Design and Synthesis of Next-Generation Catalysts for Efficient Green Chemical Reactions

A special issue of Chemistry (ISSN 2624-8549). This special issue belongs to the section "Catalysis".

Deadline for manuscript submissions: 31 March 2026 | Viewed by 1259

Special Issue Editor


E-Mail Website
Guest Editor
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
Interests: the design of heterogeneous catalysts for efficient hydrogen production; storage and high-value utilization of hydrogen; high-value conversion of carbon-based energy small molecules (CO, CO2, CH4, CH3OH and CH3CH2OH, etc.) and exploration of new cascade catalytic reaction processes; biomass catalysis, including thermal catalysis, photo/photothermal catalysis and electrocatalytic biomass conversion to produce hydrogen and high-value-added chemicals
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The development of efficient green chemical processes is essential for addressing the dual challenges of the global energy crisis and environmental sustainability. One particularly promising strategy involves coupling green hydrogen production with the selective hydrogenation of CO2 to generate high-value-added chemicals. This approach not only mitigates carbon emissions but also enables the synthesis of fuels and feedstocks via renewable pathways. In this context, biomass electrooxidation offers a transformative route to enhance the energy efficiency of water electrolysis by replacing the anodic oxygen evolution reaction (OER) with value-generating oxidation reactions. This substitution can significantly lower the energy input required for hydrogen production, while simultaneously producing valuable chemicals. Notable examples include the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), glucose to glucaric acid and formic acid, glycerol to glyceric acid and formic acid, and cyclohexanol to adipic acid. Meanwhile, the availability of low-cost green hydrogen opens up efficient catalytic routes for CO2 valorization through selective hydrogenation. Using advanced heterogeneous catalysts, CO2 can be converted into carbon monoxide, methanol, higher alcohols, light olefins, gasoline, jet fuel, and aromatic hydrocarbons, providing a sustainable alternative to conventional fossil-derived pathways. This special issue aims to showcase recent advances in the design, synthesis, and mechanistic understanding of next-generation catalysts that enable these and other green transformations. We welcome contributions focused on catalytic innovations in biomass electrooxidation, CO2 hydrogenation, and related processes that support the development of circular and low-carbon chemical technologies.

Prof. Dr. Ming Xu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Chemistry is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • green hydrogen
  • water electrolysis
  • electrochemical biomass biorefinery
  • spin-dependent electrocatalysts
  • coupling reaction
  • CO2 conversion
  • selective hydrogenation
  • high-value-added chemicals

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 5688 KB  
Article
Alkali-Melting-Induced g-C3N4 Nitrogen Defect Construction and Band Structure Regulation: Efficient Photocatalytic Dye Degradation and Solar-Driven Applications
by Hongwei Pang, Guangyao Liu, Xinming Wang, Shuhe Liu, Juan Wang, Jinxian Cui, Jie Zhou and Ziyan Zhou
Chemistry 2025, 7(5), 168; https://doi.org/10.3390/chemistry7050168 - 14 Oct 2025
Viewed by 433
Abstract
Photocatalytic oxidation technology harnesses solar energy for pollutant mineralization, presenting significant potential for environmental applications. A critical bottleneck remains the development of high-performance photocatalysts. This study centers on the non-metallic semiconductor material graphitic carbon nitride (g-C3N4). To overcome the [...] Read more.
Photocatalytic oxidation technology harnesses solar energy for pollutant mineralization, presenting significant potential for environmental applications. A critical bottleneck remains the development of high-performance photocatalysts. This study centers on the non-metallic semiconductor material graphitic carbon nitride (g-C3N4). To overcome the inherent limitations of pristine g-C3N4, including limited surface area, rapid charge carrier recombination, and inadequate active sites, it implements surface engineering strategies employing acidic (H2SO4) or basic (K2CO3) agents to modulate microstructure, introduce defect sites (cyano/amino groups), and optimize bandgap engineering. These modifications synergistically enhanced photogenerated charge carrier separation efficiency and surface reactivity, leading to efficient dye degradation. Notably, the K2CO3-modified catalyst (g-C3N4-OH), synthesized with a mass ratio of m(g-C3N4):m(K2CO3) = 1:1, achieved 92.2% Rhodamine B degradation within 50 min under visible light, surpassing pristine g-C3N4 (20.6%), the optimized H2SO4-modified sample (g-C3N4-HS, 60.9%), and even template-synthesized g-C3N4-SBA (79.6%). The g-C3N4-OH catalyst demonstrated exceptional performance under both visible light and natural solar illumination. Combining facile synthesis, cost-effectiveness, superior activity, and robust stability, this work provides a novel approach for developing high-efficiency non-metallic photocatalysts applicable to dye wastewater. Full article
Show Figures

Figure 1

18 pages, 5739 KB  
Article
Highly Active and Water-Resistant Mn-Loaded MgAlOx Catalysts for NH3-SCR at Low Temperature
by Ruolan Jiang, Ben Wang, Wei Liu, Jian Zhang, Liguo Wang and Zhongpeng Wang
Chemistry 2025, 7(5), 154; https://doi.org/10.3390/chemistry7050154 - 23 Sep 2025
Viewed by 617
Abstract
Advancing catalysts for low-temperature NH3-SCR enhances their viability as a terminal flue gas denitration solution across diverse operating regimes. A high-performance, hydrothermally stable catalyst for low-temperature SCR was synthesized by depositing MnOx onto MgAlOx composite oxide supports. These supports, [...] Read more.
Advancing catalysts for low-temperature NH3-SCR enhances their viability as a terminal flue gas denitration solution across diverse operating regimes. A high-performance, hydrothermally stable catalyst for low-temperature SCR was synthesized by depositing MnOx onto MgAlOx composite oxide supports. These supports, featuring varied Mg/Al ratios, originated from layered double hydroxide (LDH) precursors. The obtained catalyst with the Mg/Al ratio of 2 (Mn/Mg2AlOx) possesses relatively high concentrations of active oxygen species (Oα) and Mn4+ and exhibits remarkable catalytic performance. The Mn/Mg2AlOx catalyst exhibits a wide operating temperature range (100–300 °C) for denitration, achieving over 80% NOx conversion, along with robust water resistance. The temperature-programed surface reactions and NO oxidation reactions are performed to elucidate the promoting effect of water on N2 selectivity, which is not only due to inhibition of catalyst oxidation capacity at high temperature but also is related to the competing adsorption of water and NH3. In situ DRIFTS analysis confirmed that the NH3-SCR mechanism over Mn/Mg2AlOx adheres to the Eley–Rideal (E–R) pathway. These findings highlight the significant promise of Mn/MgAlOx catalysts for deployment as downstream denitration units within exhaust treatment systems. Full article
Show Figures

Graphical abstract

Back to TopTop