Study on Quasi-Open Microwave Cavity Sensor Measuring Pulverized Coal Mass Concentration in Primary Air Pipe
Abstract
:1. Introduction
2. Measurement Principle and Model
3. Sensor Design and Optimization
3.1. Sensor Structure and Operating Mode
3.2. Optimization of Sensor Structural Parameters
4. Experimental Test
4.1. Sensor and Test System Construction and Experiment Setup
4.2. A Comparison Between Experiments and Simulations
5. Result and Analysis
5.1. Measurement Property for Static Mixtures
5.2. Measurement Property for Pulverized Coal Flow
5.3. Prediction Models
5.4. The Impact of the Sensor on Pulverized Coal Flow
5.5. Long-Term Stability of the Sensor
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Deng, Z.; He, G.; Wang, H.; Zhang, X.; Lin, J.; Qi, Y.; Liang, X. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 2022, 3, 141–155. [Google Scholar] [CrossRef]
- Xu, B.; Zhong, R.; Hochman, G.; Dong, K. The environmental consequences of fossil fuels in China: National and regional perspectives. Sustain. Dev. 2019, 27, 826–837. [Google Scholar] [CrossRef]
- Xie, B.C.; Tan, X.-Y.; Zhang, S.; Wang, H. Decomposing CO2 emission changes in thermal power sector: A modified production-theoretical approach. J. Environ. Manag. 2021, 281, 111887. (In English) [Google Scholar] [CrossRef] [PubMed]
- Mousazadeh, H.; Tarabi, N.; Taghizadeh-Tameh, J. A fusion algorithm for mass flow rate measurement based on neural network and electrical capacitance tomography. Measurement 2024, 231, 114573. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Tang, Z.; Zhang, B.; Xu, C. Efficient super-resolution image reconstruction of electrical capacitance tomography for gas–solid fluidized bed measurement. Chem. Eng. Sci. 2024, 291, 119921. [Google Scholar] [CrossRef]
- Wang, S.; Xu, C.; Li, J.; Ding, Z.; Wang, S. An instrumentation system for multi-parameter measurements of gas-solid two-phase flow based on Capacitance-Electrostatic sensor. Measurement 2016, 94, 812–827. [Google Scholar] [CrossRef]
- Hu, Y.; Yan, Y.; Qian, X.; Zhang, W. A comparative study of induced and transferred charges for mass flow rate measurement of pneumatically conveyed particles. Powder Technology 2019, 356, 715–725. [Google Scholar] [CrossRef]
- Li, J.; Xu, S.; Tang, Z.; Wang, H.; Zhang, B.; Xu, C. Electrostatic Coupled Capacitance Sensor for Gas Solid Flow Measurement. IEEE Sens. J. 2020, 20, 12807–12816. [Google Scholar] [CrossRef]
- Wang, C.; Jia, L.; Ye, J. Characterization of Particle Mass Flow Rate of Gas–Solid Two-Phase Flow by the Combination of Transferred and Induced Current Signals. IEEE Trans. Instrum. Meas. 2021, 70, 7501912. [Google Scholar] [CrossRef]
- Idroas, M.; Najib, S.M.; Ibrahim, M.N. Imaging particles in solid/air flows using an optical tomography system based on complementary metal oxide semiconductor area image sensors. Sens. Actuators B Chem. 2015, 220, 75–80. [Google Scholar] [CrossRef]
- Rulko, T.A.; Li, B.; Surhigh, B.; Mayer, J.M.; Bala Chandran, R. Optical measurements and flow modeling to characterize solid volume fractions in gravity-driven particle curtains. Sol. Energy 2023, 264, 111989. [Google Scholar] [CrossRef]
- Fan, J.; Wang, F.; Cui, H.; Wang, W. Concentration determination in a cylinder-simulated gas–solid two phase flow using ultrasonic backscattering method. Appl. Acoust. 2023, 203, 109212. [Google Scholar] [CrossRef]
- Rossbach, V.; Padoin, N.; Meier, H.F.; Soares, C. Influence of ultrasonic waves on the gas-solid flow and the solids dispersion in a CFB riser: Numerical and experimental study. Powder Technol. 2021, 389, 430–449. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, Y.; Huang, Z.; Sun, J.; Liao, Z.; Wang, J. Machine learning assisted measurement of solid mass flow rate in horizontal pneumatic conveying by acoustic emission detection. Chem. Eng. Sci. 2021, 229, 116083. [Google Scholar] [CrossRef]
- Zou, J.; Liu, C.; Wang, H.; Wu, Z. Mass flow rate measurement of bulk solids based on microwave tomography and microwave Doppler methods. Powder Technol. 2020, 360, 112–119. [Google Scholar] [CrossRef]
- Taha, W.; Haryono, A.; Rahman, M.S.u.; Abou-Khousa, M. Microwave Velocimeter Based on Cross-Correlation for Dual-Phase Flows. In Proceedings of the 2018 IEEE International RF and Microwave Conference (RFM), Penang, Malaysia, 17–19 December 2018; pp. 185–188. [Google Scholar]
- Guo, Z.; Zhang, G. Application of a Microwave Mass Flow Meter in a Dense Phase Pneumatic Conveying System of Pulverized Coal. In Proceedings of the 2018 IEEE 3rd Advanced Information Technology. Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14 October 2018; pp. 2547–2551. [Google Scholar]
- Zheng, Y.; Liu, Q. Review of techniques for the mass flow rate measurement of pneumatically conveyed solids. Measurement 2011, 44, 589–604. [Google Scholar] [CrossRef]
- Abou-Khousa, M.; Al-Durra, A.; Al-Wahedi, K. Microwave Sensing System for Real-Time Monitoring of Solid Contaminants in Gas Flows. IEEE Sens. J. 2015, 15, 5296–5302. [Google Scholar] [CrossRef]
- Buschmüller, C.; Wiedey, W.; Döscher, C.; Dressler, J.; Breitkreutz, J. In-line monitoring of granule moisture in fluidized-bed dryers using microwave resonance technology. Eur. J. Pharm. Biopharm. 2008, 69, 380–387. (In English) [Google Scholar] [CrossRef]
- Austin, J.; Harris, M.T. In-Situ Monitoring of the Bulk Density and the Moisture Content of Rapidly Flowing Particulates Using a Microwave Resonance Sensor. IEEE Sens. J. 2014, 14, 821–828. [Google Scholar] [CrossRef]
- Nohlert, J.; Cerullo, L.; Winges, J.; Rylander, T.; McKelve, T. Global monitoring of fluidized-bed processes by means of microwave cavity resonances. Measurement 2014, 55, 520–535. [Google Scholar] [CrossRef]
- Akhter, Z.; Taha, W.; Rahman, M.S.U.; Abou-Khousa, M.A. Detection of solid contaminants in gas flows using microwave resonant probes. Meas. Sci. Technol. 2021, 32, 035109. [Google Scholar] [CrossRef]
- Penirschke, A.; Jakoby, R. Microwave Mass Flow Detector for Particulate Solids Based on Spatial Filtering Velocimetry. IEEE Trans. Microw. Theory Tech. 2008, 56, 3193–3199. [Google Scholar] [CrossRef]
- Zoad, A.; Kölpin, A.; Penirschke, A. Metamaterial Waveguide based Detector for Mass-Flow measurements of Particulate Paint Solids. In Proceedings of the 2023 53rd European Microwave Conference (EuMC), Berlin, Germany, 19–21 September 2023; pp. 412–415. [Google Scholar]
- Yuan, C.; Bowler, A.; Davies, J.G.; Hewakandamby, B.; Dimitrakis, G. Optimised mode selection in electromagnetic sensors for real time, continuous and in-situ monitoring of water cut in multi-phase flow systems. Sens. Actuators B Chem. 2019, 298, 126886. [Google Scholar] [CrossRef]
- Kiani, S.; Navaei, M.; Rezaei, P. A symmetric bar chart-shape microwave sensor with high Q-factor for permittivity determination of fluidics. Int. J. Microw. Wirel. Technol. 2023, 15, 1334–1342. [Google Scholar]
- Kiani, S.; Rezaei, P. Microwave substrate integrated waveguide resonator sensor for non-invasive monitoring of blood glucose concentration: Low cost and painless tool for diabetics. Measurement 2023, 219, 113232. [Google Scholar] [CrossRef]
- Teng, K.H.; Shaw, A.; Ateeq, M.; Al-Shamma’a, A.; Wylie, S. Design and implementation of a non-invasive real-time microwave sensor for assessing water hardness in heat exchangers. J. Electromagn. Waves Appl. 2018, 32, 797–811. [Google Scholar] [CrossRef]
- Gharbi, M.E.; Martinez-Estrada, M.; Fernández-García, R.; Gil, I. Determination of Salinity and Sugar Concentration by Means of a Circular-Ring Monopole Textile Antenna-Based Sensor. IEEE Sens. J. 2021, 21, 23751–23760. [Google Scholar] [CrossRef]
- Mehdizadeh, M. Chapter 4-Single-mode microwave cavities for material processing and sensing. In Microwave/RF Applicators and Probes (Second Edition); William Andrew Publishing: Boston, MA, USA, 2015; pp. 112–152. [Google Scholar]
- Liang, C.; Guo, Z.S.; Yue, X.; Li, H.; Ma, P.C. Microwave-assisted breakage of basalt: A viewpoint on analyzing the thermal and mechanical behavior of rock. Energy 2023, 273, 127225. [Google Scholar] [CrossRef]
- Looyenga, H. Dielectric constants of heterogeneous mixtures. Physica 1965, 31, 401–406. [Google Scholar] [CrossRef]
- Marland, S.; Merchant, A.; Rowson, N. Dielectric properties of coal. Fuel 2001, 80, 1839–1849. [Google Scholar] [CrossRef]
Parameters | Preset Values | Scann Range | Scan Step |
---|---|---|---|
La | 1.5D | 290–350 mm | 10 mm |
Lh | 0.5D | 94–114 mm | 2 mm |
Ls1 | 1.5D + λ | 550–650 mm | 10 mm |
Ls2 | 1.5D + 2λ | 875–975 mm | 20 mm |
mc (%) | εmix | fr (MHz) | S11 (dB) | S21 (dB) |
---|---|---|---|---|
20% | 1.2527 | 861 | −26.269 | −0.26278 |
30% | 1.3937 | 817 | −21.658 | −0.30548 |
40% | 1.5448 | 777 | −18.778 | −0.37282 |
50% | 1.7065 | 740 | −16.737 | −0.44362 |
60% | 1.8791 | 705 | −15.252 | −0.47397 |
70% | 2.0629 | 673 | −14.051 | −0.52664 |
80% | 2.2584 | 644 | −13.123 | −0.61999 |
mc (%) | SM (MHz) | PCF (MHz) | Differences (MHz) |
---|---|---|---|
20 | 861 | 840 | 21 |
30 | 817 | 798 | 19 |
40 | 777 | 762 | 15 |
50 | 740 | 727 | 13 |
60 | 705 | 693 | 12 |
70 | 673 | 663 | 10 |
80 | 644 | 635 | 9 |
Case | Condition | Resonant Frequency (MHz) | Resonant Frequency Drift Ratio | No. 1 EBL | No. 2 EBL | S11 |
---|---|---|---|---|---|---|
Case 0 | Unworn | 951 | 0.00% | 1/2d plane | 1/2d plane | −51.1785 |
Case 1 | All 1/3d | 951 | 0.00% | 2/3d plane | 2/3d plane | −40.2692 |
Case 2 | All 2/3d | 937 | −1.47% | 1/3d plane | 1/3d plane | −36.8934 |
Case 3 | No. 1: 1/3d | 951 | 0.00% | 2/3d plane | 1/2d plane | −48.2049 |
Case 4 | No. 1: 2/3d | 951 | 0.00% | 1/3d plane | 1/2d plane | −56.0362 |
Case 5 | No. 2: 1/3d | 951 | 0.00% | 1/2d plane | 2/3d plane | −33.2650 |
Case 6 | No. 2: 2/3d | 962 | 1.16% | 1/2d plane | 1/3d plane | −36.5967 |
Case 7 | No. 1: 1/3d; No. 2: 1/3d | 951 | 0.00% | 2/3d plane | 2/3d plane | −32.3376 |
Case 8 | No. 1: 2/3d; No. 2: 2/3d | 961 | 1.05% | 1/3d plane | 1/3d plane | −34.6353 |
Case 9 | No. 1: 2/3d; No. 2: 1/3d | 950 | −0.11% | 1/3d plane | 2/3d plane | −32.5147 |
Case 10 | No. 1: 1/3d; No. 2: 2/3d | 961 | 1.05% | 2/3d plane | 1/3d plane | −40.5463 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zhang, L.; Wang, C.; Chen, L.; Xu, H.; Song, S. Study on Quasi-Open Microwave Cavity Sensor Measuring Pulverized Coal Mass Concentration in Primary Air Pipe. Sensors 2025, 25, 3657. https://doi.org/10.3390/s25123657
Yang Y, Zhang L, Wang C, Chen L, Xu H, Song S. Study on Quasi-Open Microwave Cavity Sensor Measuring Pulverized Coal Mass Concentration in Primary Air Pipe. Sensors. 2025; 25(12):3657. https://doi.org/10.3390/s25123657
Chicago/Turabian StyleYang, Yiguang, Lianyong Zhang, Chenlong Wang, Lijun Chen, Hao Xu, and Shihao Song. 2025. "Study on Quasi-Open Microwave Cavity Sensor Measuring Pulverized Coal Mass Concentration in Primary Air Pipe" Sensors 25, no. 12: 3657. https://doi.org/10.3390/s25123657
APA StyleYang, Y., Zhang, L., Wang, C., Chen, L., Xu, H., & Song, S. (2025). Study on Quasi-Open Microwave Cavity Sensor Measuring Pulverized Coal Mass Concentration in Primary Air Pipe. Sensors, 25(12), 3657. https://doi.org/10.3390/s25123657