Interface Charge Transfer Engineering in NiFe Layered Double Hydroxide-Cs0.32WO3 Heterostructures for Enhanced Oxygen Evolution Reaction
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of NiFe-Layered Double Hydroxides and Their Derivatives
2.1.1. Materials
2.1.2. Preparation of Cs0.32WO3
2.1.3. Preparation of NiFe-LDH
2.1.4. Preparation of NiFe-LDH/Cs0.32WO3
2.2. Characterizations and Testing
2.2.1. Characterizations
2.2.2. Electrocatalytic Performance Testing
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Dong, Q.; Shuai, C.; Mo, Z.; Liu, N.; Liu, G.; Wang, J.; Pei, H.; Jia, Q.; Liu, W.; Guo, X. CeO2 nanoparticles@ NiFe-LDH nanosheet heterostructure as electrocatalysts for oxygen evolution reaction. J. Solid State Chem. 2021, 296, 121967. [Google Scholar] [CrossRef]
- Fei, W.; Gao, J.; Li, N.; Chen, D.; Xu, Q.; Li, H.; He, J.; Lu, J. A visible-light active p-n heterojunction NiFe-LDH/Co3O4 supported on Ni foam as photoanode for photoelectrocatalytic removal of contaminants. J. Hazard. Mater. 2021, 402, 123515. [Google Scholar] [CrossRef]
- Gang, C.; Chen, J.; Chen, Q.; Chen, Y. Heterostructure of ultrafine FeOOH nanodots supported on CoAl-layered double hydroxide nanosheets as highly efficient electrocatalyst for water oxidation. J. Colloid Interface Sci. 2021, 600, 594–601. [Google Scholar] [CrossRef]
- Jin, X.; Li, J.; Xu, T.; Cui, Y.; Usoltseva, N.; An, V.; Zhang, X.; Liu, B. Hierarchical Ni2P@NiFe LDH Heterostructural Nanosheet Arrays for Highly Efficient Oxygen Evolution Reaction. Eur. J. Inorg. Chem. 2021, 2021, 3481–3487. [Google Scholar] [CrossRef]
- Kong, Y.; Li, J.; Wang, Y.; Chu, W.; Liu, Z. Tuning Interfacial Electron Transfer by Anchoring NiFe-LDH on In-situ Grown Cu2O for Enhancing Oxygen Evolution. Catal. Lett. 2020, 150, 3049–3057. [Google Scholar] [CrossRef]
- Lei, C.; Li, W.; Wang, G.; Zhuang, L.; Lu, J.; Xiao, L. Improving the Catalytic Efficiency of NiFe-LDH/ATO by Air Plasma Treatment for Oxygen Evolution Reaction. Chem. Res. Chin. Univ. 2021, 37, 293–297. [Google Scholar] [CrossRef]
- Li, J.; Song, Y.; Wang, Y.; Zhang, H. Ultrafine PdCu Nanoclusters by Ultrasonic-Assisted Reduction on the LDHs/rGO Hybrid with Significantly Enhanced Heck Reactivity. ACS Appl. Mater. Interfaces 2020, 12, 50365–50376. [Google Scholar] [CrossRef]
- Lu, X.; Sakai, N.; Tang, D.; Li, X.; Taniguchi, T.; Ma, R.; Sasaki, T. CoNiFe Layered Double Hydroxide/RuO2.1 Nanosheet Superlattice as Carbon-Free Electrocatalysts for Water Splitting and Li-O2 Batteries. ACS Appl. Mater. Interfaces 2020, 12, 33083–33093. [Google Scholar] [CrossRef]
- Que, R.; Liu, S.; He, P.; Yang, Y.; Pan, Y. Hierarchical heterostructure CoCO3@NiFe LDH nanowires array as outstanding bifunctional electrocatalysts for overall water splitting. Mater. Lett. 2020, 277, 128285. [Google Scholar] [CrossRef]
- Sun, Q.; Yao, K.; Zhang, Y. MnO2-directed synthesis of NiFe-LDH@FeOOH nanosheeet arrays for supercapacitor negative electrode. Chin. Chem. Lett. 2020, 31, 2343–2346. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, S.; Lin, H.; Wang, G.; Zhao, K.; Cai, R.; Tao, K.; Zhang, C.; Sun, M.; Hu, J.; et al. Atomically targeting NiFe LDH to create multivacancies for OER catalysis with a small organic anchor. Nano Energy 2021, 81, 105606. [Google Scholar] [CrossRef]
- Xie, J.; Li, C.; Niu, J.; Zhang, S.; Ou, X.; Feng, P.; Garcia, H. Porous NiFe-LDH grown on graphene oxide towards highly efficient OER electrocatalysis. Mater. Lett. 2021, 290, 129517. [Google Scholar] [CrossRef]
- Xie, X.; Shang, L.; Shi, R.; Waterhouse, G.I.N.; Zhao, J.; Zhang, T. Tubular assemblies of N-doped carbon nanotubes loaded with NiFe alloy nanoparticles as efficient bifunctional catalysts for rechargeable zinc-air batteries. Nanoscale 2020, 12, 13129–13136. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhao, H.; Xi, S.; Zhao, X.; Chi, X.; Bin Yang, H.; Chen, Z.; Yu, X.; Wang, Y.-G.; Liu, B.; et al. Breaking linear scaling relationships in oxygen evolution via dynamic structural regulation of active sites. Nat. Commun. 2025, 16, 1301. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yang, M.; Wang, Y.; Tian, B.; Wu, L.; Yang, D.; Gai, S.; Yang, P. Bridging OER Electrocatalysis and Tumor Therapy: Utilizing Piezoelectric-Hole-Induced OER Electrocatalysis for Direct Oxygen Generation to Address Hypoxia. Adv. Funct. Mater. 2024, 34, 2404169. [Google Scholar] [CrossRef]
- Li, H.; Li, G. Novel palladium-based nanomaterials for multifunctional ORR/OER/HER electrocatalysis. J. Mater. Chem. A 2023, 11, 9383–9400. [Google Scholar] [CrossRef]
- Song, Y.F.; Zhang, Z.Y.; Tian, H.; Bian, L.; Bai, Y.; Wang, Z.L. Corrosion Engineering towards NiFe-Layered Double Hydroxide Macroporous Arrays with Enhanced Activity and Stability for Oxygen Evolution Reaction. Chem. A Eur. J. 2023, 29, e202301124. [Google Scholar] [CrossRef]
- Shi, Y.; Song, L.; Liu, Y.; Wang, T.; Li, C.; Lai, J.; Wang, L. Dual Cocatalytic Sites Synergize NiFe Layered Double Hydroxide to Boost Oxygen Evolution Reaction in Anion Exchange Membrane Water Electrolyzer. Adv. Energy Mater. 2024, 14, 2402046. [Google Scholar] [CrossRef]
- Zhang, H.T.; Guo, Y.H.; Xiao, Y.; Du, H.Y.; Zhang, M.T. Heterobimetallic NiFe Cooperative Molecular Water Oxidation Catalyst. Angew. Chem. Int. Ed. 2023, 62, e202218859. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, Q.; Dong, L.; Wu, H.B.; Yu, X.-Y. Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction. Appl. Catal. B Environ. 2020, 266, 118627. [Google Scholar] [CrossRef]
- Luo, Y.; Li, J.; Shen, Y.; Ge, H.; Cheng, L.; Li, Z.; Jiao, Z. Band alignment-driven space charge remodeling in NiFe LDH@CoOx-CNF heterojunction for efficient alkaline oxygen evolution. Inorg. Chem. Front. 2025. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, F.; Qiu, L.; Han, W.; Zeng, Z.; Lei, L.; He, Y.; Li, P.; Zhang, X. Optimizing electronic structure of NiFe LDH with Mn-doping and Fe0.64Ni0.36 alloy for alkaline water oxidation under industrial current density. Nano Res. 2023, 16, 8953–8960. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Hou, X.; Cui, T.; Zhuang, Z.; Zhao, Y.; Wang, H.; Wei, W.; Xu, M.; Fu, Q.; et al. Low-Spin Fe3+ Evoked by Multiple Defects with Optimal Intermediate Adsorption Attaining Unparalleled Performance in Water Oxidation. Adv. Mater. 2024, 36, e2412598. [Google Scholar] [CrossRef]
- Lei, H.; Ma, L.; Wan, Q.; Tan, S.; Yang, B.; Wang, Z.; Mai, W.; Fan, H.J. Promoting Surface Reconstruction of NiFe Layered Double Hydroxide for Enhanced Oxygen Evolution. Adv. Energy Mater. 2022, 12, 2202522. [Google Scholar] [CrossRef]
- Gao, T.Q.; Zhou, Y.Q.; Zhao, X.J.; Liu, Z.H.; Chen, Y. Borate Anion-Intercalated NiV-LDH Nanoflakes/NiCoP Nanowires Heterostructures for Enhanced Oxygen Evolution Selectivity in Seawater Splitting. Adv. Funct. Mater. 2024, 34, 2315949. [Google Scholar] [CrossRef]
- Wang, X.; Qin, Z.; Qian, J.; Chen, L.; Shen, K. FeNi-LDH nanoflakes on Co-encapsulated CNT networks for stable and efficient ampere-level current density oxygen evolution. Appl. Catal. B Environ. Energy 2024, 359, 124506. [Google Scholar] [CrossRef]
- Sultana, M.Z.; Liu, J.; Lin, D.; Xu, Q.; Xu, Z.; Pang, M.; Zhen, Y.; Wang, P.; Wan, L.; Yan, S.S.; et al. Zr-doped heterostructure interface to tune the electronic structure of bi-functional electrocatalysts for water splitting. Catal. Sci. Technol. 2024, 14, 5257–5265. [Google Scholar] [CrossRef]
- Wu, W.; Wang, Y.; Song, S.; Ge, Z.; Zhang, C.; Huang, J.; Xu, G.; Wang, N.; Lu, Y.; Deng, Z.; et al. Built-In Electric Field in Freestanding Hydroxide/Sulfide Heterostructures for Industrially Relevant Oxygen Evolution. Angew. Chem. Int. Ed. 2025, 64, e202504972. [Google Scholar] [CrossRef]
- Liu, G.; Liu, S.; Li, X.; Lv, H.; Qu, H.; Quan, Q.; Lu, H.; Cui, X.; Zhou, X.; Jiang, L.; et al. Optimized W-d band configuration in porous sodium tungsten bronze octahedron enabling Pt-like and wide-pH hydrogen evolution. Nano Energy 2024, 123, 109442. [Google Scholar] [CrossRef]
- Yao, Y.; Sun, S.; Zhang, H.; Li, Z.; Yang, C.; Cai, Z.; He, X.; Dong, K.; Luo, Y.; Wang, Y.; et al. Enhancing the stability of NiFe-layered double hydroxide nanosheet array for alkaline seawater oxidation by Ce doping. J. Energy Chem. 2024, 91, 306–312. [Google Scholar] [CrossRef]
- Cao, W.; Wu, J.; Zhou, C.; Gao, X.; Hu, E.; Zhang, J.; Chen, Z. Reinforcement of Electrocatalytic Oxygen Evolution Activity Enabled by Constructing Silver-Incorporated NiCo-PBA@NiFe-LDH Hierarchical Nanoboxes. Small 2023, 20, e2309769. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, J.; Zhai, Z.; Wen, H.; Feng, B.; Wu, X.; Meng, D.; Wu, J.; Yin, S. Enhancing the dynamic structural evolution of NiOOH on nickel nitride surface for efficient 5-hydroxymethylfurfural oxidation. Appl. Catal. B Environ. Energy 2025, 373, 125331. [Google Scholar] [CrossRef]
- Berger, M.; Popa, I.M.; Negahdar, L.; Palkovits, S.; Kaufmann, B.; Pilaski, M.; Hoster, H.; Palkovits, R. Elucidating the Influence of Intercalated Anions in NiFe LDH on the Electrocatalytic Behavior of OER: A Kinetic Study. ChemElectroChem 2023, 10, e202300235. [Google Scholar] [CrossRef]
- Galani, S.M.; Mondal, A.; Srivastava, D.N.; Panda, A.B. Development of RuO2/CeO2 heterostructure as an efficient OER electrocatalyst for alkaline water splitting. Int. J. Hydrog. Energy 2020, 45, 18635–18644. [Google Scholar] [CrossRef]
- Li, J.; Qin, Y.; Bai, Z.; Li, S.; Li, L.; Ouyang, B.; Kan, E.; Zhang, W. Investigating the role of 3D hierarchical Ni-CAT/NiFe-LDH/CNFs in enhancing the oxygen evolution reaction and Zn-air battery performance. Appl. Surf. Sci. 2024, 648, 159080. [Google Scholar] [CrossRef]
- Jebaslinhepzybai, B.T.; Partheeban, T.; Gavali, D.S.; Thapa, R.; Sasidharan, M. One-pot solvothermal synthesis of Co2P nanoparticles: An efficient HER and OER electrocatalysts. Int. J. Hydrog. Energy 2021, 46, 21924–21938. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Song, X.; Liu, Y.; Sun, Z.; Zhang, X.; Wang, Y.; Wang, S. Interface Charge Transfer Engineering in NiFe Layered Double Hydroxide-Cs0.32WO3 Heterostructures for Enhanced Oxygen Evolution Reaction. Nanomaterials 2025, 15, 1255. https://doi.org/10.3390/nano15161255
Wang Z, Song X, Liu Y, Sun Z, Zhang X, Wang Y, Wang S. Interface Charge Transfer Engineering in NiFe Layered Double Hydroxide-Cs0.32WO3 Heterostructures for Enhanced Oxygen Evolution Reaction. Nanomaterials. 2025; 15(16):1255. https://doi.org/10.3390/nano15161255
Chicago/Turabian StyleWang, Ze, Xinyu Song, Yue Liu, Zhiwang Sun, Xin Zhang, Yuanhao Wang, and Shifeng Wang. 2025. "Interface Charge Transfer Engineering in NiFe Layered Double Hydroxide-Cs0.32WO3 Heterostructures for Enhanced Oxygen Evolution Reaction" Nanomaterials 15, no. 16: 1255. https://doi.org/10.3390/nano15161255
APA StyleWang, Z., Song, X., Liu, Y., Sun, Z., Zhang, X., Wang, Y., & Wang, S. (2025). Interface Charge Transfer Engineering in NiFe Layered Double Hydroxide-Cs0.32WO3 Heterostructures for Enhanced Oxygen Evolution Reaction. Nanomaterials, 15(16), 1255. https://doi.org/10.3390/nano15161255