The dry friction clutch is an important part in vehicles, which has more than one function, but the most important function is to connect and disconnect the engine (driving part) with driven parts. This work presents a developed numerical solution applying a finite [...] Read more.
The dry friction clutch is an important part in vehicles, which has more than one function, but the most important function is to connect and disconnect the engine (driving part) with driven parts. This work presents a developed numerical solution applying a finite element technique in order to obtain results with high precision. A new three-dimensional model of a single-disc clutch operating in dry conditions was built from scratch. As the new model represents the real friction clutch including all details, the complexity in the geometry of the clutch is considered one of the difficulties that the researchers faced using the numerical solution. The thermal behaviour of the friction clutch during the slip phase was studied. Meanwhile, in the second part of this work, the transient thermal equations were derived from scratch to find the analytical solution for the thermal problem of a clutch disc in order to verify the numerical results. It was found, after comparison of the numerical results with analytical results, that the results of the numerical model are very accurate and the difference between them does not exceed 1%. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

31 pages, 11407 KiB  
Article
Effects of Automotive Test Parameters on Dry Friction Fiber-Reinforced Clutch Facing Surface Microgeometry and Wear
by Roland Biczó, Gábor Kalácska and Tamás Mankovits
Polymers 2021, 13(22), 3896; https://doi.org/10.3390/polym13223896 - 11 Nov 2021
Cited by 7 | Viewed by 2482
Abstract
Wear and surface microgeometry aspects of fiber-reinforced hybrid composite dry friction clutch facings are revealed in a novel way: after different, real life automotive tests during their lifetime. This study examines and reveals the tribological response of friction material surfaces to real life [...] Read more.
Wear and surface microgeometry aspects of fiber-reinforced hybrid composite dry friction clutch facings are revealed in a novel way: after different, real life automotive tests during their lifetime. This study examines and reveals the tribological response of friction material surfaces to real life application conditions with two different facing diameters and in two directions. Along the increasing activation energy scale, wear values increased according to two different trends, sorting tests into two main groups, namely ‘clutch killer’ and ‘moderate’. Wear results also highlighted the influence of mileage and test conditions, with clutch killer tests also creating considerable wear-more than 0.1 mm-at inner diameters: 1% higher wear was generated by 90% higher mileage; another 1% increment could be caused by insufficient cooling time or test bench-specific conditions. Surface roughness values trends varied accordingly with exceptions revealing effects of facing size, friction diameter and directions and test conditions: small (S) facings produced significantly decreased Rmax roughness, while large (L) and medium (M) size facings had increased roughness values; Rmax results showed the highest deviations among roughness values in radial direction; tests run with trailer and among city conditions resulted in more than 2% thickness loss and a 40–50% roughness decrease. Full article
(This article belongs to the Special Issue Polymer Gears, Mechanisms and Transmissions)
Show Figures

Figure 1

15 pages, 4339 KiB  
Article
Automatic Clutch Engagement Control for Parallel Hybrid Electric Vehicle
by Trieu Minh Vu, Reza Moezzi, Jindrich Cyrus, Jaroslav Hlava and Michal Petru
Energies 2021, 14(21), 7256; https://doi.org/10.3390/en14217256 - 3 Nov 2021
Cited by 6 | Viewed by 4188
Abstract
Automatic clutch engagement control is essential for all kinds of vehicle power transmissions. The controllers for vehicle power transmissions may include model-based or model-free approaches and must provide high transmission efficiency, fast engagement and low jerk. Most vehicle automatic transmissions are using torque [...] Read more.
Automatic clutch engagement control is essential for all kinds of vehicle power transmissions. The controllers for vehicle power transmissions may include model-based or model-free approaches and must provide high transmission efficiency, fast engagement and low jerk. Most vehicle automatic transmissions are using torque converters with transmission efficiencies up to 96%. This paper presents the use of fuzzy logic control for a dry clutch in parallel hybrid electric vehicles. This controller can minimize the loss of power transmission since it can offer a higher transmission efficiency, up to 99%, with faster engagement, lower jerk and, thus, higher driving comfortability with lower cost. Fuzzy logic control is one of the model-free schemes. It can be combined with AI algorithms, neuro networks and virtual reality technologies in future development. Fuzzy logic control can avoid the complex modelling while maintaining the system’s high stability amid uncertainties and imprecise information. Experiments show that fuzzy logic can reduce the clutch slip and vibration. The new system provides 2% faster engagement speed than the torque converter and eliminates 70% of noise and vibration less than the manual transmission clutch. Full article
(This article belongs to the Special Issue Vehicle Dynamics and Control)
Show Figures

Figure 1

Back to TopTop