Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = drainage design standards

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 11459 KiB  
Article
Urban Flood Model-Driven Optimization of Flood Control and Drainage Engineering Solutions
by Yunning Liu, Wenbin Zang, Baoqi Li, Fuxin Chai and Xunping Liu
Water 2025, 17(11), 1705; https://doi.org/10.3390/w17111705 - 4 Jun 2025
Viewed by 666
Abstract
With the rapid advances of global climate change and urbanization, urban flooding is causing greater losses. Existing urban flood control and drainage engineering design standards are often applied to single projects. This paper proposes a set of urban flood model-driven optimization of flood [...] Read more.
With the rapid advances of global climate change and urbanization, urban flooding is causing greater losses. Existing urban flood control and drainage engineering design standards are often applied to single projects. This paper proposes a set of urban flood model-driven optimization of flood control and drainage engineering solutions. Applied to Shenzhen’s Shawan interception project, the preferred option demonstrates significant improvements, such as the following: a 25% reduction ratio of the maximum designed water depth at key points of the Shawan River main stream, a 0.26% reduction in the maximum submerged area of the urban surface, a 3.27% reduction in the full pipe rate of drainage pipe, and a 10.81% reduction in the overflow rate of inspection wells. The comprehensive flood control and drainage benefits are the best, and they achieve the solution of problems within the basin. Aiming at the shortage of comprehensive consideration of project scale, combination mode, and control scheme in urban flood control planning and design, this simulation scheme proposes a set of detailed design technologies of urban flood control engineering based on a flood numerical model. The analysis results show that the ideas proposed in this paper can provide a reference for the design of urban flood control and drainage engineering. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

22 pages, 1823 KiB  
Article
Heavy Rainfall Probabilistic Model for Zielona Góra in Poland
by Marcin Wdowikowski, Monika Nowakowska, Maciej Bełcik and Grzegorz Galiniak
Water 2025, 17(11), 1673; https://doi.org/10.3390/w17111673 - 31 May 2025
Viewed by 728
Abstract
The research focuses on probabilistic modeling of maximum rainfall in Zielona Góra, Poland, to improve urban drainage system design. The study utilizes archived pluviographic data from 1951 to 2020, collected at the IMWM-NRI meteorological station. These data include 10 min rainfall records and [...] Read more.
The research focuses on probabilistic modeling of maximum rainfall in Zielona Góra, Poland, to improve urban drainage system design. The study utilizes archived pluviographic data from 1951 to 2020, collected at the IMWM-NRI meteorological station. These data include 10 min rainfall records and aggregated hourly and daily totals. The study employs various statistical distributions, including Fréchet, gamma, generalized exponential (GED), Gumbel, log-normal, and Weibull, to model rainfall intensity–duration–frequency (IDF) relationships. After testing the goodness of fit using the Anderson–Darling test, Bayesian Information Criterion (BIC), and relative residual mean square Error (rRMSE), the GED distribution was found to best describe rainfall patterns. A key outcome is the development of a new rainfall model based on the GED distribution, allowing for the estimation of precipitation amounts for different durations and exceedance probabilities. However, the study highlights limitations, such as the need for more accurate local models and a standardized rainfall atlas for Poland. Full article
Show Figures

Figure 1

22 pages, 9264 KiB  
Article
A Flood Prevention Design for Guangzhou Metro Stations Under Extreme Rainfall Based on the SCS-CN Model
by Xin Chen, Hongyu Kuai, Xiaoqian Liu and Bo Xia
Buildings 2025, 15(10), 1689; https://doi.org/10.3390/buildings15101689 - 16 May 2025
Viewed by 609
Abstract
With the intensification of global climate change, the underground rail transit system of Guangzhou, as a major coastal city, faces severe flood risks. Through field investigations of 313 metro stations, this study identified 472 flood-related risk points, primarily involving water backflow at low-lying [...] Read more.
With the intensification of global climate change, the underground rail transit system of Guangzhou, as a major coastal city, faces severe flood risks. Through field investigations of 313 metro stations, this study identified 472 flood-related risk points, primarily involving water backflow at low-lying stations, insufficient elevation of structural components, and the threat of overbank flooding from adjacent rivers. By integrating GIS-based spatial analysis with the SCS-CN runoff model, an extreme rainfall scenario (534.98 mm) was simulated, revealing a maximum runoff depth of 484.23 mm. Based on these results, it is recommended to raise the flood protection design elevation to 582 mm and install additional waterproof barriers. Optimization strategies include establishing flood protection standards for new stations based on site topography and runoff volume, elevating station platforms or adding waterproof structures at existing stations, and upgrading drainage systems with real-time monitoring and early-warning mechanisms. This study emphasizes the necessity for Guangzhou’s metro system to integrate climate-adaptive urban planning and technological innovation to enhance flood resilience and promote sustainable urban development. Full article
Show Figures

Figure 1

18 pages, 10442 KiB  
Article
Investigation of Mix Proportion Optimization and Anti-Scouring Performance of Pervious Concrete Base
by Xiaoxuan Du, Xinghai Peng and Hongfu Liu
Buildings 2025, 15(9), 1485; https://doi.org/10.3390/buildings15091485 - 27 Apr 2025
Viewed by 472
Abstract
Internal drainage is crucial for preventing water damage in pavement structures. Pervious concrete is widely used in road projects due to its excellent drainage capacity, scour resistance, and durability. This study optimizes the mix design of pervious concrete by considering gradation (three levels), [...] Read more.
Internal drainage is crucial for preventing water damage in pavement structures. Pervious concrete is widely used in road projects due to its excellent drainage capacity, scour resistance, and durability. This study optimizes the mix design of pervious concrete by considering gradation (three levels), water-cement ratio (0.3, 0.35, 0.4), and target porosity (15%, 18%, 21%). The 7-day unconfined compressive strength, permeability coefficient, and elastic modulus were selected as evaluation indices. Response Surface Analysis (RSA) and Analysis of Variance (ANOVA) were applied to determine the optimal mix proportion. Scour resistance tests were conducted based on the optimal mix design to analyze the effects of scour time, frequency, and impact force on strength and modulus variation. The results indicate that the optimal mix ratio is Grade I, with a water-cement ratio of 0.35 and a target porosity of 18%. This yielded a 7-day compressive strength of 5.1 MPa, a rebound modulus of 2170.7 MPa, a permeability coefficient of 49 mL/s, and a hydraulic conductivity of 0.0027–0.0054 m2/s. Under standard scour conditions, compressive strength, splitting strength, dynamic rebound modulus, and splitting rebound modulus decreased by 16%, 33%, 40%, and 16%, respectively. Compared to cement-stabilized gravel (53% strength loss), pervious concrete exhibited lower strength loss (16%) due to its interconnected porosity, which mitigates internal water pressure during scouring. Overall, pervious concrete outperforms cement-stabilized gravel in mechanical properties and scour resistance, providing theoretical guidance for engineering applications. Full article
Show Figures

Figure 1

24 pages, 8045 KiB  
Article
Research on Mechanical Performance of Porous Asphalt Mixture with High-Viscosity Modified Asphalt
by Wei Chen, Zhengchao Zhang, Jincheng Wei, Xiaomeng Zhang, Chenghua Gan, Wenjian Wang and Yuxuan Sun
Appl. Sci. 2025, 15(7), 3631; https://doi.org/10.3390/app15073631 - 26 Mar 2025
Viewed by 479
Abstract
Porous asphalt mixtures play a pivotal role in enhancing pavement drainage capacity and traffic safety, where the performance of asphalt binder constitutes a determining factor. This study introduces an innovative advancement through the development of a high-viscoelastic modifier and corresponding modified asphalt based [...] Read more.
Porous asphalt mixtures play a pivotal role in enhancing pavement drainage capacity and traffic safety, where the performance of asphalt binder constitutes a determining factor. This study introduces an innovative advancement through the development of a high-viscoelastic modifier and corresponding modified asphalt based on SBS-modified asphalt, coupled with optimized preparation protocols. The optimal composition and dosage of the modifier were systematically determined through standardized tests including penetration, ductility, softening point, and bending beam rheometer (BBR) analysis. A comprehensive evaluation of road performance was conducted on two porous asphalt mixtures, namely conventional SBS-modified asphalt versus the novel high-viscoelastic modified asphalt (designated as 10-A). Experimental protocols encompassed high-temperature rutting resistance tests, low-temperature beam bending tests, freeze–thaw splitting tests, two-point bending fatigue tests, accelerated abrasion tests, and dynamic friction tester (DFT) measurements. The results demonstrate that the 10-A-modified mixture exhibits superior high- and low-temperature performance. Notably, its fatigue resistance and skid resistance showed minimal divergence from conventional SBS-modified asphalt, attributable to physicochemical crosslinking interactions among antioxidants, resins, and stabilizers. This research elucidates the synergistic mechanism of components within the 10-A modifier system. The proposed high-viscoelastic asphalt formulation meets the technical requirements for functional drainage asphalt mixtures while providing material-level support for implementing sponge city initiatives. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

29 pages, 5493 KiB  
Article
Effectiveness of Water-Sensitive Urban Design Techniques on Stormwater Quantity Management at a Residential Allotment Scale
by Samira Rashetnia, Ashok K. Sharma, Anthony R. Ladson, Dale Browne and Ehsan Yaghoubi
Water 2025, 17(6), 899; https://doi.org/10.3390/w17060899 - 20 Mar 2025
Viewed by 1291
Abstract
Rapid population growth and urbanization are transforming natural landscapes into built environments, resulting in increased stormwater runoff, which poses significant challenges for local governments to manage. Water-Sensitive Urban Design (WSUD) techniques have been implemented to enhance urban stormwater quality, but their effectiveness in [...] Read more.
Rapid population growth and urbanization are transforming natural landscapes into built environments, resulting in increased stormwater runoff, which poses significant challenges for local governments to manage. Water-Sensitive Urban Design (WSUD) techniques have been implemented to enhance urban stormwater quality, but their effectiveness in managing stormwater quantity and quality across different scales remains uncertain. This study examines the capacity of various WSUD approaches to reduce stormwater runoff volume and peak flow rates in a residential allotment transitioning from a single dwelling to a redeveloped condition with two dwellings. The tested techniques included a rainwater tank, infiltration trench, rain garden, vegetated swale, and permeable pavement. For storm events with a 1-in-5-year Annual Recurrence Interval (ARI)—aligning with typical piped drainage design standards—peak flow rates were reduced by 90% in the redeveloped scenario. Smaller storm events, up to a 1-in-1-year ARI, were frequently eliminated, thereby minimizing disturbances to waterways caused by frequent runoff discharges. Among the tested techniques, the combination of a rainwater tank, rain garden, and infiltration trench demonstrated the greatest effectiveness in reducing stormwater runoff volume and peak flow rates despite considerations of life cycle costs. These findings highlight the potential of integrated WSUD techniques in addressing urban stormwater management challenges. Full article
(This article belongs to the Special Issue Advances in Extreme Hydrological Events Modeling)
Show Figures

Figure 1

18 pages, 26143 KiB  
Article
A Non-Contact Method for Detecting and Evaluating the Non-Motor Use of Sidewalks Based on Three-Dimensional Pavement Morphology Analysis
by Shengchuan Jiang, Hui Wang, Wenruo Fan, Min Chi, Xun Zhang and Jinlong Ma
Sensors 2025, 25(6), 1721; https://doi.org/10.3390/s25061721 - 10 Mar 2025
Cited by 2 | Viewed by 1520
Abstract
This study proposes a non-contact framework for evaluating the skid resistance of shared roadside pavements to improve cyclist and pedestrian safety. By integrating a friction tester and a laser scanner, we synchronize high-resolution three-dimensional (3D) surface texture characterization with friction coefficient measurements under [...] Read more.
This study proposes a non-contact framework for evaluating the skid resistance of shared roadside pavements to improve cyclist and pedestrian safety. By integrating a friction tester and a laser scanner, we synchronize high-resolution three-dimensional (3D) surface texture characterization with friction coefficient measurements under dry and wet conditions. Key metrics—including fractal dimension (FD), macro/micro-texture depth density (HLTX and WLTX), mean texture depth (MTD), and joint dimensions—were derived from 3D laser scans. A hierarchical regression analysis was employed to prioritize the influence of texture and joint parameters on skid resistance across environmental conditions. Combined with material types (brick, tile, and stone) and drainage performance, these metrics are systematically analyzed to quantify their correlations with skid resistance. Results indicate that raised macro-textures and high FD (>2.5) significantly enhance dry-condition skid resistance, whereas recessed textures degrade performance. The hierarchical model further reveals that FD and MTD dominate dry friction (β = 0.61 and −0.53, respectively), while micro-texture density (WLTX) and seam depth are critical predictors of wet skid resistance (β = −0.76 and 0.31). In wet environments, skid resistance is dominated by micro-texture density (WLTX < 3500) and macro-texture-driven water displacement, with higher WLTX values indicating denser micro-textures that impede drainage. The study validates that non-contact laser scanning enables efficient mapping of critical texture data (e.g., pore connectivity, joint depth ≥0.25 mm) and friction properties, supporting rapid large-scale pavement assessments. These findings establish a data-driven linkage between measurable surface indicators (texture, morphometry, drainage) and skid resistance, offering a practical foundation for proactive sidewalk safety management, especially in high-risk areas. Future work should focus on refining predictive models through multi-sensor fusion and standardized design guidelines. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

25 pages, 10538 KiB  
Article
Physical Slope Stability: Factors of Safety Under Static and Pseudo-Static Conditions
by Cecilia Arriola, Eddie Aronés, Violeta Vega, Doris Esenarro, Geofrey Salas, Anjhinson Romero and Vanessa Raymundo
Infrastructures 2025, 10(3), 53; https://doi.org/10.3390/infrastructures10030053 - 5 Mar 2025
Cited by 1 | Viewed by 1202
Abstract
Evaluating physical slope stability is essential to prevent landslides and damage to infrastructure located on sloping terrains. This study analyzes how static and pseudo-static conditions affect slope safety, considering the magnitude and location of the loads exerted. A total of 2394 simulations were [...] Read more.
Evaluating physical slope stability is essential to prevent landslides and damage to infrastructure located on sloping terrains. This study analyzes how static and pseudo-static conditions affect slope safety, considering the magnitude and location of the loads exerted. A total of 2394 simulations were carried out on 399 terrain profiles, using the Spencer method to calculate factors of safety (FSs). The results reveal that uniformly distributed loads placed at the center of the slope increase stability under static conditions. However, in pseudo-static scenarios, the action of dynamic forces, such as seismicity, drastically reduces the FS, especially on slopes greater than 15%. This analysis allowed the identification of critical zones of high susceptibility, promoting the implementation of reinforcement techniques, such as retaining walls and drainage systems. In addition, zoning maps were developed that prioritize safe areas for urban development, aligned with the international standards. The findings underscore the importance of integrating predictive models into design and planning processes, considering both static and dynamic factors. In conclusion, this study provides practical tools for risk mitigation and resilient infrastructure design in sloping terrains. Full article
(This article belongs to the Special Issue Seismic Engineering in Infrastructures: Challenges and Prospects)
Show Figures

Figure 1

26 pages, 13339 KiB  
Article
An Enhanced Framework for Assessing Pluvial Flooding Risk with Integrated Dynamic Population Vulnerability at Urban Scale
by Xinyi Shu, Chenlei Ye, Zongxue Xu, Ruting Liao, Pengyue Song and Silong Zhang
Remote Sens. 2025, 17(4), 654; https://doi.org/10.3390/rs17040654 - 14 Feb 2025
Cited by 2 | Viewed by 1184
Abstract
Under the combined influence of climate change, accelerated urbanization, and inadequate urban flood defense standards, urban pluvial flooding has become an increasingly severe issue. This not only poses significant challenges to social stability and economic development but also makes accurate flood risk assessment [...] Read more.
Under the combined influence of climate change, accelerated urbanization, and inadequate urban flood defense standards, urban pluvial flooding has become an increasingly severe issue. This not only poses significant challenges to social stability and economic development but also makes accurate flood risk assessment crucial for improving urban flood control and drainage capabilities. This study uses Jinan, a typical foothill plain city in Shandong Province, as a case study to compare the performance of differential evolution (DE), genetic algorithm (GA), and particle swarm optimization (PSO) in calibrating the SWMM. By constructing a hydrological–hydrodynamic coupled model using the SWMM and LISFLOOD-FP, this study evaluates the drainage capacity of the pipe network and surface inundation characteristics under both historical and design rainfall scenarios. An agent-based model (ABM) is developed to analyze the dynamic risks and vulnerabilities of population and building agents under different rainfall scenarios, capturing macroscopic emergent patterns from individual behavior rules and analyzing them in both time and space dimensions. Additionally, using multi-source remote sensing data, dynamic population vulnerability, and flood hazard processes, a quantitative dynamic flood risk analysis is conducted based on cloud models. The results demonstrated the following: (1) PSO performed best in calibrating the SWMM in the study area, with Nash–Sutcliffe efficiency (NSE) values ranging from 0.93 to 0.69. (2) Drainage system capacity was low, with over 90% of the network exceeding capacity in scenarios with return periods of 1 to 100 years. (3) The vulnerability of people and buildings increased with higher flood intensity and duration. Most affected individuals were located on roads. In Event 6, 11.41% of buildings were at risk after 1440 min; in the 20-year flood event, 26.69% of buildings were at risk after 180 min. (4) Key features influencing vulnerability included the DEM, PND, NDVI, and slope. High-risk areas in the study area expanded from 36.54% at 30 min to 38.05% at 180 min. Full article
Show Figures

Graphical abstract

16 pages, 8291 KiB  
Article
Comparison of High-Resolution Digital Elevation Models for Customizing Hydrological Analysis of Urban Basins: Considerations, Opportunities, and Implications for Stormwater System Design
by Walter Avila-Ruiz, Carlos Salazar-Briones, José Mizael Ruiz-Gibert, Marcelo A. Lomelí-Banda and Juan Alejandro Saiz-Rodríguez
CivilEng 2025, 6(1), 8; https://doi.org/10.3390/civileng6010008 - 8 Feb 2025
Viewed by 1566
Abstract
Topographical data are essential for hydrological analysis and can be gathered through on-site surveys, UAVs, or remote sensing methods such as Digital Elevation Models (DEMs). These tools are crucial in hydrological studies for accurately modeling basin morphology and surface stream network patterns. Two [...] Read more.
Topographical data are essential for hydrological analysis and can be gathered through on-site surveys, UAVs, or remote sensing methods such as Digital Elevation Models (DEMs). These tools are crucial in hydrological studies for accurately modeling basin morphology and surface stream network patterns. Two different DEMs with resolutions of 0.13 m and 5 m were used, as well as tools which carry out urban basin delineation by analyzing their morphometric parameters to process the hydrography of the study area, using three Geographic Information Systems (GIS): ArcGIS, GlobalMapper, and SAGA GIS. Each piece of software uses different algorithms for the pre-processing of DEMs in the calculation of morphometric parameters of the study area. The results showed variations in the quantity of delineated stream networks between the different GIS tools used, even when using the same DEM. Similarly, the morphometric parameters varied between GIS tools and DEMs, which tells us that the tools and topographic data used are important. The stream network generated using ArcGIS and the DEM obtained with UAV offered a more precise description of surface flow behavior in the study area. Concerning ArcGIS, it can be observed that between the resolutions of the INEGI DEM and the UAV DEM, the delimited area of micro-basin 1 presented a minimum difference of 0.03 km2. In contrast, micro-basin 2 had a more significant difference of 0.16 km2. These discrepancies in results are attributed to the different algorithms used by each piece of software and the resolution of each DEM. Although some studies claim to have obtained the same results using different software and algorithms, in this research, different results were obtained, and emphasize the importance of establishing procedural standards, as they can significantly impact the design of stormwater drainage systems. These comparisons will allow decision-makers to consider these aspects to standardize the tools and topographic data used in urban hydrological analyses. Full article
Show Figures

Graphical abstract

17 pages, 4569 KiB  
Article
A Novel Breast-Volume Self-Measurement Method with Improved Convenient and Accuracy
by Yulin Zhao, Chihua Wu, Dingbang Luh and Xinyu Zhang
Appl. Sci. 2024, 14(21), 10071; https://doi.org/10.3390/app142110071 - 4 Nov 2024
Viewed by 2142
Abstract
Breast volume is crucial for ensuring proper bra fit and comfort, significantly influencing women’s physiological and psychological well-being. This study aims to develop a novel method for breast-volume self-measurement, allowing women to accurately assess their breast volume without specialized equipment. We employed a [...] Read more.
Breast volume is crucial for ensuring proper bra fit and comfort, significantly influencing women’s physiological and psychological well-being. This study aims to develop a novel method for breast-volume self-measurement, allowing women to accurately assess their breast volume without specialized equipment. We employed a geometric approximation of the breast as a combination of a partial elliptical cone and an irregular partial ellipsoid, leading to the formulation of a new volume equation. The method was validated against established standards, including the specimen drainage method and 3D scanning techniques. The findings revealed that our self-measurement approach achieved a relative error of only 3.8%, outperforming the 4.8% of 3D scanning and the 86.3% associated with traditional breast-volume equations. This innovative self-measurement technique enhances accuracy and serves as a practical solution for health and nutritional assessments, alongside body image evaluations. Its user-friendly nature positions it as a valuable tool for women’s health, particularly in personal fitness and ergonomic design. Full article
Show Figures

Figure 1

14 pages, 1319 KiB  
Article
Future Scenarios of Design Rainfall Due to Upcoming Climate Changes in NSW, Australia
by Iqbal Hossain, Shirley Gato-Trinidad, Monzur Imteaz and Scott Rayburg
Atmosphere 2024, 15(9), 1101; https://doi.org/10.3390/atmos15091101 - 10 Sep 2024
Cited by 1 | Viewed by 1213
Abstract
The occurrence of rainfall is significantly affected by climate change around the world. While in some places this is likely to result in increases in rainfall, both winter and summer rainfall in most parts of New South Wales (NSW), Australia are projected to [...] Read more.
The occurrence of rainfall is significantly affected by climate change around the world. While in some places this is likely to result in increases in rainfall, both winter and summer rainfall in most parts of New South Wales (NSW), Australia are projected to decrease considerably due to climate change. This has the potential to impact on a range of hydraulic and hydrologic design considerations for water engineers, such as the design and construction of stormwater management systems. These systems are currently planned based on past extreme rain event data, and changes in extreme rainfall amounts due to climate change could lead to systems being seriously undersized (if extreme precipitation events become more common and/or higher in magnitude) or oversized (if extreme rainfall events become less frequent or decrease in magnitude). Both outcomes would have potentially serious consequences. Consequently, safe, efficient, and cost-effective urban drainage system design requires the consideration of impacts arising from climate change on the approximation of design rainfall. This study examines the impacts of climate change on the probability of occurrence of daily extreme rainfall in New South Wales (NSW), Australia. The analysis was performed for 29 selected meteorological stations located across NSW. Future design rainfall in this research was determined from the projected rainfall for different time periods (2020 to 2039, 2040 to 2059, 2060 to 2079, and 2080 to 2099). The results of this study show that design rainfall for the standard return periods was, in most cases, lower than that derived employing the design rainfall obtained from the Australian Bureau of Meteorology (BoM). While most of the analysed meteorological stations showed significantly different outcomes using the climate change scenario data, this varied considerably between stations and different time periods. This suggests that more work needs to be performed at the local scale to incorporate climate change predicted rainfall data into future stormwater system designs to ensure the best outcomes. Full article
(This article belongs to the Special Issue Statistical Approaches in Climatic Parameters Prediction)
Show Figures

Figure 1

19 pages, 4096 KiB  
Article
The Causes of Waterlogging in Chinese Southern Hilly Cities Based on Hydrological Processes
by Bei Li, Sheng Jiao, Yuan Zhou and Min Zhou
Sustainability 2024, 16(17), 7804; https://doi.org/10.3390/su16177804 - 7 Sep 2024
Cited by 1 | Viewed by 1117
Abstract
The various hydrological processes that cause waterlogging exhibit regional differences. Studies on the causes of waterlogging in Chinese southern hilly cities from the perspective of urban regional hydrological processes are needed. This article examines Changsha Central City to study the hydrological processes of [...] Read more.
The various hydrological processes that cause waterlogging exhibit regional differences. Studies on the causes of waterlogging in Chinese southern hilly cities from the perspective of urban regional hydrological processes are needed. This article examines Changsha Central City to study the hydrological processes of Chinese southern hilly cities based on waterlogging point data from 2015 to 2017, analyzing the relationships between the degree of waterlogging and changes in the material elements of runoff sources, runoff convergence terminals, and runoff convergence processes using correlation analysis, principal component analysis and comparative analysis. These results show that the urban waterlogging in Chinese southern hilly cities is caused by the hardening of convergence spaces, concentrated water distribution, a decrease in the connectivity of rainwater corridors, complex topographic slopes, and a lag in the construction of drainage facilities. The expansion of impervious surfaces, particularly in areas intended for convergence terminals, has significantly reduced the number of these critical structures. Additionally, disordered changes in topographic slopes, the division caused by roads, and the hardening of underlying surfaces in rainwater corridors have collectively diminished the structural and ecological connectivity of the rainwater corridor system. This obstruction of surface runoff into concentrated water bodies has rendered the runoff regulation function of these water bodies ineffective, making their size a leading cause of urban waterlogging. To mitigate the risk of waterlogging, Chinese southern hilly cities should prevent urban development from encroaching on natural runoff areas. They should also implement dispersed water body layouts, enhance both the structural and ecological connectivity of rainwater corridors and their underlying surfaces, and improve the design standards of drainage facilities. Full article
Show Figures

Figure 1

22 pages, 5903 KiB  
Article
A Study on the Construction and Evaluation of the Water Resource Reutilization System for Farmland Diversion and Drainage
by Qiuyi Ge, Chengli Zhu, Jizhou Hu, Genxiang Feng, Xing Huang and Xue Cheng
Water 2024, 16(16), 2289; https://doi.org/10.3390/w16162289 - 14 Aug 2024
Viewed by 1612
Abstract
Water is an essential resource for both rural and agricultural areas; it can be wisely distributed and used in the field to protect daily life, production, the natural environment, and the safety and stability of regional drainage and flood control systems. Our research [...] Read more.
Water is an essential resource for both rural and agricultural areas; it can be wisely distributed and used in the field to protect daily life, production, the natural environment, and the safety and stability of regional drainage and flood control systems. Our research selected a typical plains rural river network area with agriculture as the main industry to investigate the most effective method of farmland diversion and drainage. We comprehensively planned and transformed the water system flow, water conservation engineering, and the ecological environment in the irrigation area through the reutilization system. The reutilization system’s operation and scheduling design is implemented for four specific periods: the water replenishment cycle, agricultural irrigation, agricultural drainage and the rainy period of the flood season. The research period ranges from 2020 to 2023 after the completion of the system. We used monitoring, the recording of hydraulic equipment parameters and data collection to evaluate the balance of water supply and demand in the study area. At the same time, we have tracked and evaluated the four aspects of water quality enhancement, water conservation and flood control, and agricultural irrigation. The results show that the total agricultural water consumption decreased by 2.9%, and the amount of water saved increased by 9.6%. The current segment creates the rivers’ embankment standards. With a 92% irrigation guarantee rate, the current section forms and the embankment standards of the rivers satisfy the design storage volume and the flood level of one in twenty years. The water quality of all the rivers in the area has decreased by 5~10% compared to the average concentration prior to establishment. This study verifies the comprehensive effect and the suitability of the system by comparing the before and after effects, and provides a scientific basis for the method of efficient recycling and utilization of water resources in the rural plains river network area; we also propose the guidance of increasing the digital twin control and long-term operation mechanism to ensure the long-term stable operation of the technology. Full article
(This article belongs to the Section Ecohydrology)
Show Figures

Figure 1

18 pages, 6106 KiB  
Article
Numerical Modeling and Performance Evaluation of Carbon Fiber-Reinforced Polymer-Strengthened Concrete Culverts against Water-Induced Corrosion
by Hafiz Ahmed Waqas, Alireza Bahrami, Fayiz Amin, Mehran Sahil and Muhammad Saud Khan
Infrastructures 2024, 9(5), 82; https://doi.org/10.3390/infrastructures9050082 - 6 May 2024
Cited by 4 | Viewed by 2680
Abstract
Culverts fulfill the vital function of safely channeling water beneath railway tracks, highways, and overpasses. They serve various purposes, including facilitating drainage in areas such as watercourses, drainage zones, and regions with restricted ground-bearing capacity. Precast reinforced concrete (RC) box culverts are a [...] Read more.
Culverts fulfill the vital function of safely channeling water beneath railway tracks, highways, and overpasses. They serve various purposes, including facilitating drainage in areas such as watercourses, drainage zones, and regions with restricted ground-bearing capacity. Precast reinforced concrete (RC) box culverts are a popular choice because they are strong, durable, rigid, and economical. However, culverts are prone to corrosion due to exposure to a range of environmental factors and aggressive chemicals. Therefore, enhancing the design and construction of this crucial infrastructure is imperative to effectively combat corrosion and to adhere to modern standards of reliability and affordability. In this study, carbon fiber-reinforced polymer (CFRP) was used to strengthen corroded culverts, with promising potential to improve safety and longevity in these structures. This study compared the behavior of corroded RC box culverts to CFRP-strengthened ones using the finite element method (FEM). It explored the impact of varying the damage thicknesses owing to corrosion, ranging from 0 mm to 20 mm, on the structural performance of the box culverts. The results showed that the CFRP model exhibited a substantial 25% increase in the capacity and reduced the damage compared to the reference model. Moreover, a parametric study was conducted for establishing a cost-effective design, in which numerous CFRP strip configurations were examined for a damaged-culvert model. The results indicated that a complete CFRP sheet was most effective for the maximum design capacity and repair effectiveness. The study’s outcomes provide valuable insights for professionals engaged in enhancing the strength of box culverts, aiming to increase the capacity, enhance the stability, and strengthen corroded culverts. Full article
Show Figures

Figure 1

Back to TopTop