Development of Procymidone and Difenoconazole Resistance in Alternaria alternata, the Causal Agent of Kiwifruit Brown Spot Disease
Abstract
1. Introduction
2. Results
2.1. Procymidone and Difenoconazole Resistance
2.2. Cross-Resistance Between Procymidone or Difenoconazole and Other Fungicides
2.3. Fitness of Procymidone- or Difenoconazole-Resistant Isolates
2.4. Target Mutations of Os1 and CYP51 in Procymidone- and Difenoconazole-Resistant Isolates
2.5. Binding Affinity Decreased After P893L Mutation of Os1
3. Discussion
4. Materials and Methods
4.1. Fungicides
4.2. Origin of Single-Spore Alternaria alternata Isolates
4.3. Determination of Procymidone and Difenoconazole Resistance
4.4. Determination of Fungicide Sensitivity and Cross-Resistance Analysis
4.5. Fitness Characterization
4.6. Analysis of Mutations in the Coding Gene of Fungicide-Targeted Proteins
4.7. Molecular Docking Analysis
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gorinstein, S.; Haruenkit, R.; Poovarodom, S.; Park, Y.S.; Vearasilp, S.; Vearasilp, S.; Suhaj, M.; Ham, K.-S.; Heo, B.-G.; Cho, J.-Y.; et al. The Comparative Characteristics of Snake and Kiwi Fruits. Food Chem. Toxicol. 2009, 47, 1884–1891. [Google Scholar] [CrossRef]
- Dwivedi, S.; Mishra, A.K.; Priya, S. Potential Health Beneffts of Kiwifruits: The King of Fruits. Sci. Technol. 2020, 5, 126–131. [Google Scholar]
- Wu, X.M. Genetic Breeding and the Industry Progress of Kiwifruit. N. Fruits 2010, 2, 1–4. [Google Scholar]
- Guroo, I.; Wani, S.A.; Wani, S.M.; Ahmad, M.; Mir, S.A.; Masoodi, F.A. A Review of Production and Processing of Kiwifruit. J. Food Process. Technol. 2017, 8, 699. [Google Scholar]
- Ward, C.; Courtney, D. Kiwifruit: Taking Its Place in the Global Fruit Bowl. Adv. Food Nutr. Res. 2013, 68, 1–14. [Google Scholar]
- Li, D.; Huang, W.; Zhong, C. Current Status of China’s Kiwifruit Industry and Development Recommendations for the “15th Five-Year Plan”. J. Fruit Sci. 2024, 41, 2149–2159. [Google Scholar]
- Kwon, J.H.; Cheon, M.G.; Kim, J.W.; Kwack, Y.B. Black Rot of Kiwifruit Caused by Alternaria alternata in Korea. Plant Pathol. 2011, 27, 298. [Google Scholar] [CrossRef]
- Pan, H.; Li, W.; Chen, M.; Lei, J.; Cao, H.; Xie, Y.; Zhong, C.; Li, L. Pathogen Identification of Kiwifruit Diseases in Jiangshan City, Zhejiang Province. China Fruits 2024, 11, 93–97. [Google Scholar]
- Liu, X.P. Investigation, Pathogen Identification and Control of Kiwifruit Leaf Spot Diseases in Jiangshan City; Zhejiang Agriculture and Forest University: Hangzhou, China, 2023; Volume 5. [Google Scholar]
- Dang, H.X.; Pryor, B.; Peever, T.; Lawrence, C.B. The Alternaria Genomes Database: A Comprehensive Resource for a Fungal Genus Comprised of Saprophytes, Plant Pathogens, and Allergenic Species. BMC Genom. 2015, 16, 239. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Tang, J.; Zou, Y.; Sun, X.; Lan, J.; Wang, W.; Xu, P.; Wu, X.; Ma, R.; Wang, Q.; et al. Whole Genome Sequence of Alternaria alternata, the Causal Agent of Black Spot of Kiwifruit. Front. Microbiol. 2021, 12, 713462. [Google Scholar] [CrossRef]
- Meena, M.; Samal, S. Alternaria Host-speciffc (HSTs) Toxins: An Overview of Chemical Characterization, Target sites, Regulation and Their Toxic Effects. Toxicol. Rep. 2019, 6, 745–758. [Google Scholar] [CrossRef]
- Avenot, H.; Simoneau, P.; Lacomivasilescu, B.; Bataillesimoneau, N. Characterization of Mutations in the Two-Component Histidine Kinase Gene AbNIK1 from Alternaria brassicicola that Confer high Dicarboximide and Phenylpyrrole Resistance. Curr. Genet. 2005, 47, 234–243. [Google Scholar] [CrossRef]
- Francis, A.D.; Silvino, M.I.; Costa, S.D.S.G.; Valter, C.M.; Eduardo, A. Target and Non-target Site Mechanisms of Fungicide Resistance and Their Implications for the Management of Crop Pathogens. Pest Manag. Sci. 2023, 79, 4731–4753. [Google Scholar]
- Grabke, A.; Fernández-Ortuño, D.; Amiri, A.; Li, X.; Peres, N.A.; Smith, P.; Schnabel, G. Characterization of Iprodione Resistance in Botrytis cinerea from Strawberry and Blackberry. Phytopathology 2014, 104, 396–402. [Google Scholar] [CrossRef]
- Jahangir, M.F.; Xiao, X.; Zhu, F.X.; Fu, Y.P.; Jiang, D.H.; Guido, S.; Luo, C.X. Exploring Mechanisms of Resistance to Dimethachlone in Sclerotinia sclerotiorum. Pest Manag. Sci. 2016, 72, 770–779. [Google Scholar]
- Oshima, M.; Fujimura, M.; Banno, S.; Hashimoto, C.; Yamaguchi, I. A Point Mutation in the Two Component Histidine Kinase BcOS-1 Gene Confers Dicarboximide-Resistance in Field Isolates of Botrytis cinerea. Phytopathology 2002, 92, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.L.; Chen, B.; Li, X.J.; Shi, H.P.; Xie, S.; Hu, H.; Chen, W.C.; Wei, L.H.; Wang, X.Y.; Chen, C.J. The HOG-Pathway Related AaOS1 Leads to Dicarboximide-Resistance in Field strains of Alternaria alternata and Contributes, Together with the Aafhk1, to Mycotoxin Production and Virulence. Pest Manag. Sci. 2024, 80, 2937–2949. [Google Scholar] [CrossRef]
- Yin, Y.N.; Miao, J.Q.; Shao, W.Y.; Liu, X.X.; Zhao, Y.F.; Ma, Z.H. Fungicide Resistance: Progress in Understanding Mechanism, Monitoring and Management. Phytopathology 2023, 113, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Cai, L.T.; Li, T.; Wang, H.C.; Zhang, C.Q. The G462S Substitution of AaCYP51 confers moderate resistance to tebuconazole in Alternaria alternata. Pest Manag. Sci. 2025, 81, 2891–2900. [Google Scholar] [CrossRef]
- Wang, B.R.; Lou, T.C.; Wei, L.L.; Chen, W.C.; Huang, L.B.; Ding, L.; Zhao, W.C.; Zhang, P.C.; Sun, P.; Chen, C.J.; et al. Biochemical and Molecular Characterization of Alternaria alternata Isolates Highly Resistant to Procymidone from Broccoli and Cabbage. Phytopath. Res. 2021, 3, 15. [Google Scholar] [CrossRef]
- Zhao, W.C.; Sun, C.X.; Wei, L.L.; Chen, W.C.; Wang, B.R.; Li, F.J.; Wei, M.D.; Lou, T.C.; Zhang, P.C.; Zheng, H.H.; et al. Detection and Fitness of Dicarboximide-Resistant Isolates of Alternaria alternata from Dendrobium officinale, a Chinese Indigenous Medicinal Herb. Plant Dis. 2021, 105, 2222–2230. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhu, L.Y.; Zhang, C.Q. Resistance Development to Procymidone and Boscalid in Alternaria alternata Causing Black Spot Disease on Fritillaria thunbergii. Plant Dis. 2025, 109, 3614–3622. [Google Scholar] [CrossRef] [PubMed]
- Baibakova, E.V.; Nefedjeva, E.E.; Suska-Malawska, M.; Wilk, M.; Sevriukova, G.A.; Zheltobriukhov, V.F. Modern Fungicides: Mechanisms of Action, Fungal Resistance and Phytotoxic Effects. Annu. Res. Rev. Biol. 2019, 32, 1–16. [Google Scholar] [CrossRef]
- Alberoni, G.; Collina, M.; Lanen, C.; Leroux, P.; Brunelli, A. Field Strains of Stemphylium vesicarium with a Resistance to Dicarboximide Fungicides Correlated with Changes in a Two-Component Histidine Kinase. Eur. J. Plant Pathol. 2010, 128, 171–184. [Google Scholar] [CrossRef]
- Li, J.L.; Kang, T.H.; Talab, K.M.A.; Zhu, F.X.; Li, J.H. Molecular and biochemical characterization of dimethachlone. Pestic. Biochem. Physiol. 2017, 138, 15–21. [Google Scholar] [CrossRef]
- Ma, Z.; Luo, Y.; Michailides, T.J. Molecular characterization of the Two-Component Histidine Kinase Gene from Monilinia fructicola. Pest Manag. Sci. 2006, 62, 991–998. [Google Scholar] [CrossRef]
- Hawkins, N.; Fraaije, B. Fitness Penalties in the Evolution of Fungicide Resistance. Annu. Rev. Phytopathol. 2018, 56, 339–360. [Google Scholar] [CrossRef]
- Wang, H.C.; Zhang, C.Q. Multi-Resistance to Thiophanate-Methyl, Diethofencarb and Procymidone among Alternaria alternata Populations from Tobacco Plants, and the Management of Tobacco Brown Spot with Azoxystrobin. Phytoparasitica 2018, 46, 677–687. [Google Scholar] [CrossRef]
- Yang, L.N.; He, M.H.; Ouyang, H.B.; Zhu, W.; Pan, Z.C.; Sui, Q.J.; Shang, L.P.; Zhan, J.S. Cross-Resistance of the Pathogenic Fungus Alternaria alternata to Fungicides with Different Modes of Action. BMC Microbiol. 2019, 19, 205. [Google Scholar] [CrossRef]
- Becher, R.; Wirsel, S.G. Fungal Cytochrome P450 Sterol 14α-Demethylase (CYP51) and Azole Resistance in Plant and Human Pathogens. Appl. Microbiol. Biotechnol. 2012, 95, 825–840. [Google Scholar] [CrossRef]
- Jiang, C.F.; Zhou, L.; Wang, M.K.; Shen, S.R.; Cheng, W.F.; Zhao, Q.C.; Cui, K.D.; He, L. Sensitivity Determination and Resistance Mechanism of Sclerotium rolfsii to Difenoconazole. Pest Manag. Sci. 2025, 81, 2734–2741. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.N.; Qiu, D.Z.; Chen, F.R.; Yang, Y.Q.; Du, Y.X. Analysis of the Difenoconazole-Resistance Risk and Its Molecular Basis in Colletotrichum truncatum from Soybean. Plant Dis. 2023, 107, 3123–3130. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Michailides, T.J. Characterization of Iprodione-Resistant Alternaria Isolates from Pistachio in California. Pestic. Biochem. Physiol. 2004, 80, 75–84. [Google Scholar] [CrossRef]
- Karaoglanidis, G.S.; Markoglou, A.N.; Bardas, G.A.; Doukas, E.G.; Konstantinou, S.; Kalampokis, J.F. Sensitivity of Penicillium expansum Field Isolates to Tebuconazole, Iprodione, Fudioxonil and Cyprodinil and Characterization of Fitness Parameters and Patulin Production. Int. J. Food Microbiol. 2011, 145, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.N.; Shi, H.P.; Mao, C.X.; Wu, J.Y.; Zhang, C.Q. Activity of a SDHI Fungicide Penflufen and the Characterization of Natural-Resistance in Fusarium fujikuroi. Pestic. Biochem. Physiol. 2021, 179, 104960. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Autodock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. Comput. Chem. 2009, 16, 2785–2791. [Google Scholar] [CrossRef]
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the Scope of the Protein–Ligand Interaction Profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, 530–534. [Google Scholar] [CrossRef]
Isolate | Phenotype | Os1 | CYP51 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
894 ** | 1277 | 188 | 192 | 237 | 307 | 412 | 434 | 448 | 462 | ||
AK-01 | ProS DifS | P * | S | N | V | S | A | H | E | G | G |
AK-08 | P | L | N | V | S | G | H | D | G | G | |
AK-13 | P | S | N | V | A | A | Y | E | S | S | |
AK-22 | ProR DifS | L | S | N | I | S | A | Y | D | G | G |
AK-123 | L | S | N | V | S | G | H | E | G | S | |
AK-043 | L | S | K | V | A | A | Y | E | S | S | |
AK-129 | ProS DifR | P | S | K | I | A | G | Y | E | G | G |
AK-205 | P | L | N | I | S | A | H | D | S | G | |
AK-024 | P | S | N | V | A | G | Y | D | S | S | |
AK-163 | ProR DifR | L | S | N | V | A | G | Y | E | G | G |
AK-037 | L | L | K | I | A | G | H | D | G | S |
Fungicide | Concentration (µg/mL) |
---|---|
Procymidone | 0, 0.25, 0.5, 1, 2, 4, 8, 16 |
Iprodione | 0, 0.25, 0.5, 1, 2, 4, 8, 16 |
Difenoconazole | 0, 0.3125, 0.625, 1.25, 5, 10, 40 |
Prochloraz | 0, 0.15625, 0.3125, 0.625, 1.25, 5, 20 |
Fenbuconazole | 0, 0.15625, 0.3125, 0.625, 1.25, 5, 20 |
Boscalid | 0, 0.3125, 0.625, 1.25, 2.5, 5, 20, 40 |
Fluxapyroxad | 0, 0.3125, 0.625, 1.25, 2.5, 5, 20, 40 |
Pyraclostrobin | 0, 0.3125, 0.625, 1.25, 2.5, 5, 20, 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Bao, M.; Wang, Y.; Zhang, C. Development of Procymidone and Difenoconazole Resistance in Alternaria alternata, the Causal Agent of Kiwifruit Brown Spot Disease. Plants 2025, 14, 2245. https://doi.org/10.3390/plants14142245
Liu Y, Bao M, Wang Y, Zhang C. Development of Procymidone and Difenoconazole Resistance in Alternaria alternata, the Causal Agent of Kiwifruit Brown Spot Disease. Plants. 2025; 14(14):2245. https://doi.org/10.3390/plants14142245
Chicago/Turabian StyleLiu, Yahui, Manfei Bao, Yanxin Wang, and Chuanqing Zhang. 2025. "Development of Procymidone and Difenoconazole Resistance in Alternaria alternata, the Causal Agent of Kiwifruit Brown Spot Disease" Plants 14, no. 14: 2245. https://doi.org/10.3390/plants14142245
APA StyleLiu, Y., Bao, M., Wang, Y., & Zhang, C. (2025). Development of Procymidone and Difenoconazole Resistance in Alternaria alternata, the Causal Agent of Kiwifruit Brown Spot Disease. Plants, 14(14), 2245. https://doi.org/10.3390/plants14142245