Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,792)

Search Parameters:
Keywords = drought stress and tolerance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2786 KiB  
Article
Xylem Functional Anatomy of Pure-Species and Interspecific Hybrid Clones of Eucalyptus Differing in Drought Resistance
by José Gándara, Matías Nión, Silvia Ross, Jaime González-Tálice, Paolo Tabeira and María Elena Fernández
Forests 2025, 16(8), 1267; https://doi.org/10.3390/f16081267 (registering DOI) - 2 Aug 2025
Abstract
Climate extremes threaten the resilience of Eucalyptus plantations, yet hybridization with drought-tolerant species may enhance stress tolerance. This study analyzed xylem anatomical and functional drought responses in commercial Eucalyptus grandis (GG) clones and hybrids: E. grandis × camaldulensis (GC), E. grandis × tereticornis [...] Read more.
Climate extremes threaten the resilience of Eucalyptus plantations, yet hybridization with drought-tolerant species may enhance stress tolerance. This study analyzed xylem anatomical and functional drought responses in commercial Eucalyptus grandis (GG) clones and hybrids: E. grandis × camaldulensis (GC), E. grandis × tereticornis (GT), and E. grandis × urophylla (GU1, GU2). We evaluated vessel traits (water transport), fibers (mechanical support), and wood density (D) in stems and branches. Theoretical stem hydraulic conductivity (kStheo), vessel lumen fraction (F), vessel composition (S), and associations with previous hydraulic and growth data were assessed. While general drought responses occurred, GC had the most distinct xylem profile. This may explain it having the highest performance in different irrigation conditions. Red gum hybrids (GC, GT) maintained kStheo under drought, with stable F and a narrower vessel size, especially in branches. Conversely, GG and GU2 reduced F and S; and stem kStheo declined for a similar F in these clones, indicating vascular reconfiguration aligning the stem with the branch xylem. Almost all clones increased D under drought in any organ, with the highest increase in red gum hybrids. These results reveal diverse anatomical adjustments to drought among clones, partially explaining their growth responses. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

21 pages, 3959 KiB  
Article
Unveiling Stage-Specific Flavonoid Dynamics Underlying Drought Tolerance in Sweet Potato (Ipomoea batatas L.) via Integrative Transcriptomic and Metabolomic Analyses
by Tao Yin, Chaoyu Song, Huan Li, Shaoxia Wang, Wenliang Wei, Jie Meng and Qing Liu
Plants 2025, 14(15), 2383; https://doi.org/10.3390/plants14152383 (registering DOI) - 2 Aug 2025
Abstract
Drought stress severely limits the productivity of sweet potato (Ipomoea batatas L.), yet the stage-specific molecular mechanisms of its adaptation remain poorly understood. Therefore, we integrated transcriptomics and extensive targeted metabolomics analysis to investigate the drought responses of the sweet potato cultivar [...] Read more.
Drought stress severely limits the productivity of sweet potato (Ipomoea batatas L.), yet the stage-specific molecular mechanisms of its adaptation remain poorly understood. Therefore, we integrated transcriptomics and extensive targeted metabolomics analysis to investigate the drought responses of the sweet potato cultivar ‘Luoyu 11’ during the branching and tuber formation stage (DS1) and the storage root expansion stage (DS2) under controlled drought conditions (45 ± 5% field capacity). Transcriptome analysis identified 8292 and 13,509 differentially expressed genes in DS1 and DS2, respectively, compared with the well-watered control (75 ± 5% field capacity). KEGG enrichment analysis revealed the activation of plant hormone signaling, carbon metabolism, and flavonoid biosynthesis pathways, and more pronounced transcriptional changes were observed during the DS2 stage. Metabolomic analysis identified 415 differentially accumulated metabolites across the two growth periods, with flavonoids being the most abundant (accounting for 30.3% in DS1 and 23.7% in DS2), followed by amino acids and organic acids, which highlighted their roles in osmotic regulation and oxidative stress alleviation. Integrated omics analysis revealed stage-specific regulation of flavonoid biosynthesis under drought stress. Genes such as CYP75B1 and IF7MAT were consistently downregulated, whereas flavonol synthase and glycosyltransferases exhibited differential expression patterns, which correlated with the selective accumulation of trifolin and luteoloside. Our findings provide novel insights into the molecular basis of drought tolerance in sweet potato and offer actionable targets for breeding and precision water management in drought-prone regions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

27 pages, 4169 KiB  
Article
Biostimulatory Effects of Foliar Application of Silicon and Sargassum muticum Extracts on Sesame Under Drought Stress Conditions
by Soukaina Lahmaoui, Rabaa Hidri, Hamid Msaad, Omar Farssi, Nadia Lamsaadi, Ahmed El Moukhtari, Walid Zorrig and Mohamed Farissi
Plants 2025, 14(15), 2358; https://doi.org/10.3390/plants14152358 (registering DOI) - 31 Jul 2025
Viewed by 126
Abstract
Sesame (Sesamum indicum L.) is widely cultivated for its valuable medicinal, aromatic, and oil-rich seeds. However, drought stress remains one of the most significant abiotic factors influencing its development, physiological function, and overall output. This study investigates the potential of foliar applications [...] Read more.
Sesame (Sesamum indicum L.) is widely cultivated for its valuable medicinal, aromatic, and oil-rich seeds. However, drought stress remains one of the most significant abiotic factors influencing its development, physiological function, and overall output. This study investigates the potential of foliar applications of silicon (Si), Sargassum muticum (Yendo) Fensholt extracts (SWE), and their combination to enhance drought tolerance and mitigate stress-induced damage in sesame. Plants were grown under well-watered conditions (80% field capacity, FC) versus 40% FC (drought conditions) and were treated with foliar applications of 1 mM Si, 10% SWE, or both. The results showed that the majority of the tested parameters were significantly (p < 0.05) lowered by drought stress. However, the combined application of Si and SWE significantly (p < 0.05) enhanced plant performance under drought stress, leading to improved growth, biomass accumulation, water status, and physiological traits. Gas exchange, photosynthetic pigment content, and photosystem activity (PSI and PSII) all increased significantly when SWE were given alone; PSII was more significantly affected. In contrast, Si alone had a more pronounced impact on PSI activity. These findings suggest that Si and SWE, applied individually or in combination, can effectively alleviate drought stress’s negative impact on sesame, supporting their use as promising biostimulants for enhancing drought tolerance. Full article
(This article belongs to the Special Issue The Role of Exogenous Silicon in Plant Response to Abiotic Stress)
Show Figures

Figure 1

18 pages, 2409 KiB  
Article
Genome-Wide Identification and Expression Analysis of the Fructose-1,6-Bisphosphate Aldolase (FBA) Gene Family in Sweet Potato and Its Two Diploid Relatives
by Zhicheng Jiang, Taifeng Du, Yuanyuan Zhou, Zhen Qin, Aixian Li, Qingmei Wang, Liming Zhang and Fuyun Hou
Int. J. Mol. Sci. 2025, 26(15), 7348; https://doi.org/10.3390/ijms26157348 - 30 Jul 2025
Viewed by 172
Abstract
Fructose-1,6-bisphosphate aldolase (FBA; EC 4.1.2.13) is a key enzyme in glycolysis and the Calvin cycle, which plays crucial roles in carbon allocation and plant growth. The FBA family genes (FBA s) have been identified in several plants. However, their [...] Read more.
Fructose-1,6-bisphosphate aldolase (FBA; EC 4.1.2.13) is a key enzyme in glycolysis and the Calvin cycle, which plays crucial roles in carbon allocation and plant growth. The FBA family genes (FBA s) have been identified in several plants. However, their presence and roles in sweet potato remain unexplored. In this study, a total of 20 FBAs were identified in sweet potato and its wild wild diploidrelatives, including seven in sweet potato (Ipomoea batatas, 2n = 6x = 90), seven in I. trifida (2n = 2x = 30), and six in I. triloba (2n = 2x = 30). Their protein physicochemical properties, chromosomal localization, phylogenetic relationship, gene structure, promoter cis-elements, and expression patterns were systematically analyzed. The conserved genes and protein structures suggest a high degree of functional conservation among FBA genes. IbFBAs may participate in storage root development and starch biosynthesis, especially IbFBA1 and IbFBA6, which warrant further investigation as candidate genes. Additionally, the FBAs could respond to drought and salt stress. They are also implicated in hormone crosstalk, particularly with ABA and GA. This work provides valuable insights into the structure and function of FBAs and identifies candidate genes for improving yield, starch content, and abiotic stress tolerance in sweet potatoes. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

20 pages, 3810 KiB  
Article
Exploring Drought Response: Machine-Learning-Based Classification of Rice Tolerance Using Root and Physiological Traits
by Wuttichai Gunnula, Nantawan Kanawapee, Hathairat Chokthaweepanich and Piyaporn Phansak
Agronomy 2025, 15(8), 1840; https://doi.org/10.3390/agronomy15081840 - 29 Jul 2025
Viewed by 328
Abstract
Drought is a key limitation for rice productivity. While oxidative stress markers like hydrogen peroxide (H2O2) are important for drought adaptation, the predictive value of combining root anatomical and physiological traits is underexplored. We assessed 20 rice cultivars under [...] Read more.
Drought is a key limitation for rice productivity. While oxidative stress markers like hydrogen peroxide (H2O2) are important for drought adaptation, the predictive value of combining root anatomical and physiological traits is underexplored. We assessed 20 rice cultivars under drought and control conditions using a random forest, a multi-layer perceptron, and a SHAP-optimized stacking ensemble. The stacking ensemble achieved the highest classification accuracy (81.8%) and identified hydrogen peroxide, relative water content, and endodermis inner circumference as key predictors. SHAP analysis revealed important interactions between root anatomical and physiological traits, providing new biological insights into drought tolerance. Our integrative approach, supported by robust cross-validation, improves predictive power and transparency for breeding drought-resilient rice cultivars. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

24 pages, 5292 KiB  
Article
Assessment of Drought–Heat Dual Stress Tolerance in Woody Plants and Selection of Stress-Tolerant Species
by Dong-Jin Park, Seong-Hyeon Yong, Do-Hyun Kim, Kwan-Been Park, Seung-A Cha, Ji-Hyeon Lee, Seon-A Kim and Myung-Suk Choi
Life 2025, 15(8), 1207; https://doi.org/10.3390/life15081207 - 29 Jul 2025
Viewed by 178
Abstract
Sequential drought and heat stress pose a growing threat to forest ecosystems in the context of climate change, yet systematic evaluation methods for woody plants remain limited. This study aimed to develop a comprehensive screening platform for identifying woody plant species tolerant to [...] Read more.
Sequential drought and heat stress pose a growing threat to forest ecosystems in the context of climate change, yet systematic evaluation methods for woody plants remain limited. This study aimed to develop a comprehensive screening platform for identifying woody plant species tolerant to sequential drought and heat stress among 27 native species growing in Korea. A sequential stress protocol was applied: drought stress for 2 weeks, followed by high-temperature exposure at 45 °C. Physiological indicators, including relative water content (RWC) and electrolyte leakage index (ELI), were used for preliminary screening, supported by phenotypic observations, Evans blue staining for cell death, and DAB staining to assess oxidative stress and recovery ability. The results revealed clear differences among species. Chamaecyparis obtusa, Quercus glauca, and Q. myrsinaefolia exhibited strong tolerance, maintaining high RWC and low ELI values, while Albizia julibrissin was highly susceptible, showing severe membrane damage and low survival. DAB staining successfully distinguished tolerance levels based on oxidative recovery. Additional species such as Camellia sinensis, Q. acuta, Q. phillyraeoides, Q. salicina, and Ternstroemia japonica showed varied responses: Q. phillyraeoides demonstrated high tolerance, T. japonica showed moderate tolerance, and Q. salicina was relatively sensitive. The integrated screening system effectively differentiated tolerant species through multiscale analysis—physiological, cellular, and morphological—demonstrating its robustness and applicability. This study provides a practical and reproducible framework for evaluating sequential drought and heat stress in trees and offers valuable resources for urban forestry, reforestation, and climate-resilient species selection. Full article
(This article belongs to the Special Issue Plant Biotic and Abiotic Stresses 2024)
Show Figures

Figure 1

25 pages, 4277 KiB  
Article
C2H2 Zinc Finger Proteins GIS2 and ZFP8 Regulate Trichome Development via Hormone Signaling in Arabidopsis
by Muhammad Umair Yasin, Lili Sun, Chunyan Yang, Bohan Liu and Yinbo Gan
Int. J. Mol. Sci. 2025, 26(15), 7265; https://doi.org/10.3390/ijms26157265 - 27 Jul 2025
Viewed by 209
Abstract
Trichomes are specialized epidermal structures that protect plants from environmental stresses, regulated by transcription factors integrating hormonal and environmental cues. This study investigates the roles of two C2H2 zinc finger proteins, GIS2 and ZFP8, in regulating trichome patterning in Arabidopsis thaliana. [...] Read more.
Trichomes are specialized epidermal structures that protect plants from environmental stresses, regulated by transcription factors integrating hormonal and environmental cues. This study investigates the roles of two C2H2 zinc finger proteins, GIS2 and ZFP8, in regulating trichome patterning in Arabidopsis thaliana. Using dexamethasone-inducible overexpression lines, transcriptomic profiling, and chromatin immunoprecipitation, we identified 142 GIS2- and 138 ZFP8-associated candidate genes involved in sterol metabolism, senescence, and stress responses. GIS2 positively and directly regulated the expression of SQE5, linked to sterol biosynthesis and drought tolerance, and repressed SEN1, a senescence marker associated with abscisic acid and phosphate signaling. ZFP8 modulated stress-related target genes, including PR-4 and SPL15, with partial functional overlap between GIS family members. Spatially, GIS2 functions in inflorescence trichomes via integrating gibberellin-cytokinin pathways, while ZFP8 influences leaf trichomes through cytokinin and abscisic acid signal. Gibberellin treatment stabilized GIS2 protein and induced SQE5 expression, whereas SEN1 repression was gibberellin-independent. Chromatin immunoprecipitation and DEX-CHX experiment confirmed GIS2 binding to SQE5 and SEN1 promoters at conserved C2H2 motifs. These findings highlight hormone-mediated transcriptional regulation of trichome development by GIS2 and ZFP8, offering mechanistic insight into signal integration. The results provide a foundation for future crop improvement strategies targeting trichome-associated stress resilience. Full article
Show Figures

Figure 1

13 pages, 25093 KiB  
Article
Sunflower HaGLK Enhances Photosynthesis, Grain Yields, and Stress Tolerance of Rice
by Jie Luo, Mengyi Zheng, Jiacheng He, Yangyang Lou, Qianwen Ge, Bojun Ma and Xifeng Chen
Biology 2025, 14(8), 946; https://doi.org/10.3390/biology14080946 - 27 Jul 2025
Viewed by 296
Abstract
GOLDEN2-LIKEs (GLKs) are important transcription factors for the chloroplast development influencing photosynthesis, nutrition, senescence, and stress response in plants. Sunflower (Helianthus annuus) is a highly photosynthetic plant; here, a GLK-homologues gene HaGLK was identified from the sunflower genome by bioinformatics. [...] Read more.
GOLDEN2-LIKEs (GLKs) are important transcription factors for the chloroplast development influencing photosynthesis, nutrition, senescence, and stress response in plants. Sunflower (Helianthus annuus) is a highly photosynthetic plant; here, a GLK-homologues gene HaGLK was identified from the sunflower genome by bioinformatics. To analyze the bio-function of HaGLK, transgenic rice plants overexpressing HaGLK (HaGLK-OE) were constructed and characterized via phenotype. Compared to the wild-type control rice variety Zhonghua 11 (ZH11), the HaGLK-OE lines exhibited increased photosynthetic pigment contents, higher net photosynthetic rates, and enlarged chloroplast area; meanwhile, genes involved in both photosynthesis and chlorophyll biosynthesis were also significantly up-regulated. Significantly, the HaGLK-OE plants showed a 12–13% increase in yield per plant. Additionally, the HaGLK-OE plants were demonstrated to have improved salt and drought tolerance compared to the control ZH11. Our results indicated that the HaGLK gene could play multiple roles in photosynthesis and stress response in rice, underscoring its potential value for improving crop productivity and environmental adaptability in breeding. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

31 pages, 6501 KiB  
Review
From Hormones to Harvests: A Pathway to Strengthening Plant Resilience for Achieving Sustainable Development Goals
by Dipayan Das, Hamdy Kashtoh, Jibanjyoti Panda, Sarvesh Rustagi, Yugal Kishore Mohanta, Niraj Singh and Kwang-Hyun Baek
Plants 2025, 14(15), 2322; https://doi.org/10.3390/plants14152322 - 27 Jul 2025
Viewed by 892
Abstract
The worldwide agriculture industry is facing increasing problems due to rapid population increase and increasingly unfavorable weather patterns. In order to reach the projected food production targets, which are essential for guaranteeing global food security, innovative and sustainable agricultural methods must be adopted. [...] Read more.
The worldwide agriculture industry is facing increasing problems due to rapid population increase and increasingly unfavorable weather patterns. In order to reach the projected food production targets, which are essential for guaranteeing global food security, innovative and sustainable agricultural methods must be adopted. Conventional approaches, including traditional breeding procedures, often cannot handle the complex and simultaneous effects of biotic pressures such as pest infestations, disease attacks, and nutritional imbalances, as well as abiotic stresses including heat, salt, drought, and heavy metal toxicity. Applying phytohormonal approaches, particularly those involving hormonal crosstalk, presents a viable way to increase crop resilience in this context. Abscisic acid (ABA), gibberellins (GAs), auxin, cytokinins, salicylic acid (SA), jasmonic acid (JA), ethylene, and GA are among the plant hormones that control plant stress responses. In order to precisely respond to a range of environmental stimuli, these hormones allow plants to control gene expression, signal transduction, and physiological adaptation through intricate networks of antagonistic and constructive interactions. This review focuses on how the principal hormonal signaling pathways (in particular, ABA-ET, ABA-JA, JA-SA, and ABA-auxin) intricately interact and how they affect the plant stress response. For example, ABA-driven drought tolerance controls immunological responses and stomatal behavior through antagonistic interactions with ET and SA, while using SnRK2 kinases to activate genes that react to stress. Similarly, the transcription factor MYC2 is an essential node in ABA–JA crosstalk and mediates the integration of defense and drought signals. Plants’ complex hormonal crosstalk networks are an example of a precisely calibrated regulatory system that strikes a balance between growth and abiotic stress adaptation. ABA, JA, SA, ethylene, auxin, cytokinin, GA, and BR are examples of central nodes that interact dynamically and context-specifically to modify signal transduction, rewire gene expression, and change physiological outcomes. To engineer stress-resilient crops in the face of shifting environmental challenges, a systems-level view of these pathways is provided by a combination of enrichment analyses and STRING-based interaction mapping. These hormonal interactions are directly related to the United Nations Sustainable Development Goals (SDGs), particularly SDGs 2 (Zero Hunger), 12 (Responsible Consumption and Production), and 13 (Climate Action). This review emphasizes the potential of biotechnologies to use hormone signaling to improve agricultural performance and sustainability by uncovering the molecular foundations of hormonal crosstalk. Increasing our understanding of these pathways presents a strategic opportunity to increase crop resilience, reduce environmental degradation, and secure food systems in the face of increasing climate unpredictability. Full article
Show Figures

Figure 1

14 pages, 1333 KiB  
Article
Reliable RT-qPCR Normalization in Polypogon fugax: Reference Gene Selection for Multi-Stress Conditions and ACCase Expression Analysis in Herbicide Resistance
by Yufei Zhao, Xu Yang, Qiang Hu, Jie Zhang, Sumei Wan and Wen Chen
Agronomy 2025, 15(8), 1813; https://doi.org/10.3390/agronomy15081813 - 26 Jul 2025
Viewed by 218
Abstract
Asia minor bluegrass (Polypogon fugax), a widespread Poaceae weed, exhibits broad tolerance to abiotic stresses. Validated reference genes (RGs) for reliable RT-qPCR normalization in this ecologically and agriculturally significant species remain unidentified. This study identified eight candidate RGs using transcriptome data [...] Read more.
Asia minor bluegrass (Polypogon fugax), a widespread Poaceae weed, exhibits broad tolerance to abiotic stresses. Validated reference genes (RGs) for reliable RT-qPCR normalization in this ecologically and agriculturally significant species remain unidentified. This study identified eight candidate RGs using transcriptome data from seedling tissues. We assessed the expression stability of these eight RGs across various abiotic stresses and developmental stages using Delta Ct, BestKeeper, geNorm, and NormFinder algorithms. A comprehensive stability ranking was generated using RefFinder, with validation performed using the target genes COR413 and P5CS. Results identified EIF4A and TUB as the optimal RG combination for normalizing gene expression during heat stress, cold stress, and growth stages. EIF4A and ACT were most stable under drought stress, EIF4A and 28S under salt stress, and EIF4A and EF-1 under cadmium (Cd) stress. Furthermore, EIF4A and UBQ demonstrated optimal stability under herbicide stress. Additionally, application of validated RGs revealed higher acetyl-CoA carboxylase gene (ACCase) expression in one herbicide-resistant population, suggesting target-site gene overexpression contributes to resistance. This work presents the first systematic evaluation of RGs in P. fugax. The identified stable RGs provide essential tools for future gene expression studies on growth and abiotic stress responses in this species, facilitating deeper insights into the molecular basis of its weediness and adaptability. Full article
(This article belongs to the Special Issue Adaptive Evolution in Weeds: Molecular Basis and Management)
Show Figures

Graphical abstract

17 pages, 3346 KiB  
Article
Genome-Wide Identification of the SiNHX Gene Family in Foxtail Millet (Setaria Italica) and Functional Characterization of SiNHX7 in Arabidopsis
by Xiaoqian Chu, Dan-Ying Chen, Mengmeng Sun, Jiajing Zhang, Minghua Zhang, Hejing Wu, Hongzhi Wang, Shuqi Dong, Xiangyang Yuan, Xiaorui Li, Lulu Gao, Guanghui Yang and Jia-Gang Wang
Int. J. Mol. Sci. 2025, 26(15), 7139; https://doi.org/10.3390/ijms26157139 - 24 Jul 2025
Viewed by 181
Abstract
Plant growth is susceptible to abiotic stresses like salt and drought, and Na+/H+ antiporters (NHXs) play a pivotal role in stress responses. NHX proteins belong to the CPAs (cation/proton antiporters) family with a conserved Na+ (K+)/H+ [...] Read more.
Plant growth is susceptible to abiotic stresses like salt and drought, and Na+/H+ antiporters (NHXs) play a pivotal role in stress responses. NHX proteins belong to the CPAs (cation/proton antiporters) family with a conserved Na+ (K+)/H+ exchange domain, which is widely involved in plant growth, development, and defense. While NHX genes have been extensively studied in model plants (e.g., Arabidopsis thaliana and Oryza sativa), research in other species remains limited. In this study, we identified nine NHX genes in foxtail millet (Setaria italica) and analyzed their systematic phylogeny, gene structure, protein characteristics, distribution of the chromosome, collinearity relationship, and cis-elements prediction at the promoter region. Phylogenetic analysis revealed that the members of the SiNHX gene family were divided into four subgroups. RT-qPCR analysis of the SiNHX family members showed that most genes were highly expressed in roots of foxtail millet, and their transcriptional levels responded to salt stress treatment. To determine SiNHX7’s function, we constructed overexpression Arabidopsis lines for each of the two transcripts of SiNHX7, and found that the overexpressed plants exhibited salt tolerance. These findings provide valuable insights for further study of the function of SiNHX genes and are of great significance for breeding new varieties of salt-resistant foxtail millet. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 8415 KiB  
Article
Genome-Wide Identification of the UGT Gene Family in Poplar Populus euphratica and Functional Analysis of PeUGT110 Under Drought Stress
by Jilong An, Qing He, Jinfeng Xi, Jing Li and Gaini Wang
Forests 2025, 16(8), 1214; https://doi.org/10.3390/f16081214 - 24 Jul 2025
Viewed by 268
Abstract
UDP-glycosyltransferases (UGTs) play essential roles in various biological processes, such as phytohormone homeostasis, abiotic stress adaptation, and secondary metabolite biosynthesis. Populus euphratica is a model species for investigating stress adaptation; however, the PeUGT gene family has yet to be systematically characterized. Here, we [...] Read more.
UDP-glycosyltransferases (UGTs) play essential roles in various biological processes, such as phytohormone homeostasis, abiotic stress adaptation, and secondary metabolite biosynthesis. Populus euphratica is a model species for investigating stress adaptation; however, the PeUGT gene family has yet to be systematically characterized. Here, we identified 134 UGT genes in P. euphratica. Phylogenetic analysis classified these genes into 16 major groups (A–P), and UGT genes within the same groups showed similar structural characteristics. Tandem duplication events were identified as the predominant mechanism driving the expansion of the PeUGT family. Cis-acting element analysis revealed an enrichment of motifs associated with developmental regulation, light response, phytohormone signaling, and abiotic stress in the promoters of PeUGT genes. Expression profiling demonstrated spatiotemporal regulation of the PeUGT genes under drought stress. Among them, PeUGT110 was significantly induced by PEG treatment in the leaf, root, and stem tissues of P. euphratica. Overexpression of PeUGT110 enhanced drought tolerance in transgenic Arabidopsis. Furthermore, the PeUGT110-OE lines exhibited reduced malonaldehyde accumulation, elevated proline content, higher superoxide dismutase activity, and upregulated expression of stress-related genes under drought stress. The results demonstrated that PeUGT110 plays a critical role in plant drought resistance. These findings establish a foundation for elucidating the function of PeUGT genes. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

15 pages, 13565 KiB  
Article
RGB Imaging and Irrigation Management Reveal Water Stress Thresholds in Three Urban Shrubs in Northern China
by Yuan Niu, Xiaotian Xu, Wenxu Huang, Jiaying Li, Shaoning Li, Na Zhao, Bin Li, Chengyang Xu and Shaowei Lu
Plants 2025, 14(15), 2253; https://doi.org/10.3390/plants14152253 - 22 Jul 2025
Viewed by 241
Abstract
The context of global climate change, water stress has a significant impact on the ecological function and landscape value of urban greening shrubs. In this study, three typical greening shrubs (Euonymus japonicus, Ligustrum × vicaryi, and Berberis thunbergii var. atropurpurea) in [...] Read more.
The context of global climate change, water stress has a significant impact on the ecological function and landscape value of urban greening shrubs. In this study, three typical greening shrubs (Euonymus japonicus, Ligustrum × vicaryi, and Berberis thunbergii var. atropurpurea) in North China were subjected to a two-year field-controlled experiment (2022–2023) with four water treatments: full irrigation, deficit irrigation, natural rainfall, and extreme drought. The key findings are as follows: (1) Extreme drought reduced the color indices substantially—the GCC of E. japonicus decreased by 40% (2023); the RCC of B. thunbergii var. atropurpurea declined by 35% (2022); and the color indices of L. × vicaryi remained stable (variation < 15%). (2) Early-season soil water content (SWC) strongly correlated with the color index of E. japonicus (r2 = 0.42, p < 0.05) but weakly with B. thunbergii (r2 = 0.28), suggesting species-specific drought-tolerance mechanisms like reduced leaf area. (3) Deficit irrigation (SWC ≈ 40%) maintained color indices between fully irrigated and drought-stressed levels. Notably, B. thunbergii retained high redness (RCC > 0.8) at an SWC ≈ 40%; E. japonicus required an SWC > 60% to preserve greenness (GCC). The research results provide a scientific basis for urban greening plant screening and water-saving irrigation strategies, and expand the application scenarios of color coordinates in plant physiological and ecological research. Full article
Show Figures

Graphical abstract

19 pages, 5629 KiB  
Article
Genome-Wide Identification of G3BP Family in U’s Triangle Brassica Species and Analysis of Its Expression in B. napus
by Alain Tseke Inkabanga, Qiheng Zhang, Shanshan Wang, Yanni Li, Jingyi Chen, Li Huang, Xiang Li, Zihan Deng, Xiao Yang, Mengxin Luo, Lingxia Peng, Keran Ren, Yourong Chai and Yufei Xue
Plants 2025, 14(14), 2247; https://doi.org/10.3390/plants14142247 - 21 Jul 2025
Viewed by 265
Abstract
The RasGAP SH3 domain binding protein (G3BP) is a highly conserved family of proteins in eukaryotic organisms that coordinates signal transduction and post-transcriptional gene regulation and functions in the formation of stress granules. G3BPs have important roles in abiotic/biotic stresses in mammals, and [...] Read more.
The RasGAP SH3 domain binding protein (G3BP) is a highly conserved family of proteins in eukaryotic organisms that coordinates signal transduction and post-transcriptional gene regulation and functions in the formation of stress granules. G3BPs have important roles in abiotic/biotic stresses in mammals, and recent research suggests that they have similar functions in higher plants. Brassica contains many important oilseeds, vegetables, and ornamental plants, but there are no reports on the G3BP family in Brassica species. In this study, we identified G3BP family genes from six species of the U’s triangle (B. rapa, B. oleracea, B. nigra, B. napus, B. juncea, and B. carinata) at the genome-wide level. We then analyzed their gene structure, protein motifs, gene duplication type, phylogeny, subcellular localization, SSR loci, and upstream miRNAs. Based on transcriptome data, we analyzed the expression patterns of B. napus G3BP (BnaG3BP) genes in various tissues/organs in response to Sclerotinia disease, blackleg disease, powdery mildew, dehydration, drought, heat, cold, and ABA treatments, and its involvement in seed traits including germination, α-linolenic acid content, oil content, and yellow seed. Several BnaG3BP DEGs might be regulated by BnaTT1. The qRT-PCR assay validated the inducibility of two cold-responsive BnaG3BP DEGs. This study will enrich the systematic understanding of Brassica G3BP family genes and lay a molecular basis for the application of BnaG3BP genes in stress tolerance, disease resistance, and quality improvement in rapeseed. Full article
(This article belongs to the Special Issue Plant Genetic Diversity and Molecular Evolution)
Show Figures

Figure 1

21 pages, 3528 KiB  
Article
Confocal Laser Scanning Microscopy of Light-Independent ROS in Arabidopsis thaliana (L.) Heynh. TROL-FNR Mutants
by Ena Dumančić, Lea Vojta and Hrvoje Fulgosi
Int. J. Mol. Sci. 2025, 26(14), 7000; https://doi.org/10.3390/ijms26147000 - 21 Jul 2025
Viewed by 229
Abstract
Thylakoid rhodanese-like protein (TROL) serves as a thylakoid membrane hinge linking photosynthetic electron transport chain (PETC) complexes to nicotinamide adenine dinucleotide phosphate (NADPH) synthesis. TROL is the docking site for the flavoenzyme ferredoxin-NADP+ oxidoreductase (FNR). Our prior work indicates that the TROL-FNR [...] Read more.
Thylakoid rhodanese-like protein (TROL) serves as a thylakoid membrane hinge linking photosynthetic electron transport chain (PETC) complexes to nicotinamide adenine dinucleotide phosphate (NADPH) synthesis. TROL is the docking site for the flavoenzyme ferredoxin-NADP+ oxidoreductase (FNR). Our prior work indicates that the TROL-FNR complex maintains redox equilibrium in chloroplasts and systemically in plant cells. Improvement in the knowledge of redox regulation mechanisms is critical for engineering stress-tolerant plants in times of elevated global drought intensity. To further test this hypothesis and confirm our previous results, we monitored light-independent ROS propagation in the leaves of Arabidopsis wild type (WT), TROL knock-out (KO), and TROL ΔRHO (RHO-domain deletion mutant) mutant plants in situ by using confocal laser scanning microscopy with specific fluorescent probes for the three different ROS: O2·−, H2O2, and 1O2. Plants were grown under the conditions of normal substrate moisture and under drought stress conditions. Under the drought stress conditions, the TROL KO line showed ≈32% less O2·− while the TROL ΔRHO line showed ≈49% less H2O2 in comparison with the WT. This research confirms the role of dynamical TROL-FNR complex formation in redox equilibrium maintenance by redirecting electrons in alternative sinks under stress and also points it out as promising target for stress-tolerant plant engineering. Full article
(This article belongs to the Special Issue Molecular Insight into Oxidative Stress in Plants)
Show Figures

Figure 1

Back to TopTop