Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (155)

Search Parameters:
Keywords = drift resonance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3811 KB  
Article
Design and Measurement of a High-Efficiency W-Band Microstrip Antenna with Enhanced Matching for 6G Automotive Radar and ADAS Systems
by Alaa M. Abada, Anwer S. Abd El-Hameed, Angie R. Eldamak and Hadia M. El-Hennawy
Technologies 2025, 13(12), 555; https://doi.org/10.3390/technologies13120555 - 27 Nov 2025
Viewed by 210
Abstract
A compact, single-layer W-band microstrip antenna for forward-looking ADAS radar in the 77–79 GHz band is presented. The 16.5 × 22 mm2 PCB element integrates a linear microstrip taper, two shorting vias, and a slot-loaded cavity to stabilize input reactance and broaden [...] Read more.
A compact, single-layer W-band microstrip antenna for forward-looking ADAS radar in the 77–79 GHz band is presented. The 16.5 × 22 mm2 PCB element integrates a linear microstrip taper, two shorting vias, and a slot-loaded cavity to stabilize input reactance and broaden the in-band match. Full-wave simulations and launcher-based measurements using WR-12 TRL de-embedding and anechoic-chamber substitution confirm S11 ≤ −10 dB across 77–79 GHz. At 77/79 GHz, the antenna achieves end-fire realized gains of ≈9.9/≈11.2 dBi. The main beam is end-fire (peak near θ ≈ 90°), with −3 dB beamwidths of ≈36° in the θ-cut at φ = 0 (pointing ≈ 61°/56°) and ≈11.6° in the φ-cut at θ = 90°. First sidelobes are about −2.3/−2.5 dB (θ-cut) and −3.1/−3.4 dB (φ-cut). Cross-polarization is ≥18 dB below co-polarization, and the simulated radiation efficiency reaches ≈85% at 77 GHz and ≈80% at 79 GHz. A controlled thermal sweep (25–105 °C) yields < 100 MHz resonance drift while maintaining ≥ 10 dB return loss. Due to its planar architecture and clean feed integration, compact module packaging in short- to medium-range automotive radars. Full article
Show Figures

Figure 1

23 pages, 2488 KB  
Article
FL-Swarm MRCM: A Novel Federated Learning Framework for Cross-Site Medical Image Reconstruction
by Ailya Izhar and Syed Muhammad Anwar
Big Data Cogn. Comput. 2025, 9(11), 295; https://doi.org/10.3390/bdcc9110295 - 19 Nov 2025
Viewed by 474
Abstract
Magnetic Resonance Imaging (MRI) reconstruction is computationally heavy from under sampled data, and centralized data sharing within deep learning models was met with privacy concerns. We therefore propose FL-Swarm MRCM, a novel federated learning framework that integrates FedDyn dynamic regularization, a swarm-optimized generative [...] Read more.
Magnetic Resonance Imaging (MRI) reconstruction is computationally heavy from under sampled data, and centralized data sharing within deep learning models was met with privacy concerns. We therefore propose FL-Swarm MRCM, a novel federated learning framework that integrates FedDyn dynamic regularization, a swarm-optimized generative adversarial network (SwarmGAN), and a structure-aware cross-entropy loss to enhance cross-site MRI reconstruction without sharing raw data. The framework avoids client drift, locally adapts hyper-parameters using Particle Swarm Optimization, and preserves anatomic fidelity. Evaluations on fastMRI, BraTS-2020, and OASIS datasets under non-IID partitions show that FL-Swarm MRCM improves reconstruction quality, achieving PSNR = 29.78 dB and SSIM = 0.984, outscoring FL-MR and FL-MRCM baselines. The federated framework for adversarial training proposed here enables reproducible, privacy-preserving, and strongly multi-institutional MRI reconstruction with better cross-site generalization for clinical use. Full article
Show Figures

Figure 1

12 pages, 1820 KB  
Article
A High-Extinction-Ratio Resonator for Suppressing Polarization Noise in Hollow-Core Photonic-Crystal Fiber Optic Gyro
by Weiqi Miao, Huachuan Zhao, Fei Yu and Lingyu Li
Photonics 2025, 12(11), 1126; https://doi.org/10.3390/photonics12111126 - 14 Nov 2025
Viewed by 300
Abstract
Polarization-induced noise remains a primary source of bias drift, fundamentally limiting the performance of hollow-core photonic-crystal fiber optic gyroscopes (HC-RFOGs). To overcome this limitation, we propose and demonstrate a novel resonator design with an intrinsically high polarization extinction ratio (PER). The resonator’s core [...] Read more.
Polarization-induced noise remains a primary source of bias drift, fundamentally limiting the performance of hollow-core photonic-crystal fiber optic gyroscopes (HC-RFOGs). To overcome this limitation, we propose and demonstrate a novel resonator design with an intrinsically high polarization extinction ratio (PER). The resonator’s core innovation is a four-port coupler architecture that strategically integrates a pair of polarization beam splitters (PBSs) with conventional beam splitters (BSs). This configuration functions as a high-fidelity polarization filter, suppressing undesired polarization states for both clockwise and counter-clockwise propagating light within the hollow-core fiber loop. Our theoretical model predicts that the effective in-resonator PER can exceed 48 dB, which is sufficient to mitigate polarization-related errors for tactical-grade applications. Experimental validation of a prototype HC-RFOG incorporating this resonator yields a bias instability of 1.34°/h and an angle random walk (ARW) of 0.078°/h (with a 200 s averaging time). These results confirm that engineering a high-polarization-extinction-ratio resonator (HPERR) is a potent and direct pathway to substantially reducing polarization noise and advancing the performance of HC-RFOGs. Full article
(This article belongs to the Special Issue Optical Fiber Sensors: Design and Application)
Show Figures

Figure 1

19 pages, 4201 KB  
Article
Implementation of an SS-Compensated LC-Thermistor Topology for Passive Wireless Temperature Sensing
by Seyit Ahmet Sis and Yeliz Dikerler Kozar
Sensors 2025, 25(20), 6316; https://doi.org/10.3390/s25206316 - 13 Oct 2025
Viewed by 597
Abstract
This paper presents a passive wireless temperature sensor based on an SS-compensated LC-thermistor topology. The system consists of two magnetically coupled LC tanks—each composed of a coil and a series capacitor—forming a series–series (SS) compensation network. The secondary side includes a negative temperature [...] Read more.
This paper presents a passive wireless temperature sensor based on an SS-compensated LC-thermistor topology. The system consists of two magnetically coupled LC tanks—each composed of a coil and a series capacitor—forming a series–series (SS) compensation network. The secondary side includes a negative temperature coefficient (NTC) thermistor connected in series with its coil and capacitor, acting as a temperature-dependent load. Magnetically coupled resonant systems exhibit different coupling regimes: weak, critical, and strong. When operating in the strongly coupled regime, the original resonance splits into two distinct frequencies—a phenomenon known as bifurcation. At these split resonance frequencies, the load impedance on the secondary side is reflected as pure resistance at the primary side. In the SS topology, this reflected resistance is equal to the thermistor resistance, enabling precise wireless sensing. The advantage of the SS-compensated configuration lies in its ability to map changes in the thermistor’s resistance directly to the input impedance seen by the reader circuit. As a result, the sensor can wirelessly monitor temperature variations by simply tracking the input impedance at split resonance points. We experimentally validate this property on a benchtop prototype using a one-port VNA measurement, demonstrating that the input resistance at both split frequencies closely matches the expected thermistor resistance, with the observed agreement influenced by the parasitic effects of RF components within the tested temperature range. We also demonstrate that using the average readout provides first-order immunity to small capacitor drift, yielding stable readings. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

18 pages, 2235 KB  
Article
FRAM-Based Safety Culture Model for the Analysis of Socio-Technical and Environmental Variability in Mechanised Agricultural Activities
by Pierluigi Rossi, Federica Caffaro and Massimo Cecchini
Safety 2025, 11(3), 80; https://doi.org/10.3390/safety11030080 - 25 Aug 2025
Viewed by 891
Abstract
Mechanised agricultural operations are often performed individually, under minimal supervision and across a wide range of unfavourable working conditions, resulting in a complex mixture of hazards and external stressors that severely affect safety conditions. Socio-technical and environmental constraints significantly affect safety culture and [...] Read more.
Mechanised agricultural operations are often performed individually, under minimal supervision and across a wide range of unfavourable working conditions, resulting in a complex mixture of hazards and external stressors that severely affect safety conditions. Socio-technical and environmental constraints significantly affect safety culture and require continuous performance adjustments to overcome timing pressures, resource limitations, and unstable weather conditions. This study introduces a FRAM-based safety culture model that embeds the thoroughness-efficiency trade-off (ETTO) in four distinct operational modes that adhere to specific safety cultures, namely, thoroughness, risk awareness, compliance, and efficiency. This model has been instantiated for mechanised ploughing: foreground task functions were coupled with background functions that represent socio-technical constraints and environmental variability, while severity classes for potential incidents were derived from the US OSHA accident database. The framework was also supported by a semi-quantitative Resonance Index based on severity and coupling strength, the Total Resonance Index (TRI), to assess how variability propagates in foreground functions and to identify hot-spot functions where small adjustments can escalate into high resonance and hazardous conditions. Results showed that the negative effects on functional resonance generated by safety detriment on TRI observed between compliance and effective working modes were three times larger than the drift between risk awareness and compliance, demonstrating that efficiency comes with a much higher cost than keeping safety at compliance levels. Extending the proposed approach with quantitative assessments could further support the management of socio-technical and environmental drivers in mechanised farming, strengthening the role of safety as a competitive asset for enhancing resilience and service quality. Full article
Show Figures

Figure 1

23 pages, 5063 KB  
Article
Hippopotamus Optimization-Sliding Mode Control-Based Frequency Tracking Method for Ultrasonic Power Supplies with a T-Type Matching Network
by Linzuan Ye and Huafeng Cai
Electronics 2025, 14(17), 3358; https://doi.org/10.3390/electronics14173358 - 24 Aug 2025
Viewed by 672
Abstract
The ultrasonic power supply constitutes the core component of an ultrasonic welding system, and its main function is to convert the industrial frequency electricity into resonant high-frequency electricity in order to achieve mechanical energy conversion. However, factors such as changes in ambient temperature [...] Read more.
The ultrasonic power supply constitutes the core component of an ultrasonic welding system, and its main function is to convert the industrial frequency electricity into resonant high-frequency electricity in order to achieve mechanical energy conversion. However, factors such as changes in ambient temperature or component aging may cause the resonant frequency of the transducer to drift, thus detuning the resonant system and seriously affecting system performance. Therefore, an ultrasonic welding system requires high-frequency tracking in real time. Traditional frequency tracking methods (such as acoustic tracking, PID control, etc.) have defects such as poor stability, narrow bandwidth, or cumbersome parameter setting, making it difficult to meet the demand for fast tracking. To address these problems, this study adopts a T-matching network and utilizes sliding mode control for frequency tracking. In order to solve the problems of slow convergence and obvious jitter in sliding mode control (SMC), a Hippopotamus Optimization (HO) algorithm is introduced to simulate hippopotamuses’ group behavior and predation mechanisms, thereby optimizing the control parameters. It is verified through simulation that the SMC algorithm optimized by the HO algorithm (HO-SMC) is able to suppress frequency drift more effectively and demonstrates the advantages of fast response, high accuracy, and strong robustness in the scenario of sudden load changes. Full article
(This article belongs to the Special Issue Advanced Intelligent Methodologies for Power Electronic Converters)
Show Figures

Figure 1

29 pages, 6663 KB  
Article
Vortex-Induced Vibration of Deep-Sea Mining Riser Under Different Currents and Tension Conditions Using Wake Oscillator Model
by Liwen Deng, Haining Lu, Jianmin Yang, Rui Guo, Bei Zhang and Pengfei Sun
J. Mar. Sci. Eng. 2025, 13(8), 1565; https://doi.org/10.3390/jmse13081565 - 15 Aug 2025
Cited by 3 | Viewed by 1382
Abstract
The vortex-induced vibration (VIV) dynamics of commercial-scale deep-sea mining risers with complex component arrangements (pumps, buffer stations, buoyancy modules) remain insufficiently explored, especially for 6000 m systems with nonlinear tension. This study investigates VIV control strategy by adjusting tension for a nonlinear riser [...] Read more.
The vortex-induced vibration (VIV) dynamics of commercial-scale deep-sea mining risers with complex component arrangements (pumps, buffer stations, buoyancy modules) remain insufficiently explored, especially for 6000 m systems with nonlinear tension. This study investigates VIV control strategy by adjusting tension for a nonlinear riser system using the Iwan-Blevins wake oscillator model integrated with Morison equation-based analysis. An analytical model incorporating four typical current profiles was established to quantify the dynamic response under different flow velocities, internal flow density, and structural parameters. Increased buffer station mass effectively suppressed drift distance (over 35% reduction under specific conditions) by regulating axial tension. Dynamic comparisons demonstrated distinct VIV energy distribution patterns under different current conditions. Spectral analysis revealed that the vibration follows Strouhal vortex shedding lock-in principles. Spatial modal differentiation was observed due to nonlinear variations in velocity profiles, pipe diameters, and axial tension, accompanied by multi-frequency resonance, coexistence of standing and traveling waves, and broadband resonance with amplitude surges under critical velocities (1.75 m/s in Current-B). This study proposes to control the VIV amplitude by adjusting internal flow density and buffer mass, which is proved effective for reducing vibrations in upper (0–2000 m) risers. It validates vibration amplitude and frequency control through current velocity, buffer mass and slurry density regulation in a nonlinear riser system. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 3863 KB  
Article
The Temperature Sensitivity of the Piezoelectric Thickness Shear Mode of α-GeO2 Single Crystals
by Philippe Papet and Pascale Armand
Crystals 2025, 15(7), 613; https://doi.org/10.3390/cryst15070613 - 30 Jun 2025
Viewed by 587
Abstract
This paper focuses on identifying temperature-compensated Y-cuts (using a Cartesian coordinate system) in a piezoelectric α-GeO2 single crystal, which is isostructural–quartz α-SiO2. The study aims to minimize the frequency drift of the thickness shear mode by analyzing the resonant frequency’s [...] Read more.
This paper focuses on identifying temperature-compensated Y-cuts (using a Cartesian coordinate system) in a piezoelectric α-GeO2 single crystal, which is isostructural–quartz α-SiO2. The study aims to minimize the frequency drift of the thickness shear mode by analyzing the resonant frequency’s first- and second-order temperature coefficients Tf(1) and Tf(2). To obtain these, the first-order, TCij(1), and second-order, TCij(2), temperature coefficients of the elastic constant, Cij, previously obtained from room temperature up to 900 °C, were calculated. Upon heating, the thermal behavior of the elastic constants indicated that some, such as C11 and C33, are stable over a range of temperatures, while others, such as C44 and C66, increase with the temperature. This paper also explores a family of singly and doubly rotated Y-cuts of α-GeO2, revealing cuts with a potential application for temperature compensation and/or linear dependence over the temperature range. The results are compared with those of the well-known piezoelectric isomorph material α-SiO2. The findings highlight that α-GeO2 is a promising material for piezoelectric devices in high-temperature environments, outperforming α-SiO2 (α-quartz), which is limited by a solid–solid phase transition at 573 °C. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

23 pages, 2905 KB  
Article
Fluxgate Magnetometers Based on New Physical Principles
by Ivan V. Bryakin, Igor V. Bochkarev, Vadim R. Khramshin, Vadim R. Gasiyarov and Ivan N. Erdakov
Sensors 2025, 25(13), 3893; https://doi.org/10.3390/s25133893 - 22 Jun 2025
Viewed by 3552
Abstract
This article considers a fluxgate magnetometer (FM) that operates based on a new physical principle. The authors analyze how the alternating electric charge potential of a cylindrical metal electrode impacts the structure of a cylindrical permanent magnet made of composite-conducting ferrite. They demonstrate [...] Read more.
This article considers a fluxgate magnetometer (FM) that operates based on a new physical principle. The authors analyze how the alternating electric charge potential of a cylindrical metal electrode impacts the structure of a cylindrical permanent magnet made of composite-conducting ferrite. They demonstrate that this impact and permanent magnet structure initiate the emergence of polarons with oscillating magnetism. This causes significant changes in the entropy of indirect exchange and the related sublattice magnetism fluctuations that ultimately result in the generation of circularly polarized spin waves at the spin wave resonance frequency that are channeled and evolve in dielectric ferrite waveguides of the FM. It is demonstrated that these moving spin waves have an electrodynamic impact on the measuring FM coils on the macro-level and perform parametric modulation of the magnetic permeability of the waveguide material. This results in the respective variations of the changeable magnetic field, which is also registered by the measuring FM coils. The authors considered a generalized flow of the physical processes in the FM to obtain a detailed representation of the operating functions of the FM. The presented experimental results for the proposed FM in the field meter mode confirm its operating parameters (±40 μT—measurement range, 0.5 nT—detection threshold). The usage of a cylindrical metal electrode as a source of exciting electrical change instead of a conventional multiturn excitation coil can significantly reduce temperature drift, simplify production technology, and reduce the unit weight and size. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

20 pages, 6267 KB  
Article
Study on Quasi-Open Microwave Cavity Sensor Measuring Pulverized Coal Mass Concentration in Primary Air Pipe
by Yiguang Yang, Lianyong Zhang, Chenlong Wang, Lijun Chen, Hao Xu and Shihao Song
Sensors 2025, 25(12), 3657; https://doi.org/10.3390/s25123657 - 11 Jun 2025
Viewed by 966
Abstract
Pulverized coal mass concentration in the primary air pipe is one of the essential parameters for promoting furnace combustion efficiency. However, attaining accurate, real-time, and online detection for pulverized coal mass concentration remains challenging due to factors such as large pipe diameter and [...] Read more.
Pulverized coal mass concentration in the primary air pipe is one of the essential parameters for promoting furnace combustion efficiency. However, attaining accurate, real-time, and online detection for pulverized coal mass concentration remains challenging due to factors such as large pipe diameter and high flow rate. This study introduces a quasi-open microwave resonant cavity sensor. The principle and model were analyzed using the perturbation method, and the design and optimization were conducted with the simulation. A prototype and its test system were constructed, and the test results demonstrated good agreement between the simulations and experiments. The simulation revealed that the resonant frequency decreased monotonically from 861 to 644 MHz as mass concentration increased within 20%~80%, resulting in a change of about 3.62 MHz/1% under static mixture. The resonant frequency showed a drop from 21 MHz to 9 MHz with an increase in mass concentration under pulverized coal flow. Prediction models were developed and validated, showing the absolute values of the relative errors to be within 4% under operational scenarios. Additionally, the impact of the sensor on pulverized coal flow was evaluated, and it was found that the sensor structure had minimal impact on the flow in terms of velocity and the distribution of continuous flow. Finally, the long-term stability was assessed by examining the wear of the antennas and barriers. With inner barriers experiencing up to 2/3d wear, the resonant frequency drift ratio remained below 1.5%, corresponding to a mass concentration deviation of less than 3.2%. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

19 pages, 1784 KB  
Article
On the Relationship Between ULF Wave Power and Changes of Relativistic Electron Fluxes in the Outer Radiation Belt
by Christopher Lara, Victor A. Pinto, Javier Silva, Bea Zenteno-Quinteros and Pablo S. Moya
Universe 2025, 11(5), 151; https://doi.org/10.3390/universe11050151 - 6 May 2025
Cited by 1 | Viewed by 708
Abstract
We performed a statistical study on the correlation between electromagnetic Ultra Low Frequency (ULF) waves and the evolution of relativistic electron fluxes in the outer radiation belt for 3.1<L<6.0 during 101 geomagnetic storms that occurred between January 2013 [...] Read more.
We performed a statistical study on the correlation between electromagnetic Ultra Low Frequency (ULF) waves and the evolution of relativistic electron fluxes in the outer radiation belt for 3.1<L<6.0 during 101 geomagnetic storms that occurred between January 2013 and November 2018. We used the Van Allen Probes MagEIS and REPT instruments to study electron fluxes from 0.47 MeV to 5.2 MeV, and we utilized magnetic field data from EMFISIS to calculate magnetic field fluctuations parallel and perpendicular to the background magnetic field direction and obtain the ULF integrated power between 1 mHz and 10 mHz. We analyzed the data during the following three different time intervals: the main phase, the recovery phase, and the entire storm. We computed the Pearson’s correlation coefficient and mutual information score between the ratio of fluxes before and after each given phase and the total integrated ULF power during the same time interval. Our results show a significant correlation between ULF wave power and changes in fluxes of hundreds of keV electrons during the main phase of the storms and for MeV electrons during the recovery phase of the storms. By studying fluxes at independent L, the largest correlations correspond to changes in fluxes before and after the entire storm and ULF fluctuations parallel to the field, especially for L<4.6. We evaluated the drift resonance frequency for azimuthal wavenumber 1m10 and found that for all considered energies and frequencies, the drift resonance with Pc5 ULF waves may occur in our region of study, which is consistent with the statistical results. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2025—Space Science)
Show Figures

Figure 1

22 pages, 7750 KB  
Article
Coherence Analysis for Vibration Monitoring Under High Variability Conditions: Constraints for Cultural Heritage Preventive Conservation
by Claudia Pirrotta, Anna Maria Gueli, Carlo Trigona and Sebastiano Imposa
J. Sens. Actuator Netw. 2025, 14(2), 45; https://doi.org/10.3390/jsan14020045 - 21 Apr 2025
Cited by 1 | Viewed by 3798
Abstract
The development of reliable sensor networks for vibration monitoring is essential for the preventive conservation of buildings and structures. The identification of natural frequencies is crucial both for sensor network planning, to ensure optimal placement, and for operation, to detect frequency shifts that [...] Read more.
The development of reliable sensor networks for vibration monitoring is essential for the preventive conservation of buildings and structures. The identification of natural frequencies is crucial both for sensor network planning, to ensure optimal placement, and for operation, to detect frequency shifts that may indicate structural damage. However, traditional frequency detection methods, such as peak picking of the Spectrum or Power Spectral Density (PSD), are highly dependent on structural and environmental conditions. In highly variable vibrational environments, such as cultural heritage sites, stadiums, and transportation hubs, these methods often prove inadequate, leading to false modal identification. This study applies coherence analysis to vibrational measurements as a more reliable alternative that overcomes the limitations of traditional frequency extraction techniques. To evaluate its effectiveness, Magnitude-Squared Coherence (MSC), Squared Cross-Spectrum (SCS), and Wavelet Coherence (WC) were tested and compared with PSD analysis. Vibrational data were collected from a sensor network deployed at the Civil Museum of Castello Ursino (Catania, Italy), a site characterized by high structural complexity and variable visitor-induced vibrations. Results demonstrate that coherence analysis surpasses the limitations of traditional frequency identification techniques, with SCS and WC outperforming MSC in distinguishing resonance frequencies and providing a more stable and reliable frequency estimation. This approach enhances sensor network design by improving frequency detection, ensuring data reliability, and supporting long-term monitoring through instrumental drift detection, thus strengthening structural health monitoring in heritage sites. Full article
(This article belongs to the Section Actuators, Sensors and Devices)
Show Figures

Figure 1

14 pages, 3564 KB  
Article
Compensation of Temperature-Induced Bias Drift in Hemispherical Resonator Gyroscopes: An Inherent Data-Driven Architecture
by Xiaocong Zhou, Jiaqiang Wen, Shasha Han and Chong Li
Micromachines 2025, 16(4), 357; https://doi.org/10.3390/mi16040357 - 21 Mar 2025
Viewed by 3085
Abstract
To address the bias drift problem and hysteresis phenomenon of hemispherical resonator gyroscope (HRG) under temperature change, a temperature drift compensation method based on internal parameters is proposed. The influence model of zero-rate output bias is established with the parameters such as resonance [...] Read more.
To address the bias drift problem and hysteresis phenomenon of hemispherical resonator gyroscope (HRG) under temperature change, a temperature drift compensation method based on internal parameters is proposed. The influence model of zero-rate output bias is established with the parameters such as resonance frequency, driving signal amplitude and quadrature suppression voltage amplitude during HRG operation. The temperature cycle experiment is carried out in the range of −20 to 60 °C, and the relationship between internal parameters and working temperature is revealed. Using KAN neural network combined with time series data as input features, a real-time compensation model is designed to effectively improve the prediction accuracy of hysteresis phenomenon. The experimental results show that the model significantly reduces the output stability performance of HRG, from 0.022°/h to 0.013°/h, and the stability decreases from 1.1392°/h to 0.0651°/h, which improves the stability and reliability of HRG. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

22 pages, 23377 KB  
Article
Long-Term Wavelength Stability of Large Type II FBG Arrays in Different Silica-Based Fibers at High Temperature
by Robert B. Walker, Stephen J. Mihailov, Cyril Hnatovsky, Manny De Silva, Ping Lu, Huimin Ding and Abdullah Rahnama
Sensors 2025, 25(6), 1937; https://doi.org/10.3390/s25061937 - 20 Mar 2025
Cited by 2 | Viewed by 1713
Abstract
Fiber Bragg gratings (FBGs) are useful components in fiber optic sensing systems, which can be highly multiplexed and distributed. In recent years, fabrication using ultrafast lasers has made these devices much more versatile and robust, but questions concerning their high-temperature performance remain. The [...] Read more.
Fiber Bragg gratings (FBGs) are useful components in fiber optic sensing systems, which can be highly multiplexed and distributed. In recent years, fabrication using ultrafast lasers has made these devices much more versatile and robust, but questions concerning their high-temperature performance remain. The wavelength resonance of an FBG is naturally sensitive to various parameters of its environment; in particular, changes in the temperature or strain of a fiber tend to induce observable shifts in the Bragg wavelength. Thus, FBGs can offer reliable sensing solutions, provided they are isolated from other influences and their wavelength responses remain well characterized. Nonetheless, it is important to be aware that the isothermal wavelength drift of unstrained FBGs has been previously observed. When this occurs, it can lead to measurement errors and a requirement for sensor recalibration. This study presents a comparison of long-term isothermal wavelength drifts observed at 600 °C, 800 °C, 900 °C and 1000 °C for large numbers of Type II FBGs in different kinds of single-mode fibers. The results provide guidance for the design of high-temperature sensing systems, both in terms of fiber selection and for estimating the maximum time before recalibration becomes necessary to maintain a specified accuracy. Full article
Show Figures

Figure 1

8 pages, 1845 KB  
Article
Sensitivity Enhancement of Polymer Optical Fiber Surface Plasmon Resonance Sensor Utilizing ITO Overlayer
by Getinet Woyessa and Ole Bang
Sensors 2025, 25(6), 1863; https://doi.org/10.3390/s25061863 - 17 Mar 2025
Cited by 6 | Viewed by 1451
Abstract
We present an experimental study of a sensitivity-enhanced surface plasmon resonance (SPR) sensor utilizing a cladding etched multimode polymer optical fiber (POF) coated with a layer of gold followed by an indium tin oxide (ITO) layer. Our findings indicate that POF SPR sensors [...] Read more.
We present an experimental study of a sensitivity-enhanced surface plasmon resonance (SPR) sensor utilizing a cladding etched multimode polymer optical fiber (POF) coated with a layer of gold followed by an indium tin oxide (ITO) layer. Our findings indicate that POF SPR sensors with an ITO overlayer exhibit higher sensitivity compared to those coated solely with gold. Additionally, increasing the thickness of the ITO layer increases the sensitivity of the sensor at the expense of a broader SPR spectrum. We determined that the optimal ITO thickness for maximizing sensitivity is 25 nm. The sensor coated with 40 nm gold and 25 nm ITO demonstrated a refractive index sensitivity of 2258 nm per refractive index unit (nm/RIU) with a figure of merit and resolution of 10.13 RIU1 and 2.74×104 RIU, respectively, within the range of 1.33 to 1.37 RIU. Notably, this sensitivity is 70% greater than that of a POF SPR sensor coated only with 40 nm gold. Long-term stability tests conducted in a hydrated environment confirmed that the ITO layer remains unaffected over time and that the maximum SPR wavelength drift was only 1.2 nm. The standard deviation of the three-round measurements also revealed that the sensor has good repeatability. We believe that this sensor offers a simple structure and a relatively easy fabrication process, eliminating the need for side polishing while providing a large interaction area, making it a promising candidate for high-sensitivity biosensing applications. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

Back to TopTop