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Abstract: A promising direction in developing up-to-date transport vehicles is the use of transmis-
sions, an essential element of which is a dual-clutch. Improving functional performance, energy
efficiency, and environmental friendliness are relevant and require appropriate research. The object
of study is a dry dual-clutch working with a manual transmission with high energy efficiency. In the
proposed design scheme, a rotary lever and a movable carriage can change the structural diagram of
the force interaction between the pressure spring and the clutch discs. The developed mathematical
model of the clutches control mechanism allowed for analyzing the process of controlling the dual-
clutch transmissions (DCT) and obtaining functional dependencies between pushing forces in friction
pairs and the carriage position. As a result, a method for synthesizing DCT was proposed to ensure
the transmission of a given torque. Furthermore, it was determined and numerically proven that
the same radial movement of the carriage when switching-on the clutches does not guarantee equal
loading for the frictional discs of each clutch. This fact increases the uneven dynamics of torque and
disc wear. Overall, the synthesis of the energy-saving dry dual-clutch control mechanism providing
the same clutch margin for each clutch was developed. The method can be generalized and applied
to designing dry dual-clutch transmissions for machines of various purposes.

Keywords: robotic transmission; transport vehicle; dual-clutch transmission; torque; clutch margin;
process innovation; energy efficiency

1. Introduction

One of the essential elements of the transmission is a clutch. With the development
of transmission designs, it becomes necessary to develop new clutches and control sys-
tems. They should increase the vehicle and the transmission elements resource, positively
influence dynamics and performance, and control and operation energy efficiency.

DCT has advantages in manufacturing, operating, and maintenance costs. They work
without interruption in power flow or can switch clutches rapidly. Unlike traditional design
schemes, existing automatic transmissions use closed clutches. They require permanent
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energy consumption when changing switches and maintaining the frictional pairs of one of
the clutches in the closed position.

In DCT, opening one clutch and closing the second one occurred in a reduced or
overlapped time. Thus, gear shifting is ensured with no interruption in power flow. This
significantly reduces gearshift time, improves acceleration dynamics, and reduces fuel
consumption and emissions to the environment.

One of the ways to improve such clutches is to reduce the energy consumption for
control while ensuring reliable transmission of the required torque and safety indicators.
Studies of the energy-saving dry clutch control mechanism allow recommending rational
choice and a unification of the designs while ensuring the proper functioning of the drive
and control system.

Recently, significant progress has been reached in the development of transmissions.
Particularly, the number of speeds has been increased, the range of gear ratios has been
extended, and the gearshift rate has been raised [1].

Electric drives are permanently expanding in response to tightening emission control
regulations and urgent fuel economy requirements in automotive transmissions. As a result,
integrating electric drives [2] into conventional transmissions occurs. Such an approach
simplifies modular designs and the production of transmissions. However, it does not
solve the problems of developing and improving the mechanical parts of transmissions.

Improving transmissions involves researching dry clutches related to vehicle dynam-
ics [3–9], reliability [10], clutch architecture [5], durability, noise, switching strategy, and
control technology, as well as energy efficiency and comfort [11]. The importance of dry
clutch control was previously discussed in refs. [12–14].

Based on the models of workflows in dry clutches, several control algorithms have
been proposed: optimal control [15], branched control [16], adaptive control [17], control
based on fuzzy logic [8], robust control [18], combined management strategy [19], and
predictive control [5]. Notably, effective clutch control requires developing a mathematical
model for torque transmission with a minimum deviation from the actual process [20–23].
In ref. [4], a detailed analysis of the dry clutch architecture was carried out, allowing one to
understand the main phenomena affecting torque transmission by friction forces. However,
the literature does not provide enough information on the justification and analysis of
DCT’s design schemes with reduced energy costs for control, functional features, and
rational selection of types and parameters for drives and actuators.

The clutch design is mainly based on the types of transmission and gearbox [24].
Nowadays, a number of vehicles are equipped with preselective gearboxes. Based on the
positive effects of their application, a rational choice of a gearbox is realized [25]. Moreover,
preselective transmissions are structurally simpler, have higher energy efficiency, and do
not need to be repaired by highly qualified specialists. Using a dry dual-clutch eliminates
the need to use expensive components and materials from the hydraulic system. During
the operation of DCT, the switched-off multi-plate wet clutch creates additional resistance
due to the difference in the angular velocities of the driving and driven discs.

Ref. [26] is devoted to shifting gears with friction clutches in the transmissions of
wheeled and tracked vehicles. It analyzes the gear-shifting process with and without
interruption of the power flow. However, more attention should be paid to investigating
the properties of dry DCTs with reduced energy consumption for control.

The dynamic behavior of automotive dry clutches depends on the friction characteris-
tics of the contact between the material of the friction lining, the flywheel, and the pressure
disc when the clutch is engaged [27,28]. When switched on, the friction causes contact
heat due to high interphase sliding and relatively high contact pressures. This affects the
behavior of the material and the related frictional characteristics [29].

One of the critical problems in designing DCT is clutch durability. When the tempera-
ture is exceeded in dry clutches, the friction lining begins to suffer irreversible damage. For
a dry DCT, a thermal model should be developed to predict parameter changes. In this
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regard, it is essential to compare experimental and theoretical results in the contact pressure
and wear distribution [30]. However, only a single-clutch transmission was considered.

Overall, parameters and the design scheme of the mechanism that ensure the compres-
sion of the friction pairs and the control system predominantly affect the pressure force
and the switching-on/off time for each clutch.

Due to the mentioned above, the research aims to analyze the operational process
and evaluate the impact of the parameters of the dry DCT’s control mechanism with high
energy efficiency on changing the force. Simultaneously, the synthesizing parameters of
the control mechanism should ensure uniform clutch margins for each clutch.

2. Materials and Methods
2.1. The Design Model

The energy efficiency of drive control for DCTs of different designs was analyzed. A
comparison with the original DCT with reduced control costs was also carried out. As a
result, it was determined that the proposed transmission [31] requires energy only when
starting the vehicle and shifting gears (Figures 1 and 2).
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casing 1 are rigidly interconnected in the axial direction along the periphery, forming the 
driving elements of the clutches. 

Between platter 3 and casing 1, additional disc 10 is installed in the axial direction. It 
is loaded with pressure springs 11 and moved through elements 12 with the possibility of 
interaction with holes 13. On an additional drive 10, from the platter side in the radial 
direction, stops 15 are fixed with hinges 14. They can rotate in radial planes. The ends of 
swivel stops 15 are connected with levers 17 from the periphery of the discs (in a 
horizontal plane) with hinges 16. The last ones (passed through holes 18 in platter 3 
through hinges 19) are fixed on pressure plate 8. This plate has a possibility of forced axial 
movement. 

The second free end of the rotary stops 15 interacts with movable supports 20. These 
supports are made as carriages with rollers 21, 22, and 23, placed between stops 15 and 
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Figure 2. The original DCT design: 1—casing; 2—flywheel; 3—platter; 4,5—driven discs; 6, 7—shafts;
8—pressure plate; 9—drive mechanism; 10—additional disc; 11—pressure springs; 12—elements;
13, 18—holes; 14, 16, 19—hinges; 15—rotary stops; 17, 25—levers; 20—movable supports;
21–23—rollers; 24—clamps; 26, 27—surfaces; 28—inclined grooves.
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DCT contains casing 1 (mounted on the engine’s crankshaft through the leading
flywheel 2), platter 3, driven discs 4 and 5 (mounted on splines on coaxially located main
shafts 6 and 7), and shift drive mechanism 9. Flywheel 2 (used as drive disc), platter 3, and
casing 1 are rigidly interconnected in the axial direction along the periphery, forming the
driving elements of the clutches.

Between platter 3 and casing 1, additional disc 10 is installed in the axial direction. It
is loaded with pressure springs 11 and moved through elements 12 with the possibility
of interaction with holes 13. On an additional drive 10, from the platter side in the radial
direction, stops 15 are fixed with hinges 14. They can rotate in radial planes. The ends of
swivel stops 15 are connected with levers 17 from the periphery of the discs (in a horizontal
plane) with hinges 16. The last ones (passed through holes 18 in platter 3 through hinges
19) are fixed on pressure plate 8. This plate has a possibility of forced axial movement.

The second free end of the rotary stops 15 interacts with movable supports 20. These
supports are made as carriages with rollers 21, 22, and 23, placed between stops 15 and
platter 3. The pair of rollers 21 and 22 on carriages can interact with clamps 24. Movable
supports 20 are pivotally connected to drive mechanism 9 for switching clutches through
levers 25.

The designed DCT operates as follows. In the switched-off (neutral) position, tdrive
mechanism 9 is installed in such a way that the supports 20 are fixed in the middle position,
excluding the rotation of stops 15 in the radial planes. Driven discs 4 and 5 do not interact
with the leading flywheel 2, pressure plate 8, and platter 3. Main shafts 5 and 6 of even
and odd gears rotate freely through driven discs 3 and 4 without transmitting torque from
the engine.

When switching on the 1st clutch (Figures 2 and 3), drive mechanism 9 is installed in
such a way that the supports 20 move from the periphery of the discs to the rotation axis
of the shafts through levers 25. In this case, support 20, overcoming the resistance of the
clamps 24, moves along surface 27. It is installed in a fixed position, where torque occurs
between hinges and rollers 23.

Additional disc 10 moves in the axial direction towards support disc 8 under the action
of springs 11. Stops 15 transmit the pushing force to levers 17, turning on hinges 14 through
hinges 16. Levers 7 transmit the force to pressure plate 8 through hinges 19. Pressure plate
8 acts on the driven disc 4 and flywheel 2. The friction pairs circuit for the 1st clutch closes.
As a result, torque from the engine is transmitted to the input shaft 6 of the gearbox through
drive flywheel 2, pressure plate 8, and drive plate 4.

When the 1st clutch is switched off, drive mechanism 9 is set to a position in which
stops 20 moves to the periphery of the discs (Figures 2b and 3b). In this case, rollers 21
and 22 move along surface 27, overcoming the resistance of clamps 24. These rollers are
installed in a fixed position. However, rollers 23 are mounted on the same horizontal axis
as hinges 14 of swivel stops 15 and pressure springs 11. Additional disc 10 moves in the
axial direction away from support disc 3, overcoming the resistance of springs 11. Stops 15
transmit the pulling force to levers 17, turning on hinges 14 through hinges 16. Levers 17
transmit the force to pressure plate 8 through hinges 19. Pressure disc 8 opens the power
circuit, stopping interaction with driven disc 3. As a result, the torque transmission from
the engine to shaft 6 of the even rows of the gearbox stops.

When the 2nd clutch is switched on (Figures 2c and 3c), mechanism 9 is located in
such a way that stops 20 moves to the periphery through levers 25. In the rotary stops 15,
inclined grooves 28 are made to ensure free movement of the levers 25. As a result, the
contact of rollers 23 is ensured along one initial plane of stops 15. In this case, support
20 moves along surface 26, overcoming the resistance of clamps 24. Torque occurs between
the axes of hinges 14 and rollers 23. Additional disc 10 moves in the axial direction towards
support disc 3 under the action of compression springs 11. Stops 15 transmit the pulling
force to levers 17, turning on hinges 14 through hinges 16. Levers 17 transmit the force
to pressure plate 8 through hinges 19. Pressure disc 8 closes the power circuit, acting on
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driven disc 5 and platter 3. As a result, torque from the engine is transmitted to shaft 7
through pressure plate 8, driven disc 5, and support disc 3.
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clutch, b—length determining the position of the carriage under switched-off 1st and 2nd clutches,
c—length determining the position of the carriage under switched-on 1st clutch.

When the 2nd clutch is switched off, mechanism 9 is set to a position in which stops
20 move from the periphery of the discs to the center through levers 25 (Figure 3a). Rollers
21 and 22 move along inclined conical surface 26, overcoming the resistance of clamps 27.
These rollers are installed in a fixed position. Rollers 23 are mounted on the same axis of
horizontal hinge 14. The additional disc 10 is pushed into holes 13 of casing 1 through
protrusions 12, overcoming the resistance of compression springs 11. They also move
axially away from platter 3. In this case, stops 15 transmit the pushing force to levers 17,
turning on hinges 14 through hinges 16. Levers 17 transmit the force to pressure plate 8
through hinges 19. Pressure disc 8 stops interacting with driven disc 5 and opens the circuit.
As a result, the torque transmission from the engine to shaft 7 stops.
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2.2. The Mathematical Model

A design model of the clutch shift mechanism is proposed to analyze the effect of
DCT’s carriage movement on clutch margins (Figure 4).
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The maximum engine torque, the clutch margin, and the number of friction pairs
determine the required compression force Q for the clutch friction pairs. The clutch margin
for the light vehicle is β = 1.2, 1.7–2.0 for all-terrain vehicles and 3.0 for heavy machinery.
The calculation conditionally considers a single rotary lever and pressure spring. However,
the number of levers can reach 3–4, and the number of springs can reach 18–42, depending
on the transmitted engine torque.

The total pressing force Fnp is summarized by all the pre-compressed springs. It is
conventionally attached to the clutch swing lever NP, which is connected to the clutch
pressure plate via trailing lever NM at point M. When moving the carriage from position
G0 to positions G1 and G2, the pressure plate moves from position M to positions M1 and
M2 (Figure 3a). The action line of the total force Q coincides with the lever NM. It is also
located at a distance L from the pressure spring line of action.

The coordinate system XOY is used to study the clutch operation. The axis OX is
directed along the compression spring action line. The axis OY is directed along the swivel
disc in its neutral position ON0. The full switch-on of the clutch is considered. Vertical
lines M1 and M2 determine the extreme positions of the friction pressure plates for the
switched-on 1st and 2nd clutch, respectively, with coordinates xM1 and xM2.

A pre-compressed pressure spring is used to provide the required force Q. The pro-
posed design scheme allows determining dependencies between the force Qj (j = 1, 2) on
the pressure plate and force Fnpj of the clutch pressure spring when switching on the 1st
(Figure 3b) and the 2nd (Figure 3c) clutch, so during vertical movement of the carriage
from the neutral position G0 to working positions Gj by the distance of ∆Kj (Figure 3a).

The equilibrium condition of the j-th lever relative to the reference point Gj is as follows:

ΣMGj(F) = 0, (1)

or for the cases of switching on the 1st and the 2nd clutches, respectively:

Fnp1∆K1 = Q1(L + ∆K1); Fnp2∆K2 = Q2(L− ∆K2). (2)



Appl. Sci. 2023, 13, 829 7 of 18

from which the following expressions can be obtained:

Q1 =
Fnp1∆K1

L + ∆K1
=

Fnp1

γ1 + 1
; Q2 =

Fnp2∆K2

L− ∆K2
=

Fnp2

γ2 − 1
; (γ2 > 1), (3)

where the following parameter is introduced:

γj =
L

∆Kj
. (4)

Formula (3) shows that the inequality Fnp1 > Fnp2 ensures equal forces on the pressure
disc (Q1 = Q2 = Q) in the case of similar carriage movements. To fulfill this condition, the
design schemes in Figure 5 are considered.
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When the support carriage G is moved to position Gj, the support lever rotates under
the force Fnpj from the pressure spring at point Pj. This fact provides the required compres-
sion force Qj of the clutch friction pairs. For this case, pressure spring forces on the platter
surface will be as follows:

Fnpj = np
(
∆0 − ∆j

)
, (5)

where cnp—compression spring stiffness [kN/mm]; ∆0—spring pre-deformation [mm]
for the neutral position of the carriage (when clutches are switched off); ∆j—additional
deformation of the pressure spring when turned on the j-th clutch (from Figure 4, ∆1 = OP1,
∆2 = OP2). Particularly, after switching on the 1st clutch (Figure 4), the rotary lever reaches
the position NjGj, where xN1 = –z1. Gap neglecting zc1 occurs for the freewheel, and elastic
deformation of friction linings equals zy1. Therefore, z1 = zc1 + zy1.

Assuming that the lever NjGj does not deform, the following geometric expression
can be written:

∆j = ∆Kjtgαj, (6)

where αj—j-th lever angle [deg], determined from the equation:

L sin αj = zj¯1j + 1∆Kjtgαj. (7)

Thus, Equation (5) can be rewritten as follows:

Fnpj = np
[
∆0 − ∆Kjtgαj

]
. (8)

The dependencies (1)–(8) allow studying the switching-on clutches in the DCT.
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3. Results

Figure 6 shows the effect of carriage displacement ∆K on the force Fnpk in the pressure
spring and the force Qk on the pressure disc when switching on the k-th clutch.
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A dry clutch is considered a test case for simulating the DCT workflow. This clutch
is widely used in the automotive and agricultural industries. It also has the following
parameters: L = 0.053 m, z1 = z2 = z = zc + zy, zc = 2.0 mm, zy = 0.8 mm, c = 950 kN/m,
∆0 = 30 mm.

The analysis results presented in Figure 6 shows that the force on the pressure plate
will be different for a uniform vertical movement of the carriage ∆K (when switching
on the 1st and the 2nd clutches). Moreover, Q2 > Q1 and Fnp2 > Fnp1. In this case, Fnp1
changes insufficiently.

An increase in ∆K increases the difference Q21 = Q2—Q1 between forces on the pressure
disc and decreases the clutch margin. Notably, such a difference in the pressure disc also
increases but is lower. Hence, it is not possible to provide the same clutch margin. More-
over, equality Q1 = Q2 cannot be provided by choosing different carriage displacements
(∆K1 6= ∆K2).

Therefore, to equalize the clutch margin, it is proposed to abandon the strictly vertical
movement of the carriage. It is also suggested to constructively realize an additional
horizontal movement of the carriage. In this case, to equalize forces QK1 and QK2, the force
QK1 should increase, and the force QK2 should be decreased. The corresponding change in
the position of points P1 and P2 of the carriage contact with the pressure spring can achieve
the last condition. In other words, the platter profile along which the carriage moves under
switching on/off the DCT should be changed.

In the proposed improved DCT design [32], rollers 21 and 22 move on the inclined
conical surfaces 26 and 27 of the support disc. The corresponding design schemes are
presented in Figure 7.
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It is convenient to characterize the clutch operation when the k-th clutch is switched
on by changing the position of the rotary lever NkPk with the inclination angle αk. The
extreme positions of the friction pressure plates are conditionally marked by vertical lines
Mk. Point Nk of the rotary lever has the coordinate xMk = const.

The following dependencies determine the coordinates of characteristic points Nk and
Pk for the swivel disc:

Nk : xNk = (−1)kz; yNk = Lcosαk;
Pk : xPk = −(−1)j(Lsinαk − zk); yPk = 0,

(9)

where zk = |xMk|.
When the clutch is entirely switched on, gap neglect occurs, and the friction linings are

elastically deformed. Therefore, the initial position of the rotary lever (at the initial position
of the carriage G0) can be represented by levers ON10 and ON20. In this case, xN10 = xM1,
xN20 = xM2, and the initial inclination of the rotary disc is characterized by angles α10, α20.

At a specific position of the rotary lever, the carriage position is determined from the
following expressions:

G1 : xG1 = xP1 + ∆K1tgα1; yG1 = −∆K1;
G2 : yG2 = −∆K2; xG2 = xP2 − ∆K2tgα2,

(10)

where ∆Kk—vertical movement of the carriage [mm].
The pressing force Qk of the friction pairs and the force Fnp1 from the pressure spring

(when the j-th clutch is switched on) are determined by Formulas (5)–(8).
The current deformation ∆k of the pressure spring (the value of OPk) is determined by

the coordinate xPk. For the investigated clutch design (Figure 1b), under the switching-off
of the 1st clutch, the pressure spring is additionally compressed (∆1 > 0). For the 2nd clutch,
the force in the pressure spring is decreased (∆2 < 0). This fact increases the value of Q1
and decreases the value of Q2.

Figure 8 shows the impact of specified horizontal carriage displacement (considered
by the angle αk) with a vertical displacement of the carriage by ∆k = ∓15 mm for the
considered case study.
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rotary lever and, accordingly, the position of the support carriage, which provide equal 

Figure 8. Dependencies of forces Qk [kN] on the lever rotation angle αk [deg]: 1—Q1; 2—Q2.

As the study results show, after considering the horizontal displacement of the carriage,
an increase in the angle αk (an increase in the value of |xGk|) decreases Q2 and increases Q1.
However, despite the previous design scheme when xGk = 0, the following equality Q2 = Q1
takes place under a specific value of the angle αc. Therefore, the problem of equality for the
clutch margins has been solved.

Figure 9 shows results on changes in the forces Q1(α1) and Q2(α2) on the pressure disc
at different values of vertical displacements of the carriage ∆K = 5–30 mm with a step of
5 mm.
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Figure 9. Dependencies of Qk(αk) on the angle α [deg] for different displacements ∆ [mm]: a—Q1;
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After applying the obtained results, it is possible to select the k-th position of the rotary
lever and, accordingly, the position of the support carriage, which provide equal friction
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coefficients (since Q1 = Q2) in the case of choosing similar vertical displacements of the
carriage (∆K1 = ∆K2) when the clutches are switched on.

Particularly, ensuring equal forces on the pressure plate (Q1 = Q2 = 15 kN) under the
switched-on clutches 1 and 2 can be realized using the vertical movement of the carriage by
∆K1 = ∆K2 = 20 mm (points A1, A2) or through vertical displacement by ∆K1 = ∆K2 = 25 mm
(points B1, B2). The levers’ positions (angles α1 and α2) are different in this case. This
complicates surface treatment technology for the platter on which the carriage moves and
the corresponding control system.

However, as the results show, this shortcoming can be overcome. Particularly, for the
chosen vertical movement ∆K of the carriage, the lever position (points Ci, I = 1, 2, . . . , 6)
can be determined to satisfy the following equalities: Q1(Ci) = Q2(Ci), α1(Ci) = α2(Ci) =α(Ci).
This case corresponds to equal ratios for the 1st and 2nd friction clutches. It also facilitates
the platter surface design on which the carriage moves.

Figure 10 shows the results for the dependencies between the forces difference
Q21 = Q2 − Q1 (on the pressure plate) and the corner α = α1 = α2 for some values of vertical
movements ∆K = ∆K1 = ∆K2 of the carriage.
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When synthesizing the clutch control mechanism, based on the conditions ∆K = ∆K1 = ∆K2
for providing the equal position of the rotary lever (α1 = α2 = αc), the primary attention
should be focused on the results presented in Figure 11.

Based on the required loading QP for the clutch friction pair compression, values
for the carriage movement ∆K and the inclination angle αc should be chosen properly.
Such a rational choice allows for designing the clutch disc’s surface profile, providing
equal ratios for the 1st and 2nd clutches. The following case study illustrates this. Let the
required force QP = 11 kN be given, which corresponds to point A (Figure 11). Furthermore,
point B (on the curve Q) should be found, which corresponds to the vertical movement
∆K1 = ∆K2 = ∆K = 20 mm of the carriage (point D). This point D allows determining point
C (on the curve αC) and the angle αc = 16◦ (point E).
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Suppose that according to the conditions of the task, it is required to change the force
QP. In that case, new values of ∆K and αc can be similarly determined, or the calculated
values ∆K = 20 mm and αc = 16◦ can be left (which correspond to the force Q* = 11 kN), but
the stiffness cnp of the pressure spring should be changed χ = Q*/QP times.

Remarkably, when choosing the vertical displacement ∆K of the carriage, the following
limits should be considered: ∆K2 < ∆K2max, where ∆K2max = ∆zc + yK2max (Figure 12).
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the angle α [deg] when the 2nd clutch is switched-on (L = 53 mm and z = 2.8 mm).

The above recommendations are mainly related to ensuring the equal vertical move-
ment of the carriage (∆K = ∆K1 = ∆K2) when switching on the clutch. However, there may
be other criteria for synthesizing the clutch control mechanism. Particularly, if there is a
need to ensure the equal displacement (S1 = S2) of the carriage, these displacements should
be determined as follows:

Sk = OGk =
√

x2
Gk

+ y2
Gk

, (11)

where xGk , yGk —coordinates of the carriage on the platter surface.
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In this case, the equation of a straight line that passes through the points NK and PK
(Figure 4) should be written as follows:

y− yPK

yNK − yPK

=
x− xPK

xNK − xPK

. (12)

Using expressions (9) for the coordinates of points NK and PK, this dependence can be
rewritten as follows:

y = (−1)KctgαK ·
(
x− xPK

)
. (13)

The movement of the carriage equals SK [mm]. Therefore, point GK(xGk, yGk) is placed
both on the circle SK and straight line NkPk:{

x2
Gk

+ y2
Gk

= S2
k ;

yGk = (−1)kctgαk ·
(

xGk − xPk

)
.

(14)

The solution of this system allows determining the angle αK of the rotary lever for
carriage located at point GK(xGk, yGk) on the distance of SK, using parameters αK and
∆K = y(Gk).

However, to synthesize the surface profile of the support disc, it is more convenient to
use the polar coordinate system (Sk, βk), where βk is the angular coordinate (Figure 13):

βK = −arctg
(

xGK

yGK

)
. (15)
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After considering the issues of simplifying the technology of manufacturing a conical
surface, the clutch control system can be simplified using the following limitation:

β1 = β2. (16)

Figure 14 shows the changes in the forces QK = Q(Sk, βk) acting on the pressure plate.
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The results show that condition (16) can be satisfied. Particularly, the locus of these
points that meets this condition is presented in Figure 15.
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The synthesis results presented in Figure 16 are also of interest. Particularly, it demon-
strates the dependence of the carriage movement on the force acting on the pressure disc.
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Notably, the maximum carriage movement depends on the length L of the rotary lever
and the parameter z. For the considered case study, S < 24.5 mm.

The minimum carriage movement Smin is determined by the wear resistance of the
carriage movement mechanism. In this case, the inclination angle of the surface profile of
the platter is in the range of β = 20–29◦ (Figure 16).

Finally, the carried-out research, the developed methodology, and the corresponding
algorithm allow for designing the platter surface profile for the DCT, providing equal clutch
margins (Figure 17).
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4. Discussion

Comparing the proposed DCT with traditional dual-clutch designs, it can be summa-
rized that it has a reduced energy consumption for clutch control. Particularly, in a fairly
common dry dual clutch of the automotive industry, each clutch is switched on by a pres-
sure plate and actuator. The drive of such a clutch uses a separate mechanism and actuator
(hydraulic cylinder) connected through a distributor to a pump. This requires additional
energy costs. Remarkably, energy is permanently spent on maintaining the clutch in the
switched-on position. However, there are no shortcomings in the proposed DCT.

Thus, the considered dry DCT provides fast and practically uninterruptible power flow
from the DCT through the clutch. This can improve the vehicle’s acceleration dynamics
and reduce the energy costs of switching clutches.

Nevertheless, the kinematic and dynamic analyses of the device [33] showed that the
loading of the driven discs for each clutch is uneven. Particularly, clutch margins when
switching are different. This impacts the service life of each clutch and dynamic processes
in the vehicle’s transmission.
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The novelty of the research is in the substantiation of the mathematical model, the
development of the methodology, and the related algorithm for choosing the rational design
parameters of the DCT and its drive. This increases the functional performance of the unit
while reducing energy costs for control.

The practical significance of the results is to substantiate the possibility of increasing
the efficiency of the original DCT. It is also in developing recommendations for determining
the rational design parameters and the algorithm’s versatility when designing such clutches
for automotive, agricultural, and other industries.

5. Conclusions

In the article, the working processes in DCTs have been analyzed. A functional
relationship has been established between the drive control parameters and the pressure
forces (load capacity) on the clutch friction pairs. The impact of the vertical movement of
the control carriage has also been analyzed.

It has been established that only vertical movement of the control carriage does not
provide the equality of the clutch margins for the 1st and the 2nd clutch with the equal
movement of the carriage.

As a result, a methodology for synthesizing the parameters of the DCT control mech-
anism has been proposed. The proposed approach is oriented towards the transmission
of the required clutch torque. The proposed design solution for the control mechanism
substantiates the equalization of the load capacity of the clutch.

The problem of synthesizing the parameters of the surface profile of the disc has
also been solved. It allows for providing the equality of clutch margins for the 1st and
2nd clutches. However, the functional limitation regarding the equality of vertical (ra-
dial) movements or the general carriage movement for the control mechanism should
be satisfied.

The economic effect from the implementation of the obtained results is primarily
associated with a decrease in the energy losses of the internal combustion engine and the
costs of a vehicle’s driver during the operation. The efficiency of the proposed novel clutch
is also due to the achievement of the same operating conditions for each clutch. Mainly,
equal wear rates of friction pairs and dynamics equalization of the drive wheels (when
switching clutches and transmitting the torque of the engine) have been provided. This
extends the service life of the clutch and transmission, decreases fuel consumption, and
improves the vehicle’s environmental safety, traction, and dynamic performance.

Further studies will aim to generalize the proposed algorithm for synthesizing pa-
rameters of various types of DCT control mechanisms. Particularly, as part of the strategic
problem of the systematic improvement of the vehicle’s quality, it is planned to develop
a multi-criteria optimization approach considering economic, energy, and environmental
quality indicators. This will allow for the optimal design of DCTs with an extended number
of parameters.
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