Highly Active and Water-Resistant Mn-Loaded MgAlOx Catalysts for NH3-SCR at Low Temperature
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of the Mn/MgtAlOx Catalysts
2.2. Catalytic Activity Test
2.3. Reaction Kinetics Testing
2.4. Catalyst Characterization
3. Results and Discussion
3.1. Catalytic Performance of Catalysts
3.2. Crystal Structure and Texture Property
3.3. Acidic Property
3.4. Surface Element Analysis and Redox Property
3.5. In Situ DRIFTs Analysis
3.6. The Reaction Mechanism of NOx over the Mn/Mg2AlOx
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peel, J.; Haeuber, R.; Garcia, V.; Russell, A.; Neas, L. Impact of nitrogen and climate change interactions on ambient air pollution and human health. Biogeochemistry 2012, 114, 121–134. [Google Scholar] [CrossRef]
- Chen, W.; Zou, R.; Wang, X. Toward an atomic-level understanding of the catalytic mechanism of selective catalytic reduction of NOx with NH3. ACS Catal. 2022, 12, 14347–14375. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, F.; Tang, W.; Kakwani, R.; Hou, Y.; Feng, G. Urea decomposition and implication for NOx reduction with Cu-zeolite and vanadia-selective catalytic reduction. Chem. Eng. Technol. 2020, 43, 1758–1764. [Google Scholar] [CrossRef]
- Damma, D.; Ettireddy, P.; Reddy, B.; Smirniotis, P. A review of low temperature NH3-SCR for removal of NOx. Catalysts 2019, 9, 349. [Google Scholar] [CrossRef]
- Kwak, J.H.; Tonkyn, R.G.; Kim, D.H.; Szanyi, J.; Peden, C.H.F. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. J. Catal. 2010, 275, 187–190. [Google Scholar] [CrossRef]
- Fickel, D.W.; D’Addio, E.; Lauterbach, J.A.; Lobo, R.F. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Appl. Catal. B Environ. 2011, 102, 441–448. [Google Scholar] [CrossRef]
- Fu, M.; Li, C.; Lu, P.; Qu, L.; Zhang, M.; Zhou, Y.; Yu, M.; Fang, Y. A review on selective catalytic reduction of NOx by supported catalysts at 100–300 °C-catalysts, mechanism, kinetics. Catal. Sci. Technol. 2014, 4, 14–25. [Google Scholar] [CrossRef]
- Liu, K.; Li, J.; Yu, Q.; Han, X.; Bian, M.; Zhang, Y.; Yi, T. Optimization and comprehensive mechanism of environment-friendly bimetal oxides catalysts for efficient removal of NO in ultra-low temperature flue gas. Sep. Purifi. Technol. 2023, 311, 123324. [Google Scholar] [CrossRef]
- Wang, Z.; Lan, J.; Haneda, M.; Liu, Z. Selective catalytic reduction of NOx with NH3 over a novel Co-Ce-Ti catalyst. Catal. Today 2021, 376, 222–228. [Google Scholar] [CrossRef]
- Liu, C.; Shi, J.; Gao, C.; Niu, C. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: A review. Appl. Catal. A Gen. 2016, 522, 54–69. [Google Scholar] [CrossRef]
- Gao, F.; Tang, X.; Yi, H.; Zhao, S.; Li, C.; Li, J.; Shi, Y.; Meng, X. A review on selective catalytic reduction of NOx by NH3 over Mn-based catalysts at low temperatures: Catalysts, mechanisms, kinetics and DFT calculations. Catalysts 2017, 7, 199. [Google Scholar] [CrossRef]
- Damma, D.; Boningari, T.; Ettireddy, P.R.; Reddy, B.M.; Smirniotis, P.G. Direct Decomposition of NOx over TiO2 Supported Transition Metal Oxides at Low Temperatures. Ind. Eng. Chem. Res. 2018, 57, 16615–16621. [Google Scholar] [CrossRef]
- Komaty, S.; Andijani, M.; Wang, N.; Navarro de Miguel, J.C.; Kumar Veeranmaril, S.; Hedhili, M.N.; Silva, C.I.Q.; Wang, Y.; Abou-Daher, M.; Han, Y.; et al. Enhancing Water Tolerance and N2 Selectivity in NH3-SCR Catalysts by Protecting Mn Oxide Nanoparticles in a Silicalite-1 Layer. Environ. Sci. Technol. 2024, 58, 15279–15287. [Google Scholar] [CrossRef]
- Gu, J.; Duan, R.; Chen, W.; Chen, Y.; Liu, L.; Wang, X. Promoting effect of Ti species in MnOx-FeOx/silicalite-1 for the low-temperature NH3-SCR reaction. Catalysts 2020, 10, 566. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, Y.; Jiang, J.; Liu, X.; Zhu, T. Exploring the promotion effect of low MnCoO doping for low-temperature NH3-SCR of 13X zeolite synthesized from coal fly ash. Sep. Purif. Technol. 2025, 357, 130064. [Google Scholar] [CrossRef]
- Pu, Y.; Wang, P.; Jiang, W.; Dai, Z.; Yang, L.; Jiang, X.; Jiang, Z.; Yao, L. A novel CNTs functionalized CeO2/CNTs-GAC catalyst with high NO conversion and SO2 tolerance for low temperature selective catalytic reduction of NO by NH3. Chemosphere 2021, 284, 131377. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, P.; Pu, Y.; Jiang, L.; Yang, L.; Jiang, W.; Yao, L. MnCe/GAC-CNTs catalyst with high activity, SO2 and H2O tolerance for low-temperature NH3-SCR. Sep. Purifi. Technol. 2023, 305, 122498. [Google Scholar] [CrossRef]
- Xu, G.; Guo, X.; Cheng, X.; Yu, J.; Fang, B. A review of Mn-based catalysts for low-temperature NH3-SCR: NOx removal and H2O/SO2 resistance. Nanoscale 2021, 13, 7052–7080. [Google Scholar] [CrossRef]
- Fu, Z.; Zhang, G.; Han, W.; Tang, Z. The water resistance enhanced strategy of Mn based SCR catalyst by construction of TiO2 shell and superhydrophobic coating. Chem. Eng. J. 2021, 426, 131334. [Google Scholar] [CrossRef]
- Jabłońska, M.; Palkovits, R. Nitrogen oxide removal over hydrotalcite-derived mixed metal oxides. Catal. Sci. Technol. 2016, 6, 49–72. [Google Scholar] [CrossRef]
- Wang, Q.; O’Hare, D. Large-scale synthesis of highly dispersed layered double hydroxide powders containing delaminated single layer nanosheets. Chem. Commun. 2013, 49, 6301–6303. [Google Scholar] [CrossRef]
- Huang, L.; Tang, F.; Liu, P.; Xiong, W.; Jia, S.; Hao, F.; Lv, Y.; Luo, H. Highly efficient and selective conversion of guaiacol to cyclohexanol over Ni-Fe/MgAlOx: Understanding the synergistic effect between Ni-Fe alloy and basic sites. Fuel 2022, 327, 125115. [Google Scholar] [CrossRef]
- Kumar, S.; Choudhary, P.; Sharma, D.; Sajwan, D.; Kumar, V.; Krishnan, V. Tailored Engineering of Layered Double Hydroxide Catalysts for Biomass Valorization: A Way Towards Waste to Wealth. ChemSusChem 2024, 17, e202400737. [Google Scholar] [CrossRef]
- Cui, Y.; Yan, Q.; Zhang, C.; Qiu, L.; Wang, Q. Pt/Ba/Co1Mg2Al1Ox with dual adsorption sites: A novel NOx storage and reduction catalyst. Catal. Commun. 2017, 101, 125–128. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Z.; Yang, Z.; Li, H.; Sheng, H.; Liu, W.; Li, Q.; Wang, L. Highly active MnOx supported on the MgAlOx oxides derived from LDHs for low temperature NH3-SCR. Fuel 2022, 329, 125519. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Z.; Wu, J.; Yi, X.; Zheng, A.; Umar, A.; O’Hare, D.; Wang, Q. Comprehensive investigation of CO2 adsorption on Mg-Al-CO3 LDH-derived mixed metal oxides. J. Mater. Chem. A 2013, 1, 12782. [Google Scholar] [CrossRef]
- Wu, X.; Liu, J.; Liu, L.; Du, Y.; Wu, X. Superior CuMgFe mixed oxide catalysts engineered by tuning the redox cycle for enhancing NOx removal performance. J. Environ. Chem. Eng. 2022, 10, 108824. [Google Scholar] [CrossRef]
- Wu, X.; Wang, R.; Du, Y.; Li, X.; Meng, H.; Xie, X. NOx removal by selective catalytic reduction with ammonia over hydrotalcite-derived NiTi mixed oxide. New J. Chem. 2019, 43, 2640–2648. [Google Scholar] [CrossRef]
- Hou, B.; Du, Y.; Liu, X.; Ci, C.; Wu, X.; Xie, X. Tunable preparation of highly dispersed NixMn-LDO catalysts derived from NixMn-LDHs precursors and application in low-temperature NH3-SCR reactions. RSC Adv. 2019, 9, 24377–24385. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, L.; Shi, L.; Fang, C.; Li, H.; Gao, R.; Huang, L.; Zhang, J. In situ supported MnOx-CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3. Nanoscale 2013, 5, 1127–1136. [Google Scholar] [CrossRef]
- Ma, L.; Li, Z.; Zhao, H.; Zhang, T.; Yan, N.; Li, J. Understanding the Water Effect for Selective Catalytic Reduction of NOx with NH3 over Cu-SSZ-13 Catalysts. ACS EST Eng. 2022, 2, 1684–1696. [Google Scholar] [CrossRef]
- Xiong, S.; Peng, Y.; Wang, D.; Huang, N.; Zhang, Q.; Yang, S.; Chen, J.; Li, J. The role of the Cu dopant on a Mn3O4 spinel SCR catalyst: Improvement of low-temperature activity and sulfur resistance. Chem. Eng. J. 2020, 387, 124090. [Google Scholar] [CrossRef]
- Obalová, L.; Karásková, K.; Jirátová, K.; Kovanda, F. Effect of potassium in calcined Co-Mn-Al layered double hydroxide on the catalytic decomposition of N2O. Appl. Catal. B Environ. 2009, 90, 132–140. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Z.; Ai, L.; Liu, W.; Li, Q.; Wang, X.; Wang, L. High performance of K-supported Pr2Sn2O7 pyrochlore catalysts for soot oxidation. Fuel 2022, 317, 123467. [Google Scholar] [CrossRef]
- Son, H.J.; Jang, H.; Nam, S.-E.; Kim, J.; Lee, C.S. Highly interconnected, trimodal porous TiO2 with an inverse-opal structure for photocatalytic membrane water treatment. Sep. Purif. Technol. 2025, 378, 134646. [Google Scholar] [CrossRef]
- Pappas, D.K.; Boningari, T.; Boolchand, P.; Smirniotis, P.G. Novel manganese oxide confined interweaved titania nanotubes for the low-temperature Selective Catalytic Reduction (SCR) of NOx by NH3. J. Catal. 2016, 334, 1–13. [Google Scholar] [CrossRef]
- Damma, D.; Pappas, D.K.; Boningari, T.; Smirniotis, P.G. Study of Ce, Sb, and Y exchanged titania nanotubes and superior catalytic performance for the selective catalytic reduction of NOx. Appl. Catal. B Environ. 2021, 287, 119939. [Google Scholar] [CrossRef]
- Boningari, T.; Ettireddy, P.R.; Somogyvari, A.; Liu, Y.; Vorontsov, A.; McDonald, C.A.; Smirniotis, P.G. Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NO under oxygen-rich conditions. J. Catal. 2015, 325, 145–155. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Yang, X.; Chen, Y.; Hu, X.; Wu, X. CeMn/TiO2 catalysts prepared by different methods for enhanced low-temperature NH3-SCR catalytic performance. Chem. Eng. Sci. 2021, 238, 116588. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, X.; Härelind, H.; Weng, D.; Wang, B.; Si, Z. NH3-SCR reaction mechanisms of NbO/Ce0.75Zr0.25O2 catalyst: DRIFTS and kinetics studies. J. Mol. Catal. A Chem. 2016, 423, 172–180. [Google Scholar] [CrossRef]
- Yu, J.; Si, Z.; Chen, L.; Wu, X.; Weng, D. Selective catalytic reduction of NO by ammonia over phosphate-containing Ce0.75Zr0.25O2 solids. Appl. Catal. B Environ. 2015, 163, 223–232. [Google Scholar] [CrossRef]
- Szymaszek, A.; Samojeden, B.; Motak, M. The Deactivation of Industrial SCR Catalysts-A Short Review. Energies 2020, 13, 3870. [Google Scholar] [CrossRef]
- Meng, D.; Zhan, W.; Guo, Y.; Guo, Y.; Wang, Y.; Wang, L.; Lu, G. A highly effective catalyst of Sm-Mn mixed oxide for the selective catalytic reduction of NOx with ammonia: Effect of the calcination temperature. J. Mol. Catal. A Chem. 2016, 420, 272–281. [Google Scholar] [CrossRef]
- Raja, S.; Alphin, M.S.; Sivachandiran, L.; Singh, P.; Damma, D.; Smirniotis, P.G. TiO2-carbon nanotubes composite supported MnOx-CuO catalyst for low-temperature NH3-SCR of NO: Investigation of SO2 and H2O tolerance. Fuel 2022, 307, 121886. [Google Scholar] [CrossRef]
- Sereewatthanawut, I.; Khajonvittayakul, C.; Swadchaipong, N.; Tongnan, V.; Maneesard, P.; Ampairojanawong, R.; Makdee, A.; Kangsadan, T.; Hartley, M.; Hartley, U.W. Enhanced catalytic performance of MnO2 nanowires for soot combustion by cobalt incorporation. Mater. Adv. 2025, 6, 6416–6426. [Google Scholar] [CrossRef]
- Payan, A.; Jafarihaghighi, F.; Soltan, J. Enhanced catalytic performance of α-MnO2 via coupling with a vacuum ultraviolet photoreactor: A catalytic ozonation approach targeting VOC oxidation. Process Saf. Environ. Prot. 2025, 201, 107499. [Google Scholar] [CrossRef]
- Tan, W.; Wang, C.; Yu, S.; Li, Y.; Xie, S.; Gao, F.; Dong, L.; Liu, F. Revealing the effect of paired redox-acid sites on metal oxide catalysts for efficient NOx removal by NH3-SCR. J. Hazard. Mater. 2021, 416, 125826. [Google Scholar] [CrossRef] [PubMed]
- Fang, D.; He, F.; Liu, X.; Qi, K.; Xie, J.; Li, F.; Yu, C. Low temperature NH3-SCR of NO over an unexpected Mn-based catalyst: Promotional effect of Mg doping. Appl. Surf. Sci. 2018, 427, 45–55. [Google Scholar] [CrossRef]
- Guo, R.; Wang, S.; Pan, W.; Li, M.-Y.; Sun, P.; Liu, S.-M.; Sun, X.; Liu, S.-W.; Liu, J. Different Poisoning Effects of K and Mg on the Mn/TiO2 Catalyst for Selective Catalytic Reduction of NOx with NH3: A Mechanistic Study. J. Phys. Chem. C 2017, 121, 7881–7891. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, X.; Xu, H.; Shen, K.; Zhou, C.; Jin, B.; Sun, K. Novel ultrasonic-modified MnOx/TiO2 for low-temperature selective catalytic reduction (SCR) of NO with ammonia. J. Colloid Interf. Sci. 2011, 361, 212–218. [Google Scholar] [CrossRef]
- Zha, K.; Feng, C.; Han, L.; Li, H.; Yan, T.; Kuboon, S.; Shi, L.; Zhang, D. Promotional effects of Fe on manganese oxide octahedral molecular sieves for alkali-resistant catalytic reduction of NOx: XAFS and in situ DRIFTs study. Chem. Eng. J. 2020, 381, 122764. [Google Scholar] [CrossRef]
- Zha, K.; Kang, L.; Feng, C.; Han, L.; Li, H.; Yan, T.; Maitarad, P.; Shi, L.; Zhang, D. Improved NOx reduction in the presence of alkali metals by using hollandite Mn-Ti oxide promoted Cu-SAPO-34 catalysts. Environ. Sci. Nano 2018, 5, 1408–1419. [Google Scholar] [CrossRef]
- Giordanino, F.; Borfecchia, E.; Lomachenko, K.A.; Lazzarini, A.; Agostini, G.; Gallo, E.; Soldatov, A.V.; Beato, P.; Bordiga, S.; Lamberti, C. Interaction of NH3 with Cu-SSZ-13 Catalyst: A Complementary FTIR, XANES, and XES Study. J. Phys. Chem. Lett. 2014, 5, 1552–1559. [Google Scholar] [CrossRef]
- Chen, W.; Ma, Y.; Qu, Z.; Liu, Q.; Huang, W.; Hu, X.; Yan, N. Mechanism of the selective catalytic oxidation of slip ammonia over Ru-modified Ce-Zr complexes determined by in situ diffuse reflectance infrared Fourier transform spectroscopy. Environ. Sci. Technol. 2014, 48, 12199–12205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shi, L.; Huang, L.; Zhang, J.; Gao, R.; Zhang, D. Rational Design of High-Performance DeNOx Catalysts Based on MnxCo3–xO4 Nanocages Derived from Metal–Organic Frameworks. ACS Catal. 2014, 4, 1753–1763. [Google Scholar] [CrossRef]
- Chen, L.; Yuan, F.; Li, Z.; Niu, X.; Zhu, Y. Synergistic effect between the redox property and acidity on enhancing the low temperature NH3-SCR activity for NO removal over the Co0.2CexMn0.8-xTi10 (x = 0–0.40) oxides catalysts. Chem. Eng. J. 2018, 354, 393–406. [Google Scholar] [CrossRef]
- Wang, X.; Duan, R.; Liu, W.; Wang, D.; Wang, B.; Xu, Y.; Niu, C.; Shi, J.-W. The insight into the role of CeO2 in improving low-temperature catalytic performance and SO2 tolerance of MnCoCeOx microflowers for the NH3-SCR of NOx. Appl. Surf. Sci. 2020, 510, 145517. [Google Scholar] [CrossRef]
- Xue, H.; Guo, X.; Meng, T.; Mao, D.; Ma, Z. NH3-SCR of NO over M/ZSM-5 (M = Mn, Co, Cu) catalysts: An in-situ DRIFTS study. Surf. Interfaces 2022, 29, 101722. [Google Scholar] [CrossRef]
- Yadav, S.; Ahmad, M.; Siddiqi, K.S. Metal-ion directed synthesis of N2O2 type chelate complexes of Ni(II), Cu(II) and Zn(II): Spectral, thermal and single crystal studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 98, 240–246. [Google Scholar] [CrossRef]
- Boningari, T.; Pappas, D.K.; Smirniotis, P.G. Metal oxide-confined interweaved titania nanotubes M/TNT (M = Mn, Cu, Ce, Fe, V, Cr, and Co) for the selective catalytic reduction of NOx in the presence of excess oxygen. J. Catal. 2018, 365, 320–333. [Google Scholar] [CrossRef]
- Luo, W.; Rong, J.; Zhao, W.; Kang, K.; Long, L.; Yao, X. Morphology and crystal-plane dependence of CeO2-TiO2 catalysts: Activity and mechanism for the selective catalytic reduction of NO with NH3. Chem. Eng. J. 2022, 444, 136488. [Google Scholar] [CrossRef]
- Ni, S.; Tang, X.; Yi, H.; Gao, F.; Wang, C.; Shi, Y.; Zhang, R.; Zhu, W. Novel Mn-Ce bi-oxides loaded on 3D monolithic nickel foam for low-temperature NH3-SCR de-NOx: Preparation optimization and reaction mechanism. J. Rare Earth 2022, 40, 268–278. [Google Scholar]
- Yuan, H.; Chen, J.; Guo, Y.; Wang, H.; Hu, P. Insight into the Superior Catalytic Activity of MnO2 for Low-Content NO Oxidation at Room Temperature. J. Phys. Chem. C 2018, 122, 25365–25373. [Google Scholar] [CrossRef]
- Chen, L.; Niu, X.; Li, Z.; Dong, Y.; Zhang, Z.; Yuan, F.; Zhu, Y. Promoting catalytic performances of Ni-Mn spinel for NH3-SCR by treatment with SO2 and H2O. Catal. Commun. 2016, 85, 48–51. [Google Scholar] [CrossRef]
- Dong, Y.; Jin, B.; Liu, S.; Gao, J.; Wang, K.; Su, F. Abundant Oxygen Vacancies Induced by the Mechanochemical Process Boost the Low-Temperature Catalytic Performance of MnO2 in NH3-SCR. Catalysts 2022, 12, 1291. [Google Scholar] [CrossRef]
- Xue, H.; Guo, X.; Mao, D.; Meng, T.; Yu, J.; Ma, Z. Phosphotungstic Acid-Modified MnOx for Selective Catalytic Reduction of NOx with NH3. Catalysts 2022, 12, 1248. [Google Scholar] [CrossRef]
- Tang, X.; Li, J.; Sun, L.; Hao, J. Origination of N2O from NO reduction by NH3 over β-MnO2 and α-Mn2O3. Appl. Catal. B Environ. 2010, 99, 156–162. [Google Scholar] [CrossRef]
- Yang, S.; Fu, Y.; Liao, Y.; Xiong, S.; Qu, Z.; Yan, N.; Li, J. Competition of selective catalytic reduction and non selective catalytic reduction over MnOx/TiO2 for NO removal: The relationship between gaseous NO concentration and N2O selectivity. Catal. Sci. Technol. 2014, 4, 224–232. [Google Scholar] [CrossRef]
- Yan, Z.; Xu, Z.; Yu, J.; Jaroniec, M. Effect of microstructure and surface hydroxyls on the catalytic activity of Au/AlOOH for formaldehyde removal at room temperature. J. Colloid Interf. Sci. 2017, 501, 164–174. [Google Scholar] [CrossRef]
- Xie, S.; Li, L.; Jin, L.; Wu, Y.; Liu, H.; Qin, Q.; Wei, X.; Liu, J.; Dong, L.; Li, B. Low temperature high activity of M (M=Ce, Fe, Co, Ni) doped M-Mn/TiO2 catalysts for NH3-SCR and in situ DRIFTS for investigating the reaction mechanism. Appl. Surf. Sci. 2020, 515, 146014. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, W.; Li, Z.; Sun, Y.; Shi, M.; Nan, Z.; Song, R.; Wang, L.; Guan, J. Effect of Metal Complexing on Mn-Fe/TS-1 Catalysts for Selective Catalytic Reduction of NO with NH3. Molecules 2023, 28, 3068. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Shi, T.; Wang, Y.; Hao, Y.; Gao, Y.; Li, H.; Jia, L.; Liu, F.; Zeng, S. Orchestrating dual adsorption sites and unravelling Ce-Mn interaction and reaction mechanisms for efficient NH3-SCR. J. Catal. 2024, 429, 115260. [Google Scholar] [CrossRef]
- Qin, Q.; Zhu, C.; Mo, D.; Chen, Z.; Dong, L.; Li, B.; Zhou, L. In situ doping derivative construction of MnOx/Mn-ZrO2-C for efficient degradation of NOx. Mol. Catal. 2025, 583, 115243. [Google Scholar] [CrossRef]
- Xu, Y.; Lai, W.; Jiang, L.; Jiang, W.; Dai, Z.; Yang, L.; Yao, L. Highly dispersed Mn and Cu on LDO/Z composite catalysts with strong H2O resistance for low-temperature NH3-SCR. Sep. Purif. Technol. 2025, 364, 132434. [Google Scholar] [CrossRef]
Catalysts | SBET (m2·g−1) a | Vp (cm3·g−1) a | Dp (nm) a | Atomic Concentration (mol.%) b | Atomic Ratio (%) b | ||
---|---|---|---|---|---|---|---|
Mn | O | Mn4+/Mn | Oα/(Oα + Oβ) | ||||
Mn/MgAlOx | 45.4 | 0.19 | 14.7 | 14.3 | 56.6 | 31.8 | 53.7 |
Mn/Mg2AlOx | 88.0 | 0.25 | 9.01 | 11.9 | 58.9 | 39.5 | 59.2 |
Mn/Mg3AlOx | 56.4 | 0.29 | 17.2 | 11.9 | 63.4 | 36.6 | 56.6 |
Mn/Mg4AlOx | 67.6 | 0.29 | 14.7 | 11.9 | 58.5 | 38.7 | 56.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, R.; Wang, B.; Liu, W.; Zhang, J.; Wang, L.; Wang, Z. Highly Active and Water-Resistant Mn-Loaded MgAlOx Catalysts for NH3-SCR at Low Temperature. Chemistry 2025, 7, 154. https://doi.org/10.3390/chemistry7050154
Jiang R, Wang B, Liu W, Zhang J, Wang L, Wang Z. Highly Active and Water-Resistant Mn-Loaded MgAlOx Catalysts for NH3-SCR at Low Temperature. Chemistry. 2025; 7(5):154. https://doi.org/10.3390/chemistry7050154
Chicago/Turabian StyleJiang, Ruolan, Ben Wang, Wei Liu, Jian Zhang, Liguo Wang, and Zhongpeng Wang. 2025. "Highly Active and Water-Resistant Mn-Loaded MgAlOx Catalysts for NH3-SCR at Low Temperature" Chemistry 7, no. 5: 154. https://doi.org/10.3390/chemistry7050154
APA StyleJiang, R., Wang, B., Liu, W., Zhang, J., Wang, L., & Wang, Z. (2025). Highly Active and Water-Resistant Mn-Loaded MgAlOx Catalysts for NH3-SCR at Low Temperature. Chemistry, 7(5), 154. https://doi.org/10.3390/chemistry7050154