Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (940)

Search Parameters:
Keywords = double mutations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3767 KiB  
Article
Unveiling Replication Timing-Dependent Mutational Biases: Mechanistic Insights from Gene Knockouts and Genotoxins Exposures
by Hadas Gross-Samuels, Amnon Koren and Itamar Simon
Int. J. Mol. Sci. 2025, 26(15), 7307; https://doi.org/10.3390/ijms26157307 - 29 Jul 2025
Viewed by 134
Abstract
Replication timing (RT), the temporal order of DNA replication during S phase, influences regional mutation rates, yet the mechanistic basis for RT-associated mutagenesis remains incompletely defined. To identify drivers of RT-dependent mutation biases, we analyzed whole-genome sequencing data from cells with disruptions in [...] Read more.
Replication timing (RT), the temporal order of DNA replication during S phase, influences regional mutation rates, yet the mechanistic basis for RT-associated mutagenesis remains incompletely defined. To identify drivers of RT-dependent mutation biases, we analyzed whole-genome sequencing data from cells with disruptions in DNA replication/repair genes or exposed to mutagenic compounds. Mutation distributions between early- and late-replicating regions were compared using bootstrapping and statistical modeling. We identified 14 genes that exhibit differential effects in early- or late-replicating regions, encompassing multiple DNA repair pathways, including mismatch repair (MLH1, MSH2, MSH6, PMS1, and PMS2), trans-lesion DNA synthesis (REV1) and double-strand break repair (DCLRE1A and PRKDC), DNA polymerases (POLB, POLE3, and POLE4), and other genes central to genomic instability (PARP1 and TP53). Similar analyses of mutagenic compounds revealed 19 compounds with differential effects on replication timing. These results establish replication timing as a critical modulator of mutagenesis, with distinct DNA repair pathways and exogenous agents exhibiting replication timing-specific effects on genomic instability. Our systematic bioinformatics approach identifies new DNA repair genes and mutagens that exhibit differential activity during the S phase. These findings pave the way for further investigation of factors that contribute to genome instability during cancer transformation. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

16 pages, 2530 KiB  
Article
Development of Procymidone and Difenoconazole Resistance in Alternaria alternata, the Causal Agent of Kiwifruit Brown Spot Disease
by Yahui Liu, Manfei Bao, Yanxin Wang and Chuanqing Zhang
Plants 2025, 14(14), 2245; https://doi.org/10.3390/plants14142245 - 21 Jul 2025
Viewed by 250
Abstract
Brown spot, caused by Alternaria alternata, is the most important leaf fungal disease threatening kiwifruit production in China, and it is typically controlled through the application of fungicides, such as procymidone and difenoconazole. To date, fungicide resistance development has not yet been [...] Read more.
Brown spot, caused by Alternaria alternata, is the most important leaf fungal disease threatening kiwifruit production in China, and it is typically controlled through the application of fungicides, such as procymidone and difenoconazole. To date, fungicide resistance development has not yet been systematically reported for the pathogen of kiwifruit. A total of 135 single-conidium A. alternata isolates were collected from different cities in Zhejiang Province, China. Alternaria alternata developed prevailing resistance to procymidone and initial resistance to difenoconazole, with resistance frequencies of 60.7 and 13.3%, respectively. Positive cross-resistance was observed between procymidone and iprodione but not between procymidone and difenoconazole, tebuconazole, prochloraz, pydiflumetofen, pyraclostrobin, or thiophanate-methyl. Moreover, no cross-resistance was observed between difenoconazole and all other tested fungicides, including the two other demethylation inhibitors, tebuconazole and prochloraz. A fitness penalty was not detected in procymidone-resistant (ProR) or difenoconazole-resistant (DifR) isolates. However, double-resistant (ProR DifR) isolates had a fitness penalty, showing significantly decreased sporulation, germination, and pathogenicity. The P894L single point mutation, caused by the change from CCA to CTA at the 894th codon of Os1, was detected in ProR isolates. Molecular dynamic simulation showed that the P894L mutation significantly decreased the inhibitory activity of procymidone against AaOs1 in A. alternata. These results provide insight into the development and characteristics of fungicide resistance, offering guidance for the study and management of kiwifruit diseases. Full article
Show Figures

Figure 1

27 pages, 860 KiB  
Review
Chronic Lymphocytic Leukemia: Novel Therapeutic Targets Under Investigation
by Madhavi Nayyar, Ricardo C. B. de Menezes, Sikander Ailawadhi and Ricardo D. Parrondo
Cancers 2025, 17(14), 2298; https://doi.org/10.3390/cancers17142298 - 10 Jul 2025
Viewed by 798
Abstract
CLL is the most prevalent adult leukemia in Western countries, characterized by the accumulation of monoclonal B lymphocytes. Over the past decade, the therapeutic landscape for CLL has undergone significant transformations, primarily due to the introduction of targeted small molecular therapies like BTK [...] Read more.
CLL is the most prevalent adult leukemia in Western countries, characterized by the accumulation of monoclonal B lymphocytes. Over the past decade, the therapeutic landscape for CLL has undergone significant transformations, primarily due to the introduction of targeted small molecular therapies like BTK inhibitors and BCL-2 inhibitors, that have improved patient outcomes drastically. Despite significant advances, long-term disease management remains challenging for patients with double-refractory CLL, where responses with subsequent therapies are short-lived. Resistance to these therapies can arise through several mechanisms like kinase-altering BTK mutations, alterations in the BCL-2 pathway, and adaptations within the tumor microenvironment, necessitating the exploration of new therapeutic options. This review provides an in-depth overview of the promising novel treatment approaches under investigation in CLL, focusing on advanced cellular therapies (CAR T-cell therapy), T-cell engagers, new monoclonal antibodies, and various next-generation small molecule inhibitors including BTK degraders, PI3K inhibitors, MALT1 inhibitors, c-MYC inhibitors, CDK9 inhibitors, and agents targeting angiogenesis and DNA damage repair. In this review, we will discuss the novel therapeutic targets and agents as well as ongoing trials, emphasizing the potential of these treatments to overcome resistance and meet the unmet needs of patients, particularly those with double-refractory CLL. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

21 pages, 6356 KiB  
Article
A Rare Frameshift Mutation of in CmACS7 Alters Ethylene Biosynthesis and Determines Fruit Morphology in Melon (Cucumis melo L.)
by Jiyang Zhou, Xiaobing Ma, Qianqian Deng, Zhicong Zhong, Xuefei Ning, Li Zhong, Xianliang Zhang and Xianlei Wang
Plants 2025, 14(14), 2087; https://doi.org/10.3390/plants14142087 - 8 Jul 2025
Viewed by 320
Abstract
Fruit shape diversity in melon is governed by complex genetic networks, with ethylene biosynthesis playing a pivotal yet poorly characterized role. In this study, we identified a rare CmACS7A57V/frameshift double mutant through fine mapping of the fsq2 locus. Ethylene-mediated ovary growth regulation [...] Read more.
Fruit shape diversity in melon is governed by complex genetic networks, with ethylene biosynthesis playing a pivotal yet poorly characterized role. In this study, we identified a rare CmACS7A57V/frameshift double mutant through fine mapping of the fsq2 locus. Ethylene-mediated ovary growth regulation has been completely lost in the CmACS7A57V/frameshift double mutant, driving a transition from elongated to spherical fruit. Transcriptome analysis was performed to clarify the core role of CmACS7 in the ethylene signaling pathway. The loss of CmACS7 function regulates key genes in the ethylene responsive factor, cytokinin signaling pathway, and auxin-related genes, resulting in an imbalance in hormone levels. This imbalance directly affects the coordination of cell proliferation and expansion and ultimately determines the fruit morphology. A genetic diversity analysis of public melon germplasm resources indicated that while the CmACS7A57V/frameshift mutation accounts for only 0.5% of the germplasm, it is strongly correlated with the round fruit phenotype and is important for breeding in Xinjiang. The results of this study suggest that CmACS7A57V/frameshift could be used as a molecular marker to accelerate the breeding of melon varieties with excellent fruit morphology and, at the same time, reveal the coevolutionary significance of this gene in the domestication of Cucurbitaceae crops. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

17 pages, 2623 KiB  
Article
Conformational Remodeling and Allosteric Regulation Underlying EGFR Mutant-Induced Activation: A Multi-Scale Analysis Using MD, MSMs, and NRI
by Hui Duan, De-Rui Zhao, Meng-Ting Liu, Li-Quan Yang and Peng Sang
Int. J. Mol. Sci. 2025, 26(13), 6226; https://doi.org/10.3390/ijms26136226 - 27 Jun 2025
Viewed by 345
Abstract
Activating mutations in the epidermal growth factor receptor (EGFR) are key oncogenic drivers across multiple cancers, yet the structural mechanisms by which these mutations promote persistent receptor activation remain elusive. Here, we investigate how three clinically relevant mutations—T790M, L858R, and the T790M_L858R double [...] Read more.
Activating mutations in the epidermal growth factor receptor (EGFR) are key oncogenic drivers across multiple cancers, yet the structural mechanisms by which these mutations promote persistent receptor activation remain elusive. Here, we investigate how three clinically relevant mutations—T790M, L858R, and the T790M_L858R double mutant—reshape EGFR’s conformational ensemble and regulatory network architecture. Using multiscale molecular simulations and kinetic modeling, we show that these mutations, particularly in combination, enhance flexibility in the αC-helix and A-loop, favoring activation-competent states. Markov state modeling reveals a shift in equilibrium toward active macrostates and accelerated transitions between metastable conformations. To resolve the underlying coordination mechanism, we apply neural relational inference to reconstruct time-dependent interaction networks, uncovering the mutation-induced rewiring of allosteric pathways linking distant regulatory regions. This coupling of conformational redistribution with network remodeling provides a mechanistic rationale for sustained EGFR activation and suggests new opportunities for targeting dynamically organized allosteric circuits in therapeutic design. Full article
Show Figures

Figure 1

13 pages, 855 KiB  
Article
Putative Second-Site Mutations in the Barley Low Phytic Acid 1-1 (lpa 1-1) Genetic Background Further Reduce Seed Total Phosphorus
by Beverly L. Agesa, Victor Raboy, Paul J. A. Withers and Katherine A. Steele
Agronomy 2025, 15(7), 1550; https://doi.org/10.3390/agronomy15071550 - 25 Jun 2025
Viewed by 306
Abstract
Inefficient crop phosphorus (P) use impacts global food security and P fertilizer use can be environmentally harmful. Lines homozygous for barley (Hordeum vulgare L.) low phytic acid 1-1 (lpa 1-1) have yields equivalent to the wild type but ~15% less [...] Read more.
Inefficient crop phosphorus (P) use impacts global food security and P fertilizer use can be environmentally harmful. Lines homozygous for barley (Hordeum vulgare L.) low phytic acid 1-1 (lpa 1-1) have yields equivalent to the wild type but ~15% less seed Total P (TP). The objective here was to identify second-site mutations in the lpa1-1 background that condition a further reduction in seed TP, again with little impact on yield. A chemically mutagenized population was derived from lpa 1-1 and screened to identify lines with seed TP reductions greater than 15% (as compared with wild-type) but with seed weights per plant within 80% of wild-type. Three M4 lines were selected and evaluated in a greenhouse pot experiment. Plants were grown to maturity either on a soil with low soil P fertility (16 to 25 mg Olsen P L−1; Soil P Index 1) or with that soil supplemented (36 kg P ha−1) to provide optimal available soil P. Mean seed P reduction across the three lines and two soil P levels was 28%, a near doubling of the lpa1-1 seed Total P reduction. When grown with optimal soil available P, no impact of these putative mutations on grain yield was observed. These findings suggest that the three lpa 1-1-derived mutant lines carry second-site mutations conferring substantially (~17%) greater decreases in seed TP than that conferred by lpa 1-1. If the putative mutations are confirmed to be heritable and to have negligible impact on yield, they could be used in breeding P-efficient barley cultivars as a step towards reducing regional and global P demand. Full article
Show Figures

Figure 1

18 pages, 1824 KiB  
Article
LC-MS/MS-Based Determination of Ambroxol in Human Plasma and Cerebrospinal Fluid: Validation and Applicability in a Phase II Study on GBA-Associated Parkinson’s Disease Patients
by Valentina Franco, Michela Palmisani, Fabiana Colucci, Rosa De Micco, Simone Aloisio, Federico Cazzaniga, Silvia Cerri, Francesca Crema, Francesca Dattrino, Barbara Garavaglia, Matteo Gastaldi, Pierfrancesco Mitrotti, Fabio Moda, Paola Rota, Rita Stiuso, Cristina Tassorelli, Roberto Eleopra, Alessandro Tessitore, Enza Maria Valente, Micol Avenali and Roberto Ciliaadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2025, 26(13), 6094; https://doi.org/10.3390/ijms26136094 - 25 Jun 2025
Viewed by 507
Abstract
Heterozygous mutations in the GBA1 gene, encoding the enzyme glucocerebrosidase (GCase), are major risk factors for Parkinson’s Disease (PD). Ambroxol, a small chaperone originally used as a mucolytic agent, has been shown to cross the blood–brain barrier, enhance GCase activity, and reduce α-synuclein [...] Read more.
Heterozygous mutations in the GBA1 gene, encoding the enzyme glucocerebrosidase (GCase), are major risk factors for Parkinson’s Disease (PD). Ambroxol, a small chaperone originally used as a mucolytic agent, has been shown to cross the blood–brain barrier, enhance GCase activity, and reduce α-synuclein levels, making it a promising therapeutic candidate for disease-modifying effects in GBA1-associated PD (GBA1-PD). This study aimed to develop a method to quantify ambroxol levels in human plasma and cerebrospinal fluid (CSF) using liquid chromatography–tandem mass spectrometry (LC-MS/MS). Ambroxol was determined by online solid-phase extraction (SPE), coupled with LC-MS/MS, by gradient elution on a monolithic column. Detection employed a 3200 QTRAP tandem mass spectrometer in the positive electrospray ionization mode. Calibration curves exhibited linearity across the analyzed ranges in both plasma and CSF. The recovery rate ranged from 106.7% to 113.5% in plasma and from 99.0% to 103.0% in CSF. No significant matrix effect was observed. Intra-day and inter-day precisions were below 11.8% in both matrices, and accuracy ranged from 89.9% to 103.1% in plasma and from 96.3% to 107.8% in CSF. We evaluated and confirmed the stability of the analyte in plasma and CSF across various storage conditions. The method was successfully validated according to European Medicine Agency (EMA) guidelines and its applicability was confirmed in the context of a multicenter, randomized, double-blind, placebo-controlled, phase II study, designed to monitor the ambroxol levels in the plasma and CSF of GBA1-PD. Full article
Show Figures

Figure 1

15 pages, 879 KiB  
Article
Double Mutations Drive Multiple Resistances to Herbicides in Greek Rigid Ryegrass (Lolium rigidum Gaudin)
by Dimitra Doulfi, Garyfallia Economou, Panagiotis Madesis, Lefkothea Karapetsi and Ilias G. Eleftherohorinos
Agronomy 2025, 15(7), 1532; https://doi.org/10.3390/agronomy15071532 - 24 Jun 2025
Viewed by 238
Abstract
Based on the complaints of malt barley growers about the insufficient control of rigid ryegrass (Lolium rigidum Gaudin) after applying the ACCase inhibitor pinoxaden, a survey was conducted during the early spring growing season of 2019/20; 20 barley fields located in Thessaloniki [...] Read more.
Based on the complaints of malt barley growers about the insufficient control of rigid ryegrass (Lolium rigidum Gaudin) after applying the ACCase inhibitor pinoxaden, a survey was conducted during the early spring growing season of 2019/20; 20 barley fields located in Thessaloniki and 20 fields in Serres were marked with poor weed control levels. Before the barley harvest, representative weed seeds were collected from all 40 fields. After performing seed germination tests, fourteen populations (six from Thessaloniki and eight from Serres) with the highest seed germination ability were selected for further study. The whole-plant dose–response assays conducted in 2019–2020 indicated that most of the populations were multi-resistant to ACCase and ALS inhibitors. The estimated GR50 values (the herbicide dose required to reduce the fresh weight of treated plants by 50%) for pinoxaden and mesosulfuron-methyl + iodosulfuron-methyl-sodium ranged from 1.15 to 52.41 g ai ha−1 and 4.75 to 31.25 g ai ha−1, respectively. Furthermore, the sequencing of acccase gene fragments from plants that survived pinoxaden application revealed that 11 out of 14 plant populations had a double accase point mutation at Ile1781 and Ile2041 codons. In addition, the sequencing of als gene fragments from the plants that survived mesosulfuron-methyl + iodosulfuron-methyl-sodium application revealed that 11 out of 14 plant populations had a point mutation at the Pro197 codon and 2 of them had a second als mutation at the Trp574 codon. These findings indicate that L. rigidum populations are multi-resistant to ACCase and ALS inhibitors, with individuals exhibiting either double accase or double als mutations. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

22 pages, 2036 KiB  
Review
Radiogenomics of Stereotactic Radiotherapy: Genetic Mechanisms Underlying Radiosensitivity, Resistance, and Immune Response
by Damir Vučinić, Ana-Marija Bukovica Petrc, Ivona Antončić, Maja Kolak Radojčić, Matea Lekić and Felipe Couñago
Genes 2025, 16(7), 732; https://doi.org/10.3390/genes16070732 - 24 Jun 2025
Viewed by 821
Abstract
Stereotactic body radiotherapy (SBRT) delivers ablative radiation doses with sub-millimeter precision. Radiogenomic studies, meanwhile, provide insights into how tumor-intrinsic genetic factors influence responses to such high-dose treatments. This review explores the radiobiological mechanisms underpinning SBRT efficacy, emphasizing the roles of DNA damage response [...] Read more.
Stereotactic body radiotherapy (SBRT) delivers ablative radiation doses with sub-millimeter precision. Radiogenomic studies, meanwhile, provide insights into how tumor-intrinsic genetic factors influence responses to such high-dose treatments. This review explores the radiobiological mechanisms underpinning SBRT efficacy, emphasizing the roles of DNA damage response (DDR) pathways, tumor suppressor gene alterations, and inflammatory signaling in shaping tumor radiosensitivity or resistance. SBRT induces complex DNA double-strand breaks (DSBs) that robustly activate DDR signaling cascades, particularly via the ATM and ATR kinases. Tumors with proficient DNA repair capabilities often resist SBRT, whereas deficiencies in key repair genes can render them more susceptible to radiation-induced cytotoxicity. Mutations in tumor suppressor genes may impair p53-dependent apoptosis and disrupt cell cycle checkpoints, allowing malignant cells to evade radiation-induced cell death. Furthermore, SBRT provokes the release of pro-inflammatory cytokines and activates innate immune pathways, potentially leading to immunogenic cell death and reshaping the tumor microenvironment. Radiogenomic profiling has identified genomic alterations and molecular signatures associated with differential responses to SBRT and immune activation. These insights open avenues for precision radiotherapy approaches, including the use of genomic biomarkers for patient selection, the integration of SBRT with DDR inhibitors or immunotherapies, and the customization of treatment plans based on individual tumor genotypes and immune landscapes. Ultimately, these strategies aim to enhance SBRT efficacy and improve clinical outcomes through biologically tailored treatment. This review provides a comprehensive summary of current knowledge on the genetic determinants of response to stereotactic radiotherapy and discusses their implications for personalized cancer treatment. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 2142 KiB  
Article
DNA Damage Response Regulation Alleviates Neuroinflammation in a Mouse Model of α-Synucleinopathy
by Sazzad Khan, Himanshi Singh, Jianfeng Xiao and Mohammad Moshahid Khan
Biomolecules 2025, 15(7), 907; https://doi.org/10.3390/biom15070907 - 20 Jun 2025
Viewed by 557
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder marked by the degeneration of dopaminergic neurons in the substantia nigra, leading to decreased dopamine levels in the striatum and causing a range of motor and non-motor impairments. Although the molecular mechanisms driving PD progression [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder marked by the degeneration of dopaminergic neurons in the substantia nigra, leading to decreased dopamine levels in the striatum and causing a range of motor and non-motor impairments. Although the molecular mechanisms driving PD progression remain incompletely understood, emerging evidence suggests that the buildup of nuclear DNA damage, especially DNA double-strand breaks (DDSBs), plays a key role in contributing neurodegeneration, promoting senescence and neuroinflammation. Despite the pathogenic role for DDSB in neurodegenerative disease, targeting DNA repair mechanisms in PD is largely unexplored as a therapeutic approach. Ataxia telangiectasia mutated (ATM), a key kinase in the DNA damage response (DDR), plays a crucial role in neurodegeneration. In this study, we evaluated the therapeutic potential of AZD1390, a highly selective and brain-penetrant ATM inhibitor, in reducing neuroinflammation and improving behavioral outcomes in a mouse model of α-synucleinopathy. Four-month-old C57BL/6J mice were unilaterally injected with either an empty AAV1/2 vector (control) or AAV1/2 expressing human A53T α-synuclein to the substantia nigra, followed by daily AZD1390 treatment for six weeks. In AZD1390-treated α-synuclein mice, we observed a significant reduction in the protein level of γ-H2AX, a DDSB marker, along with downregulation of senescence-associated markers, such as p53, Cdkn1a, and NF-κB, suggesting improved genomic integrity and attenuation of cellular senescence, indicating enhanced genomic stability and reduced cellular aging. AZD1390 also significantly dampened neuroinflammatory responses, evidenced by decreased expression of key pro-inflammatory cytokines and chemokines. Interestingly, mice treated with AZD1390 showed significant improvements in behavioral asymmetry and motor deficits, indicating functional recovery. Overall, these results suggest that targeting the DDR via ATM inhibition reduces genotoxic stress, suppresses neuroinflammation, and improves behavioral outcomes in a mouse model of α-synucleinopathy. These findings underscore the therapeutic potential of DDR modulation in PD and related synucleinopathy. Full article
Show Figures

Figure 1

18 pages, 4053 KiB  
Article
Molecular Insights into Outer Dynein Arm Defects in Primary Ciliary Dyskinesia: Involvement of ZMYND10 and GRP78
by İlker Levent Erdem, Zeynep Bengisu Kaya, Pergin Atilla, Nagehan Emiralioğlu, Cemil Can Eylem, Emirhan Nemutlu, Uğur Özçelik, Halime Nayır Büyükşahin, Ayşenur Daniş and Elif Karakoç
Cells 2025, 14(12), 916; https://doi.org/10.3390/cells14120916 - 17 Jun 2025
Viewed by 591
Abstract
Background: Primary ciliary dyskinesia (PCD) is a rare genetic disorder characterized by recurrent sinopulmonary infections due to motile cilia defects. The disease is genetically heterogeneous, with abnormalities in structural ciliary proteins. Zinc finger MYND-type containing 10 (ZMYND10) is essential for the assembly of [...] Read more.
Background: Primary ciliary dyskinesia (PCD) is a rare genetic disorder characterized by recurrent sinopulmonary infections due to motile cilia defects. The disease is genetically heterogeneous, with abnormalities in structural ciliary proteins. Zinc finger MYND-type containing 10 (ZMYND10) is essential for the assembly of outer dynein arms (ODA), with chaperones like Glucose-regulated protein 78 (GRP78) facilitating protein folding. This study investigates ZMYND10 and Dynein axonemal heavy chain 5 (DNAH5) mutations in individuals with PCD. Methods: Eight individuals aged 14–22 with clinical PCD symptoms and confirmed DNAH5 mutations were included. We analyzed the correlation between DNAH5 abnormalities and preassembly/chaperone proteins using immunofluorescence labeling. Nasal swabs were double-labeled (DNAH5–β-tubulin, β-tubulin–ZMYND10, β-tubulin–GRP78) and examined via fluorescence microscopy. Serum metabolomics and proteomics were also assessed. Results: The corrected total cell fluorescence (CTCF) levels of DNAH5, ZMYND10, and GRP78 were significantly different between PCD individuals and controls. Metabolomic analysis showed reduced valine, leucine, and isoleucine biosynthesis, with increased malate and triacylglycerol biosynthesis, malate-aspartate and glycerol phosphate shuttles, and arginine/proline metabolism, suggesting mitochondrial and ER stress. Conclusions: The altered expression of DNAH5, ZMYND10, and GRP78, along with metabolic shifts, points to a complex link between ciliary dysfunction and cellular stress in PCD. Further studies are needed to clarify the underlying mechanisms. Full article
(This article belongs to the Special Issue The Role of Cilia in Health and Diseases—2nd Edition)
Show Figures

Graphical abstract

6 pages, 574 KiB  
Brief Report
The Recurring Loss of ORF8 Secretion in Dominant SARS-CoV-2 Variants
by Joy-Yan Lam and Kin-Hang Kok
Int. J. Mol. Sci. 2025, 26(12), 5778; https://doi.org/10.3390/ijms26125778 - 16 Jun 2025
Viewed by 307
Abstract
The SARS-CoV-2 ORF8 protein is a unique accessory viral protein among human coronaviruses, characterized by recurrent deletions and mutations with functional consequences. In this short report, we demonstrate that several dominant SARS-CoV-2 strains, despite encoding ORF8, fail to secrete the protein, revealing a [...] Read more.
The SARS-CoV-2 ORF8 protein is a unique accessory viral protein among human coronaviruses, characterized by recurrent deletions and mutations with functional consequences. In this short report, we demonstrate that several dominant SARS-CoV-2 strains, despite encoding ORF8, fail to secrete the protein, revealing a recurring pattern of ORF8 functional impairment that cannot be detected by sequence analysis alone. In agreement with other studies, several high-frequency mutations were identified using the Nextstrain/augur pipeline, including G8Stop, Q27Stop, D119-/F120- double deletions, and nucleotide substitution C27889U, which occurred in XBB.1.5, Alpha, Delta, and BA.5.2 variants, respectively. Notably, the D119-/F120- deletions and C27889U substitution do not introduce premature stop codons, yet ORF8 secretion was lost in Delta and BA.5.2 virus-infected cultures. This indicates that the extracellular ORF8 function is impaired in these variants, resulting in ORF8 deficiency. Our findings highlight that the impairment of ORF8 secretion arises not only from premature stop codons but also from other mutations. Therefore, the functional validation of ORF8 secretion and activity is essential following sequence analysis to accurately assess ORF8’s role in SARS-CoV-2 infection. Full article
(This article belongs to the Special Issue The Evolution, Genetics and Pathogenesis of Viruses)
Show Figures

Figure 1

21 pages, 4512 KiB  
Article
Design and Experiment of an Automatic Leveling System for Tractor-Mounted Implements
by Haibin Yao, Engen Zhang, Yufei Liu, Juan Du and Xiang Yin
Sensors 2025, 25(12), 3707; https://doi.org/10.3390/s25123707 - 13 Jun 2025
Viewed by 479
Abstract
The body roll of the tractor propagates through its rigid hitch system to the mounted implement, causing asymmetrical soil penetration depths between the implement’s lateral working elements, which affects the operational effectiveness of the implement. To address this issue, this study developed an [...] Read more.
The body roll of the tractor propagates through its rigid hitch system to the mounted implement, causing asymmetrical soil penetration depths between the implement’s lateral working elements, which affects the operational effectiveness of the implement. To address this issue, this study developed an automatic leveling system based on a dual closed-loop fuzzy Proportional-Integral-Derivative (PID) algorithm for tractor-mounted implements. The system employed an attitude angle sensor to detect implement posture in real time and utilized two double-acting hydraulic cylinders to provide a compensating torque for the implement that is opposite to the direction of the body’s roll. The relationship model between the implement’s roll angle and the actuator’s response time was established. The controller performed implement leveling by regulating the spool position and holding time of the solenoid directional valve. Simulink simulations showed that under the control of the dual closed-loop fuzzy PID algorithm, the implement’s roll angle adjusted from 10° to 0° in 1.72 s, which was 56.89% shorter than the time required by the fuzzy PID algorithm, with almost no overshoot. This demonstrates that the dual closed-loop fuzzy PID algorithm outperforms the traditional fuzzy PID algorithm. Static tests showed the system adjusted the implement roll angle from ±10° to 0° within 1.3 s. Field experiments demonstrated that the automatic leveling system achieved a maximum absolute error (MaxAE) of 0.91°, a mean absolute error (MAE) of 0.19°, and a root mean square error (RMSE) of 0.28°, with errors within 0.5° for 92.52% of the time. Results from terrain mutation tests indicate that under a sudden 5° vehicle roll angle change, the system confines implement deviation to ±1.5°. The system exhibits high control precision, stability, and robustness, fulfilling the demands of tractor-mounted implement leveling. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

27 pages, 6771 KiB  
Article
A Deep Neural Network Framework for Dynamic Two-Handed Indian Sign Language Recognition in Hearing and Speech-Impaired Communities
by Vaidhya Govindharajalu Kaliyaperumal and Paavai Anand Gopalan
Sensors 2025, 25(12), 3652; https://doi.org/10.3390/s25123652 - 11 Jun 2025
Viewed by 535
Abstract
Language is that kind of expression by which effective communication with another can be well expressed. One may consider such as a connecting bridge for bridging communication gaps for the hearing- and speech-impaired, even though it remains as an advanced method for hand [...] Read more.
Language is that kind of expression by which effective communication with another can be well expressed. One may consider such as a connecting bridge for bridging communication gaps for the hearing- and speech-impaired, even though it remains as an advanced method for hand gesture expression along with identification through the various different unidentified signals to configure their palms. This challenge can be met with a novel Enhanced Convolutional Transformer with Adaptive Tuna Swarm Optimization (ECT-ATSO) recognition framework proposed for double-handed sign language. In order to improve both model generalization and image quality, preprocessing is applied to images prior to prediction, and the proposed dataset is organized to handle multiple dynamic words. Feature graining is employed to obtain local features, and the ViT transformer architecture is then utilized to capture global features from the preprocessed images. After concatenation, this generates a feature map that is then divided into various words using an Inverted Residual Feed-Forward Network (IRFFN). Using the Tuna Swarm Optimization (TSO) algorithm in its enhanced form, the provided Enhanced Convolutional Transformer (ECT) model is optimally tuned to handle the problem dimensions with convergence problem parameters. In order to solve local optimization constraints when adjusting the position for the tuna update process, a mutation operator was introduced. The dataset visualization that demonstrates the best effectiveness compared to alternative cutting-edge methods, recognition accuracy, and convergences serves as a means to measure performance of this suggested framework. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

13 pages, 862 KiB  
Article
Quinolone Resistance and Prevalence of the Related Genes in Photobacterium damselae subsp. damselae Recovered from Diseased Fish in Eastern China
by Xiangyun Yang, Chen Shen, Suming Zhou, Liyun Jin, Yajun Wang and Fei Yin
Fishes 2025, 10(6), 280; https://doi.org/10.3390/fishes10060280 - 7 Jun 2025
Viewed by 335
Abstract
Photobacterium damselae subsp. damselae is a well-recognized marine animal pathogen. Herein, 70 P. damselae subsp. damselae isolates were investigated for quinolone susceptibility and prevalence of the genes including quinolone resistance-determining regions (QRDRs) and plasmid-mediated quinolone resistance (PMQR) genes. A total of 18/70 isolates [...] Read more.
Photobacterium damselae subsp. damselae is a well-recognized marine animal pathogen. Herein, 70 P. damselae subsp. damselae isolates were investigated for quinolone susceptibility and prevalence of the genes including quinolone resistance-determining regions (QRDRs) and plasmid-mediated quinolone resistance (PMQR) genes. A total of 18/70 isolates exhibited high-level resistance, and 23/70 isolates exhibited moderate resistance according to the MIC values. QRDR analysis showed that double mutants in both GyrA (Ser83Ile) and ParC (6/17 Ser80Phe or 11/17 Ser80Tyr) were detected in 94.4% (17/18) high-level quinolone resistance P. damselae subsp. damselae strains. PMQR detection showed that 60.0% (42/70) carried at least one PMQR (1/42 qnrB coexistence with aac(6′)-Ib-cr, 1/42 qnrS coexistence with aac(6′)-Ib-cr, 44/46 qnrS). QnrA, QnrC, qnrD and qepA were not detected in all strains. Among the 42 PMQR-positive strains, 24 showed fluoroquinolones MICs ≤ 0.5 mg/L and 13 MICs ≥ 2 mg/L, all carrying QRDR mutations. For the twenty-eight non-PMQR strains, twenty-three showed fluoroquinolone MICs ≤ 0.5 mg/L without QRDR mutations, and five MICs ≥ 2 mg/L carrying QRDR mutations. In conclusion, qnrS (qnrS2 allele) is the major PMQR widespread in P. damselae subsp. damselae isolated from eastern China; however, QRDR mutation plays a marked role in mediating fluoroquinolone resistance. Full article
(This article belongs to the Section Fish Pathology and Parasitology)
Show Figures

Graphical abstract

Back to TopTop