Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (218)

Search Parameters:
Keywords = double-catalytic layer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2990 KB  
Article
CoFeNi-Layered Double Hydroxide Combined Activation of PMS and Ozone for the Degradation of Rhodamine B in Water
by Xiaohan Zhu, Liang Song and Jia Miao
Separations 2025, 12(10), 276; https://doi.org/10.3390/separations12100276 - 9 Oct 2025
Abstract
The development of efficient and sustainable advanced oxidation processes (AOPs) for organic pollutant removal is of great significance for water purification. In this study, a CoFeNi-layered double hydroxide (CoFeNi-LDH) catalyst was synthesized and applied for the simultaneous activation of peroxymonosulfate (PMS) and ozone [...] Read more.
The development of efficient and sustainable advanced oxidation processes (AOPs) for organic pollutant removal is of great significance for water purification. In this study, a CoFeNi-layered double hydroxide (CoFeNi-LDH) catalyst was synthesized and applied for the simultaneous activation of peroxymonosulfate (PMS) and ozone to degrade rhodamine B (RhB) in aqueous solution. The CoFeNi-LDH/PMS/ozone system achieved a remarkable RhB removal efficiency of 95.2 ± 1.2% within 8 min under neutral pH conditions. Systematic parametric studies revealed that synergistic interactions among CoFeNi-LDH, PMS, and ozone contributed to the generation of reactive oxygen species (ROS), primarily sulfate radicals (SO4•−) and singlet oxygen (1O2), as confirmed by EPR and quenching experiments. Density functional theory (DFT) calculations demonstrated that ozone enhanced PMS adsorption and activation at CoFeNi catalytic sites. The catalyst exhibited robust magnetic recyclability and structural stability after repeated use. This work highlights a synergistic catalytic strategy for PMS/ozone activation, offering an effective and environmentally friendly platform for dye wastewater remediation. Full article
Show Figures

Figure 1

18 pages, 3305 KB  
Article
Removal of Cu(II) from Aqueous Medium with LDH-Mg/Fe and Its Subsequent Application as a Sustainable Catalyst
by Edgar Oswaldo Leyva Cruz, Ricardo Lopez-Medina, Deyanira Angeles-Beltrán and Refugio Rodríguez-Vázquez
Catalysts 2025, 15(10), 930; https://doi.org/10.3390/catal15100930 - 1 Oct 2025
Viewed by 293
Abstract
In this work, the removal of Cu(II) ions from an aqueous effluent was studied using an Mg/Fe layered double hydroxide (LDH) as the adsorbent. The material was synthesized and characterized before and after the adsorption process to identify structural and morphological changes induced [...] Read more.
In this work, the removal of Cu(II) ions from an aqueous effluent was studied using an Mg/Fe layered double hydroxide (LDH) as the adsorbent. The material was synthesized and characterized before and after the adsorption process to identify structural and morphological changes induced by copper uptake. Techniques such as X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), ultraviolet-visible spectroscopy (UV-Vis), Raman spectroscopy, and nitrogen physisorption (BET) were employed to confirm the interaction between the metal ions and the LDH surface. The LDH-Mg/Fe exhibited a high maximum adsorption capacity of 526 mg/g, and the adsorption kinetics followed a pseudo-second-order model, achieving over 90% removal of Cu(II) within 2.5 h. The Cu(II)-loaded material was subsequently evaluated as a sustainable catalyst in two applications: (i) an organic synthesis via “click” chemistry, reaching yields of up to 85%, and (ii) the decoloration of Congo Red via a Fenton-like process, achieving a decoloration efficiency of at least 84%. These dual uses demonstrate the potential of Cu(II)-loaded LDH as a cost-effective and environmentally friendly approach to simultaneous pollutant removal and catalytic valorization. Full article
Show Figures

Graphical abstract

18 pages, 5739 KB  
Article
Highly Active and Water-Resistant Mn-Loaded MgAlOx Catalysts for NH3-SCR at Low Temperature
by Ruolan Jiang, Ben Wang, Wei Liu, Jian Zhang, Liguo Wang and Zhongpeng Wang
Chemistry 2025, 7(5), 154; https://doi.org/10.3390/chemistry7050154 - 23 Sep 2025
Viewed by 317
Abstract
Advancing catalysts for low-temperature NH3-SCR enhances their viability as a terminal flue gas denitration solution across diverse operating regimes. A high-performance, hydrothermally stable catalyst for low-temperature SCR was synthesized by depositing MnOx onto MgAlOx composite oxide supports. These supports, [...] Read more.
Advancing catalysts for low-temperature NH3-SCR enhances their viability as a terminal flue gas denitration solution across diverse operating regimes. A high-performance, hydrothermally stable catalyst for low-temperature SCR was synthesized by depositing MnOx onto MgAlOx composite oxide supports. These supports, featuring varied Mg/Al ratios, originated from layered double hydroxide (LDH) precursors. The obtained catalyst with the Mg/Al ratio of 2 (Mn/Mg2AlOx) possesses relatively high concentrations of active oxygen species (Oα) and Mn4+ and exhibits remarkable catalytic performance. The Mn/Mg2AlOx catalyst exhibits a wide operating temperature range (100–300 °C) for denitration, achieving over 80% NOx conversion, along with robust water resistance. The temperature-programed surface reactions and NO oxidation reactions are performed to elucidate the promoting effect of water on N2 selectivity, which is not only due to inhibition of catalyst oxidation capacity at high temperature but also is related to the competing adsorption of water and NH3. In situ DRIFTS analysis confirmed that the NH3-SCR mechanism over Mn/Mg2AlOx adheres to the Eley–Rideal (E–R) pathway. These findings highlight the significant promise of Mn/MgAlOx catalysts for deployment as downstream denitration units within exhaust treatment systems. Full article
Show Figures

Graphical abstract

17 pages, 7186 KB  
Article
Tuning High-Entropy Oxides for Oxygen Evolution Reaction Through Electrocatalytic Water Splitting: Effects of (MnFeNiCoX)3O4 (X = Cr, Cu, Zn, and Cd) on Electrocatalytic Performance
by Milad Zehtab Salmasi, Amir Narimani, Ali Omidkar and Hua Song
Catalysts 2025, 15(9), 827; https://doi.org/10.3390/catal15090827 - 1 Sep 2025
Viewed by 855
Abstract
This research presents the development of spinel-type high-entropy oxide (HEO) catalysts with the general composition (MnFeNiCoX)3O4, where X represents Cr, Cu, Zn, and Cd, synthesized through a solution combustion method. The impact of the fifth metal element on the [...] Read more.
This research presents the development of spinel-type high-entropy oxide (HEO) catalysts with the general composition (MnFeNiCoX)3O4, where X represents Cr, Cu, Zn, and Cd, synthesized through a solution combustion method. The impact of the fifth metal element on the oxygen evolution reaction (OER) was systematically explored using structural, morphological, and electrochemical characterization techniques. Among the various compositions, the Cr-containing catalyst, (MnFeNiCoCr)3O4, displayed outstanding electrocatalytic behavior, delivering a notably low overpotential of 323 mV at a current density of 10 mA/cm2 in 1.0 M KOH—surpassing the performance of benchmark RuO2. Additionally, this material exhibited the smallest Tafel slope (56 mV/dec), the greatest double-layer capacitance (3.35 mF/cm2), and the most extensive electrochemically active surface area, all indicating enhanced charge transfer capability and high catalytic proficiency. The findings highlight the potential of element tailoring in HEOs as a promising strategy for optimizing water oxidation catalysis. Full article
Show Figures

Graphical abstract

21 pages, 1284 KB  
Article
A Mean Field Poisson–Boltzmann Theory Assessment of Copper Oxide Nanosheets Interaction Potential in Physiological Fluids
by Mumuni Amadu, Nafisat Motunrayo Raheem and Adango Miadonye
Nanomaterials 2025, 15(17), 1330; https://doi.org/10.3390/nano15171330 - 29 Aug 2025
Viewed by 708
Abstract
In recent times, copper oxide nanosheets (CONSs) have shown a broad spectrum of industrial uses due to their unique properties, including high electrical conductivity, surface-enhanced catalytic activity, etc. Therefore, industrial processes involved in their manufacture can give rise to airborne particulates. Several in [...] Read more.
In recent times, copper oxide nanosheets (CONSs) have shown a broad spectrum of industrial uses due to their unique properties, including high electrical conductivity, surface-enhanced catalytic activity, etc. Therefore, industrial processes involved in their manufacture can give rise to airborne particulates. Several in vivo studies have reported toxicity of these nanoparticles due to their interactions with biological molecules. Generally, literature-based assessment of their toxicity has centered on experimental findings. In this paper, we report for the first time, trend in CONSs interactions in intracellular and extracellular fluids, using the Nonlinear Mean Field Poisson–Boltzmann theory. Our theoretical prediction for zeta potential in the extracellular fluid environment align with published values in the literature. Based on this theoretical approach, we also demonstrate that double layer disjoining pressure due to interacting double layers of CONSs is generally higher in intracellular fluids. The findings of our theoretical approach highlight the importance of predicting the extent of cellular uptake potential of CONSs in organs that are prone to such airborne environmental particulates. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

13 pages, 7489 KB  
Article
Interface Charge Transfer Engineering in NiFe Layered Double Hydroxide-Cs0.32WO3 Heterostructures for Enhanced Oxygen Evolution Reaction
by Ze Wang, Xinyu Song, Yue Liu, Zhiwang Sun, Xin Zhang, Yuanhao Wang and Shifeng Wang
Nanomaterials 2025, 15(16), 1255; https://doi.org/10.3390/nano15161255 - 14 Aug 2025
Viewed by 604
Abstract
Electrochemical water splitting for hydrogen production is considered a key pathway for achieving sustainable energy conversion. However, the sluggish reaction kinetics of the oxygen evolution reaction (OER) and high overpotentials severely hinder the large-scale application of water electrolysis technology. Nickel–iron layered double hydroxide [...] Read more.
Electrochemical water splitting for hydrogen production is considered a key pathway for achieving sustainable energy conversion. However, the sluggish reaction kinetics of the oxygen evolution reaction (OER) and high overpotentials severely hinder the large-scale application of water electrolysis technology. Nickel–iron layered double hydroxide (NiFe-LDH) has gained attention as a promising non-precious metal OER catalyst due to its abundant active sites and good intrinsic activity. However, its relatively low conductivity and charge transfer efficiency limit the improvement of catalytic performance. Therefore, this study used a simple hydrothermal method to generate a NiFe-LDH/Cs0.32WO3 heterojunction composite catalyst, relying on the excellent electronic conductivity of Cs0.32WO3 to improve overall charge transfer efficiency. According to electrochemical testing results, the modified NiFe-LDH/Cs0.32WO3-20 mg achieved a low overpotential of 349 mV at a current density of 10 mA cm−2, a Tafel slope of 67.0 mV dec−1, and a charge transfer resistance of 65.1 Ω, which represent decreases of 39 mV, 23.1%, and 40%, respectively, compared to pure NiFe-LDH. The key to performance improvement lies in the tightly bonded heterojunction interface between Cs0.32WO3 and NiFe-LDH. X-ray photoelectron spectroscopy (XPS) shows a distinct interfacial charge transfer phenomenon, with a notable negative shift of the W4f peak (0.85 eV), indicating the directional transfer of electrons from Cs0.32WO3 to NiFe-LDH. Under the influence of the built-in electric field within the heterojunction, this interfacial charge redistribution improved the electronic structure of NiFe-LDH, increased the proportion of high-valent metal ions, and significantly enhanced the OER reaction kinetics. This study provides new insights for the preparation of efficient heterojunction electrocatalysts. Full article
Show Figures

Figure 1

24 pages, 8010 KB  
Article
Mono-(Ni, Au) and Bimetallic (Ni-Au) Nanoparticles-Loaded ZnAlO Mixed Oxides as Sunlight-Driven Photocatalysts for Environmental Remediation
by Monica Pavel, Liubovi Cretu, Catalin Negrila, Daniela C. Culita, Anca Vasile, Razvan State, Ioan Balint and Florica Papa
Molecules 2025, 30(15), 3249; https://doi.org/10.3390/molecules30153249 - 2 Aug 2025
Viewed by 592
Abstract
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was [...] Read more.
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was obtained via the thermal decomposition of its corresponding layered double hydroxide (LDH) precursors. X-ray diffraction (XRD) patterns confirmed the successful fabrication of the nanocomposites, including the synthesis of the metallic NPs, the formation of LDH-like structure, and the subsequent transformation to ZnO phase upon LDH calcination. The obtained nanostructures confirmed the nanoplate-like morphology inherited from the original LDH precursors, which tended to aggregate after the addition of gold NPs. According to the UV-Vis spectroscopy, loading NPs onto the ZnAlO support enhanced the light absorption and reduced the band gap energy. ATR-DRIFT spectroscopy, H2-TPR measurements, and XPS analysis provided information about the functional groups, surface composition, and reducibility of the materials. The catalytic performance of the developed nanostructures was evaluated by the photodegradation of bisphenol A (BPA), under simulated solar irradiation. The conversion of BPA over the bimetallic Ni-Au@ZnAlO reached up to 95% after 180 min of irradiation, exceeding the monometallic Ni@ZnAlO and Au@ZnAlO catalysts. Its enhanced activity was correlated with good dispersion of the bimetals, narrower band gap, and efficient charge carrier separation of the photo-induced e/h+ pairs. Full article
Show Figures

Graphical abstract

13 pages, 2832 KB  
Article
Multiphase NiCoFe-Based LDH for Electrocatalytic Sulfion Oxidation Reaction Assisting Efficient Hydrogen Production
by Zengren Liang, Yong Nian, Hao Du, Peng Li, Mei Wang and Guanshui Ma
Materials 2025, 18(14), 3377; https://doi.org/10.3390/ma18143377 - 18 Jul 2025
Viewed by 599
Abstract
Sulfion oxidation reaction (SOR) has great potential in replacing oxygen evolution reaction (OER) and boosting highly efficient hydrogen evolution. The development of highly active and stable SOR electrocatalysts is crucial for assisting hydrogen production with low energy consumption. In this work, multiphase NiCoFe-based [...] Read more.
Sulfion oxidation reaction (SOR) has great potential in replacing oxygen evolution reaction (OER) and boosting highly efficient hydrogen evolution. The development of highly active and stable SOR electrocatalysts is crucial for assisting hydrogen production with low energy consumption. In this work, multiphase NiCoFe-based layered double hydroxide (namely NiCoFe-LDH) has been synthesized via a facile seed-assisted heterogeneous nucleation method. Benefiting from its unique microsized hydrangea-like structure and synergistic active phases, the catalyst delivers substantial catalytic interfaces and reactive centers for SOR. Consequently, NiCoFe-LDH electrode achieves a remarkably low potential of 0.381 V at 10 mA cm−2 in 1 M KOH + 0.1 M Na2S, representing a significant reduction of 0.98 V compared to conventional OER. Notably, under harsh industrial conditions (6 M KOH + 0.1 M Na2S, 80 °C), the electrolysis system based on NiCoFe-LDH||NF pair exhibits a cell potential of only 0.71 V at 100 mA cm−2, which shows a greater decreasing amplitude of 1.05 V compared with that of traditional OER/HER systems. Meanwhile, the NiCoFe-LDH||NF couple could maintain operational stability for 100 h without obvious potential fluctuation, as well as possessing a lower energy consumption of 1.42 kWh m−3 H2. Multiphase eletrocatalysis for SOR could indeed produce hydrogen with low-energy consumption. Full article
(This article belongs to the Special Issue High-Performance Materials for Energy Conversion)
Show Figures

Graphical abstract

22 pages, 7389 KB  
Article
FeCo-LDH/CF Cathode-Based Electrocatalysts Applied to a Flow-Through Electro-Fenton System: Iron Cycling and Radical Transformation
by Heng Dong, Yuying Qi, Zhenghao Yan, Yimeng Feng, Wenqi Song, Fengxiang Li and Tao Hua
Catalysts 2025, 15(7), 685; https://doi.org/10.3390/catal15070685 - 15 Jul 2025
Viewed by 585
Abstract
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with [...] Read more.
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with excellent catalytic activity and was served as the cathode in a flow-through electro-Fenton (FTEF) reactor. The electrocatalyst demonstrated excellent treatment performance (99%) in phenol simulated wastewater (30 mg L−1) under the optimized operating conditions (applied voltage = 3.5 V, pH = 6, influent flow rate = 15 mL min−1) of the FTEF system. The high removal rate could be attributed to (i) the excellent electrocatalytic oxidation performance and low interfacial charge transfer resistance of the FeCo-LDH/CF electrode as the cathode, (ii) the ability of the synthesized FeCo-LDH to effectively promote the conversion of H2O2 to •OH under certain conditions, and (iii) the flow-through system improving the mass transfer efficiency. In addition, the degradation process of pollutants within the FTEF system was additionally illustrated by the •OH dominant ROS pathway based on free radical burst experiments and electron paramagnetic resonance tests. This study may provide new insights to explore reaction mechanisms in FTEF systems. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

18 pages, 10208 KB  
Article
Development of Ni-P-N-C/Nickel Foam for Efficient Hydrogen Production via Urea Electro-Oxidation
by Abdullah M. Aldawsari, Maged N. Shaddad and Saba A. Aladeemy
Catalysts 2025, 15(7), 662; https://doi.org/10.3390/catal15070662 - 7 Jul 2025
Viewed by 968
Abstract
Electrocatalytic urea oxidation reaction (UOR) is a promising dual-purpose approach for hydrogen production and wastewater treatment, addressing critical energy and environmental challenges. However, conventional anode materials often suffer from limited active sites and high charge transfer resistance, restricting UOR efficiency. To overcome these [...] Read more.
Electrocatalytic urea oxidation reaction (UOR) is a promising dual-purpose approach for hydrogen production and wastewater treatment, addressing critical energy and environmental challenges. However, conventional anode materials often suffer from limited active sites and high charge transfer resistance, restricting UOR efficiency. To overcome these issues, a novel NiP@PNC/NF electrocatalyst was developed via a one-step thermal annealing process under nitrogen, integrating nickel phosphide (NiP) with phosphorus and nitrogen co-doped carbon nanotubes (PNCs) on a nickel foam (NF) substrate. This design enhances catalytic activity and charge transfer, achieving current densities of 50 mA cm−2 at 1.34 V and 100 mA cm−2 at 1.43 V versus the reversible hydrogen electrode (RHE). The electrode’s high electrochemical surface area (235 cm2) and double-layer capacitance (94.1 mF) reflect abundant active sites, far surpassing NiP/NF (48 cm2, 15.8 mF) and PNC/NF (39.5 cm2, 12.9 mF). It maintains exceptional stability, with only a 16.3% performance loss after 35 h, as confirmed by HR-TEM showing an intact nanostructure. Our single-step annealing technique provides simplicity, scalability, and efficient integration of NiP nanoparticles inside a PNC matrix on nickel foam. This method enables consistent distribution and robust substrate adhesion, which are difficult to attain with multi-step or more intricate techniques. Full article
Show Figures

Graphical abstract

28 pages, 3287 KB  
Review
Recent Progress in Photocatalytic Hydrogen Production Using 2D MoS2 Based Materials
by Khursheed Ahmad and Tae Hwan Oh
Catalysts 2025, 15(7), 648; https://doi.org/10.3390/catal15070648 - 2 Jul 2025
Cited by 2 | Viewed by 1773
Abstract
Due to the increase in energy demand, photocatalytic hydrogen (H2) production has received enormous interest from the scientific community due to its simplicity and cost-effectiveness. The photocatalyst (PC) plays a vital role in H2 evolution, and it is well understood [...] Read more.
Due to the increase in energy demand, photocatalytic hydrogen (H2) production has received enormous interest from the scientific community due to its simplicity and cost-effectiveness. The photocatalyst (PC) plays a vital role in H2 evolution, and it is well understood that an efficient PC should have a larger surface area and better charge separation and transport properties. Previously, extensive efforts were made to prepare the efficient PC for photocatalytic H2 production. In some cases, pristine catalyst could not catalyze the catalytic reactions due to a fast recombination rate or poor catalytic behavior. Thus, cocatalysts can be explored to boost the photocatalytic H2 production. In this regard, a promising cocatalyst should have a large surface area, more active sites, decent conductivity, and improved catalytic properties. Molybdenum disulfide (MoS2) is one of the two-dimensional (2D) layered materials that have excellent optical, electrical, and physicochemical properties. MoS2 has been widely utilized as a cocatalyst for the photocatalytic H2 evolution under visible light. Herein, we have reviewed the progress in the fabrication of MoS2 and its composites with metal oxides, perovskite, graphene, carbon nanotubes, graphitic carbon nitrides, polymers, MXenes, metal-organic frameworks, layered double hydroxides, metal sulfides, etc. for photocatalytic H2 evolution. The reports showed that MoS2 is one of the desirable cocatalysts for photocatalytic H2 production applications. The challenges and future perspectives are also mentioned. This study may be beneficial for the researchers working on the design and fabrication of MoS2-based PCs for photocatalytic H2 evolution applications. Full article
Show Figures

Figure 1

12 pages, 2936 KB  
Article
Synthesis of Well-Crystallized Cu-Rich Layered Double Hydroxides and Improved Catalytic Performances for Water–Gas Shift Reaction
by Shicheng Liu, Yinjie Hu, Qian Zhang, Xia Tan, Haonan Cui, Fei Li, Huibin Lei and Ou Zhuo
Catalysts 2025, 15(6), 546; https://doi.org/10.3390/catal15060546 - 30 May 2025
Viewed by 764
Abstract
Cu-based layered double hydroxides (LDH) have been extensively employed as catalyst precursors. However, due to the Jahn–Teller effect of copper ions, it is a challenge to synthesize well-crystallized LDH with a high Cu content, which usually contains considerable CuO impurity. By adding competitive [...] Read more.
Cu-based layered double hydroxides (LDH) have been extensively employed as catalyst precursors. However, due to the Jahn–Teller effect of copper ions, it is a challenge to synthesize well-crystallized LDH with a high Cu content, which usually contains considerable CuO impurity. By adding competitive ligands during the coprecipitation process, such as glycine, a well-crystallized Cu-rich LDH with less CuO impurity was successfully synthesized. The Cu-Mg-Al mixed oxides derived from the well-crystallized Cu-rich LDH have relatively high SBET, large pore volume, and well dispersion of Cu nanoparticles. The derived catalyst exhibited unexpectedly high catalytic activity in the water–gas shift (WGS) reaction, and the mass-specific reaction rate was reached as high as 33.5 μmolCO·gcat1·s−1 at 200 °C. The high catalytic activity of this catalyst may originate from the high SBET and well dispersion of Cu particles and metal oxides. Moreover, the derived catalyst also displayed outstanding long-term stability in the WGS reaction, which should benefit from the enhanced metal–support interaction. Full article
(This article belongs to the Special Issue Sustainable Catalysis for Green Chemistry and Energy Transition)
Show Figures

Figure 1

15 pages, 3410 KB  
Article
CeO2-Modified Ni2P/Fe2P as Efficient Bifunctional Electrocatalyst for Water Splitting
by Xinyang Wu, Dandan Wang, Yongpeng Ren, Haiwen Zhang, Shengyu Yin, Ming Yan, Yaru Li and Shizhong Wei
Materials 2025, 18(10), 2221; https://doi.org/10.3390/ma18102221 - 11 May 2025
Viewed by 1334
Abstract
Developing efficient bifunctional electrocatalysts with excellent stability at high current densities for overall water splitting is a challenging yet essential objective. However, transition metal phosphides encounter issues such as poor dispersibility, low specific surface area, and limited electronic conductivity, which hinder the achievement [...] Read more.
Developing efficient bifunctional electrocatalysts with excellent stability at high current densities for overall water splitting is a challenging yet essential objective. However, transition metal phosphides encounter issues such as poor dispersibility, low specific surface area, and limited electronic conductivity, which hinder the achievement of satisfactory performance. Therefore, this study presents the highly efficient bifunctional electrocatalyst of CeO2-modified NiFe phosphide on nickel foam (CeO2/Ni2P/Fe2P/NF). Ni2P/Fe2P coupled with CeO2 was deposited on nickel foam through hydrothermal synthesis and sequential calcination processes. The electrocatalytic performance of the catalyst was evaluated in an alkaline solution, and it exhibited an HER overpotential of 87 mV at the current density of 10 mA cm−2 and an OER overpotential of 228 mV at the current density of 150 mA cm−2. Furthermore, the catalyst demonstrated good stability, with a retention rate of 91.2% for the HER and 97.3% for the OER after 160 h of stability tests. The excellent electrochemical performance can be attributed to the following factors: (1) The interface between Ni2P/Fe2P and CeO2 facilitates electron transfer and reactant adsorption, thereby improving catalytic activity. (2) The three-dimensional porous structure of nickel foam provides an ideal substrate for the uniform distribution of Ni2P, Fe2P, and CeO2 nanoparticles, while its high conductivity facilitates electron transport. (3) The incorporation of larger Ce3⁺ ions in place of smaller Fe3⁺ ions leads to lattice distortion and an increase in defects within the NiFe-layered double hydroxide structure, significantly enhancing its catalytic performance. This research finding offers an effective strategy for the design and synthesis of low-cost, high-potential catalysts for water electrolysis. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

16 pages, 6376 KB  
Article
From Waste to Catalyst: The Properties of Mixed Oxides Derived from Layered Double Hydroxide Mg/Al Synthesized from Aluminum Residues and Their Use in Transesterification
by Tarsila Santos da Silva, Laura Leticia Freitas Ferreira da Silva, Evellyn Patricia Santos da Silva, Rayssa Jossanea Brasileiro Motta, Bruno José Barros da Silva, Mario Roberto Meneghetti, Lucas Meili and Simoni Margareti Plentz Meneghetti
Reactions 2025, 6(2), 33; https://doi.org/10.3390/reactions6020033 - 10 May 2025
Viewed by 1058
Abstract
Mixed oxides were obtained via calcination at 550 °C from layered double hydroxides (LDHs), which were synthesized in a previous study via co-precipitation and co-precipitation followed by hydrothermal treatment using aluminum residues as the source of this element. After characterization, these oxides (Mg-Al- [...] Read more.
Mixed oxides were obtained via calcination at 550 °C from layered double hydroxides (LDHs), which were synthesized in a previous study via co-precipitation and co-precipitation followed by hydrothermal treatment using aluminum residues as the source of this element. After characterization, these oxides (Mg-Al-LDH-CP and Mg-Al-LDH-H, named according to the synthesis methods of the precursor LDHs) were applied as heterogeneous catalysts in the methyl transesterification of ethyl acetate (EA). The formation of mixed oxides was confirmed by the absence of basal peaks associated with the layered LDH structure in the XRD analysis, due to calcination. Further characterization revealed that Mg-Al-LDH-CP exhibited the highest number of acidic sites, while Mg-Al-LDH-H had the highest number of basic sites. The transesterification activity was evaluated in the reaction between ethyl acetate (EA) and methanol (MeOH). The best result, obtained under a molar ratio of 1:5:0.005 (EA:MeOH:catalyst) at 120 °C, was a 63% conversion after 360 min of reaction for the Mg-Al-LDH-CP catalyst, which had a higher number of acidic sites and fewer basic sites. Additionally, the catalysts demonstrated robustness, maintaining catalytic activity over four cycles without a significant decrease in performance. These results indicate the feasibility of using mixed oxides derived from LDH, synthesized from aluminum residues, as heterogeneous catalysts in transesterification reactions, highlighting their potential for advancing more sustainable catalyst development. Full article
Show Figures

Figure 1

24 pages, 4726 KB  
Article
Preparation of Ru-Based Systems Through Metal Carbonyl Cluster Decomposition for the Base-Free 5-Hydroxymethylfurfural (HMF) Oxidation
by Francesca Liuzzi, Francesco Di Renzo, Cristiana Cesari, Alice Mammi, Lorenzo Monti, Alessandro Allegri, Stefano Zacchini, Giuseppe Fornasari, Nikolaos Dimitratos and Stefania Albonetti
Molecules 2025, 30(10), 2120; https://doi.org/10.3390/molecules30102120 - 10 May 2025
Viewed by 813
Abstract
Metal carbonyl clusters, which can be seen as monodispersed and atomically defined nanoparticles stabilized by CO ligands, were used to prepare Ru-based catalysts with tuned basic properties to conduct the 5-hydroxymethylfurfural (HMF) aerobic oxidation to produce 2,5-furandicarboxylic acid (FDCA) in base-free conditions. The [...] Read more.
Metal carbonyl clusters, which can be seen as monodispersed and atomically defined nanoparticles stabilized by CO ligands, were used to prepare Ru-based catalysts with tuned basic properties to conduct the 5-hydroxymethylfurfural (HMF) aerobic oxidation to produce 2,5-furandicarboxylic acid (FDCA) in base-free conditions. The controlled decomposition of the carbonyl cluster [HRu3(CO)11], a methodology not yet applied to Ru catalysts for this reaction, on different supports focusing on controlling and tuning the basic properties of support allowed the formation of small Ru nanoparticles with a mean diameter of around 1 nm. The catalytic systems obtained resulted in more activity in the HMF oxidation than those prepared through a more common salt-impregnation technique, and the deposition of Ru nanoparticles on materials with basic functionalities has allowed avoiding the use of basic solutions in the reaction. The characterization by CO2-TPD of Mg(Al)O catalysts obtained from decomposition of layered double hydroxide hydrotalcites with different composition and activation has allowed disclosure of an important correlation between the selectivity of FDCA and the fraction of weak basic sites, which is decreased by the calcination treatment at increased temperature. Full article
Show Figures

Graphical abstract

Back to TopTop