Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (164)

Search Parameters:
Keywords = dormancy strategy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 620 KB  
Article
Seed Dormancy Variability in Lonicera etrusca and Its Relationship with Environmental Heterogeneity Across Localities
by Alejandro Santiago, Jesus Márquez-Pablo, Natalia Celaya-Rojas, José María Herranz and Pablo Ferrandis
Seeds 2025, 4(4), 52; https://doi.org/10.3390/seeds4040052 - 24 Oct 2025
Viewed by 266
Abstract
Seed dormancy is a key ecological attribute influencing germination timing and the ability of species to establish in variable environments. This study investigated whether inter-population variability in seed dormancy expression exists in Lonicera etrusca, a Mediterranean shrub known for producing seeds with [...] Read more.
Seed dormancy is a key ecological attribute influencing germination timing and the ability of species to establish in variable environments. This study investigated whether inter-population variability in seed dormancy expression exists in Lonicera etrusca, a Mediterranean shrub known for producing seeds with underdeveloped embryos and multiple dormancy types. Seeds were collected from four geographically and ecologically distinct populations in central Iberia and subjected to a series of germination experiments simulating natural seasonal temperature regimes, stratification treatments, and gibberellic acid application. Across all populations, seeds exhibited morphological dormancy (MD) and varying degrees of morphophysiological dormancy (MPD), including non-deep simple and deep complex types. Despite high intra-specific variability in dormancy expression, no significant differences were found among populations for germination patterns or embryo growth responses. This indicates that dormancy variability is an intrinsic, conserved feature of the species rather than a locally adaptive trait. The homogenization of germination strategies across populations may be facilitated by bird-mediated seed dispersal, promoting gene flow and limiting local selection. These findings support the hypothesis that dormancy polymorphism in L. etrusca reflects a flexible germination strategy that enhances colonization potential across heterogeneous Mediterranean environments, rather than an environmentally induced plastic response. Full article
Show Figures

Figure 1

17 pages, 951 KB  
Review
Advances in Research on the Biological Characteristics of Weedy Rice
by Xingyi Liang, Can Zhao, Kunlun Liu, Weiling Wang, Zhongyang Huo, Xiaoling Song and Sheng Qiang
Plants 2025, 14(20), 3188; https://doi.org/10.3390/plants14203188 - 17 Oct 2025
Viewed by 525
Abstract
Weedy rice (Oryza spp.) has become one of the most harmful weeds in rice fields worldwide. It is a conspecific plant of cultivated rice (Oryza sativa L.) belonging to the genus Oryza, widely occurring in global rice production systems with [...] Read more.
Weedy rice (Oryza spp.) has become one of the most harmful weeds in rice fields worldwide. It is a conspecific plant of cultivated rice (Oryza sativa L.) belonging to the genus Oryza, widely occurring in global rice production systems with a cosmopolitan distribution across major rice-growing regions. Due to its unique biological characteristics, such as strong environmental adaptability, stress resistance, seed shattering propensity, seed dormancy, and competitive dominance, weedy rice can rapidly proliferate and persist in fields, posing a severe threat to rice production systems. This review summarizes the current research progress on the biological characteristics of weedy rice and introduces the significant differences in biological characteristics between weedy and cultivated rice, such as phenotypic diversity, seed shattering, dormancy, strong competitiveness, stress resistance, and early maturity. These distinct biological traits, which significantly differ from cultivated rice, serve as essential mechanisms in the survival strategy of weedy rice. Our review will provide a theoretical reference for a deeper understanding of weedy rice and its integrated management. Full article
(This article belongs to the Special Issue The Bioecology and Sustainable Management of Weeds)
Show Figures

Figure 1

14 pages, 3321 KB  
Article
Parental Origin Influences Seed Quality and Seedling Establishment in Kiwifruit Cultivars
by Edgar Manuel Bovio-Zenteno, Benito Hernández-Castellanos, Alejandro Antonio Castro-Luna, Norma Flores-Estévez, Juan Guillermo Cruz-Castillo and Juan Carlos Noa-Carrazana
Agronomy 2025, 15(9), 2201; https://doi.org/10.3390/agronomy15092201 - 16 Sep 2025
Viewed by 596
Abstract
Kiwifruit (Actinidia Lindl.) cultivation is restricted to climates similar to its native habitat in China. The seeds, a product of sexual reproduction, are used to produce rootstocks in commercial plantations, being an important source of genetic diversity for adaptation to variable conditions [...] Read more.
Kiwifruit (Actinidia Lindl.) cultivation is restricted to climates similar to its native habitat in China. The seeds, a product of sexual reproduction, are used to produce rootstocks in commercial plantations, being an important source of genetic diversity for adaptation to variable conditions and emerging challenges. It is known that obtaining kiwifruit plants from seeds is difficult due to their characteristic dormancy. However, the effect of habitat and parents on seed characteristics and their relationship to the seedlings produced is unknown. Here, we show that plants with tolerance to extreme conditions provide advantages to their offspring. We point out that Actinidia arguta cv. Passion Poppers (kiwiberry), capable of tolerating extreme temperatures below zero, has a larger seed size (volume over 15 mm3) and weight (100 seeds weigh nearly 200 mg), greater germination capacity (90.75 ± 1.03), and more robust seedlings (quotient of 20.28 ± 0.75) than classic green and golden kiwifruits, and one tropicalized commercial kiwifruit from Veracruz, Mexico. These findings highlight that parental origin influences seed quality and seedling establishment. We noted that A. arguta seeds offer opportunities for mass plant propagation. In addition, the use of parental plants adapted to extreme conditions could be an effective strategy to improve seed and seedling quality, with factors such as long-term survival and development in new environments awaiting to be explored in extent. Full article
Show Figures

Graphical abstract

15 pages, 2988 KB  
Article
Prophage Activation: An In Silico Platform for Identifying Prophage Regulatory Elements to Inform Phage Engineering Against Drug-Resistant Bacteria
by Saher Musrrat, Zequan Han, Kai Wang, Yunhai Huang, Yanhui Xiang, Sen Liu and Wen Yin
Life 2025, 15(9), 1417; https://doi.org/10.3390/life15091417 - 9 Sep 2025
Viewed by 1015
Abstract
Multidrug-resistant bacterial infections pose a severe global health threat, highlighting the urgent need for innovative therapeutic options beyond traditional antibiotics. Phage therapy, which employs bacteriophages to infect and eradicate pathogenic bacteria, specifically offers a promising solution. However, the lack of well-characterized therapeutic phages [...] Read more.
Multidrug-resistant bacterial infections pose a severe global health threat, highlighting the urgent need for innovative therapeutic options beyond traditional antibiotics. Phage therapy, which employs bacteriophages to infect and eradicate pathogenic bacteria, specifically offers a promising solution. However, the lack of well-characterized therapeutic phages has limited their broader clinical use. A critical aspect of activating the lytic potential of dormant prophages involves the strategic manipulation of transcription factor binding sites (TFBS), which function as pivotal regulatory nodes governing the transition between lysogenic dormancy and lytic activation. Our platform utilizes advanced bioinformatics tools to accurately identify and analyze TFBS, facilitating the targeted redesign or replacement of these sites to disrupt host-mediated repression. By systematically simulating modifications of these regulatory ‘switches,’ our platform computationally predicts reduced repressor activity, suggesting the potential for prophage activation and bacterial cell lysis. This novel methodology not only broadens the spectrum of therapeutic bacteriophages but also establishes a basis for individualized phage-based therapies, presenting a robust strategy to address the escalating challenge of antibiotic-resistant infections. By enabling the precise identification and engineering of TFBS, our platform signifies a transformative advancement in phage biology, effectively bridging the divide between computational analysis and therapeutic application. Full article
(This article belongs to the Special Issue Synthetic Genetic Elements, Devices, and Systems: 2nd Edition)
Show Figures

Figure 1

50 pages, 5419 KB  
Article
MSAPO: A Multi-Strategy Fusion Artificial Protozoa Optimizer for Solving Real-World Problems
by Hanyu Bo, Jiajia Wu and Gang Hu
Mathematics 2025, 13(17), 2888; https://doi.org/10.3390/math13172888 - 6 Sep 2025
Viewed by 644
Abstract
Artificial protozoa optimizer (APO), as a newly proposed meta-heuristic algorithm, is inspired by the foraging, dormancy, and reproduction behaviors of protozoa in nature. Compared with traditional optimization algorithms, APO demonstrates strong competitive advantages; nevertheless, it is not without inherent limitations, such as slow [...] Read more.
Artificial protozoa optimizer (APO), as a newly proposed meta-heuristic algorithm, is inspired by the foraging, dormancy, and reproduction behaviors of protozoa in nature. Compared with traditional optimization algorithms, APO demonstrates strong competitive advantages; nevertheless, it is not without inherent limitations, such as slow convergence and a proclivity towards local optimization. In order to enhance the efficacy of the algorithm, this paper puts forth a multi-strategy fusion artificial protozoa optimizer, referred to as MSAPO. In the initialization stage, MSAPO employs the piecewise chaotic opposition-based learning strategy, which results in a uniform population distribution, circumvents initialization bias, and enhances the global exploration capability of the algorithm. Subsequently, cyclone foraging strategy is implemented during the heterotrophic foraging phase. enabling the algorithm to identify the optimal search direction with greater precision, guided by the globally optimal individuals. This reduces random wandering, significantly accelerating the optimization search and enhancing the ability to jump out of the local optimal solutions. Furthermore, the incorporation of hybrid mutation strategy in the reproduction stage enables the algorithm to adaptively transform the mutation patterns during the iteration process, facilitating a strategic balance between rapid escape from local optima in the initial stages and precise convergence in the subsequent stages. Ultimately, crisscross strategy is incorporated at the conclusion of the algorithm’s iteration. This not only enhances the algorithm’s global search capacity but also augments its capability to circumvent local optima through the integrated application of horizontal and vertical crossover techniques. This paper presents a comparative analysis of MSAPO with other prominent optimization algorithms on the three-dimensional CEC2017 and the highest-dimensional CEC2022 test sets, and the results of numerical experiments show that MSAPO outperforms the compared algorithms, and ranks first in the performance evaluation in a comprehensive way. In addition, in eight real-world engineering design problem experiments, MSAPO almost always achieves the theoretical optimal value, which fully confirms its high efficiency and applicability, thus verifying the great potential of MSAPO in solving complex optimization problems. Full article
(This article belongs to the Special Issue Advances in Metaheuristic Optimization Algorithms)
Show Figures

Figure 1

22 pages, 2377 KB  
Article
Optimising Olive Leaf Phenolic Compounds: Cultivar and Temporal Interactions
by Igor Pasković, Mario Franić, Theocharis Chatzistathis, Paula Pongrac, Paula Žurga, Valerija Majetić Germek, Igor Palčić, Smiljana Goreta Ban, Mariem Zakraoui, Šime Marcelić, Jure Mravlje, Joško Kaliterna and Marija Polić Pasković
Plants 2025, 14(17), 2789; https://doi.org/10.3390/plants14172789 - 5 Sep 2025
Cited by 1 | Viewed by 1042
Abstract
All olive (Olea europaea L.) plant tissues have a high phenolic content. However, the effects of the cultivar and sampling period on the tissue phenolic content remain almost unknown; in addition, the interactions between nutrient uptake and leaf phenol concentrations have not [...] Read more.
All olive (Olea europaea L.) plant tissues have a high phenolic content. However, the effects of the cultivar and sampling period on the tissue phenolic content remain almost unknown; in addition, the interactions between nutrient uptake and leaf phenol concentrations have not been clarified. This study sampled olive leaves to explore how the cultivar, sampling period, and their interaction affect leaf phenol and nutrient concentrations. Leaves were collected from six cultivars during three seasonal periods: harvest (October; SP1), dormancy (January; SP2), and pruning (March; SP3). Five were Istrian cultivars (‘Bova’, ‘Buža muška’, ‘Buža puntoža’, ‘Istarska bjelica’, ‘Rošinjola’), and one was the Italian cultivar ‘Leccino’. Phenolic profiles in olive leaves were correlated with potassium (K), phosphorus (P), and copper (Cu) concentrations. However, significant correlations between these nutrients and oleuropein, verbascoside, and total phenolic content (TPC) were determined only for ‘Rošinjola’. Oleuropein was the most abundant phenolic compound, while among genotypes, ‘Buža muška’ showed the highest oleuropein levels across all sampling periods, indicating its potential source of oleuropein in olive leaves. Seasonal variations in olive leaf phenolic compounds appear to be strongly influenced by phenological phase, nutrient dynamics, and weather conditions, as confirmed by multivariate analysis across sampling periods and cultivars. The findings emphasise the importance of selecting both an appropriate cultivar and sampling period to maximise the accumulation of olive leaf phenolic compounds. Nevertheless, long-term experimentation on cultivars with a high leaf phenolic potential, like ‘Buža muška’ and ‘Rošinjola’, is necessary in order to develop appropriate farming strategies for maximising phenolic compounds with human or plant health benefits. Full article
Show Figures

Figure 1

20 pages, 4457 KB  
Article
Seed Dormancy and Germination Characteristics of Scutellaria indica L. var. coccinea S.T.Kim & S.T.Lee., an Endemic Species Found on Jeju Island, South Korea
by Jae Hui Kim, Hak Cheol Kwon and Seung Youn Lee
Horticulturae 2025, 11(9), 1019; https://doi.org/10.3390/horticulturae11091019 - 29 Aug 2025
Cited by 1 | Viewed by 959
Abstract
Globally, biodiversity is declining, meaning that many endemic plants are under threat; therefore, it is essential to develop conservation strategies. Scutellaria indica var. coccinea has great potential as an ornamental ground cover plant, but it is a plant that requires ex situ conservation. [...] Read more.
Globally, biodiversity is declining, meaning that many endemic plants are under threat; therefore, it is essential to develop conservation strategies. Scutellaria indica var. coccinea has great potential as an ornamental ground cover plant, but it is a plant that requires ex situ conservation. This study was conducted in order to investigate the seed germination characteristics and classify the dormancy type of S. indica var. coccinea seeds, with the aim of developing mass propagation protocols for ex situ conservation and preservation of their genetic diversity. Fresh and mature seeds of S. indica var. coccinea are in a dormant state, which is released by low temperatures during winter, resulting in radicle and seedling emergence the following spring. At the time of dispersal, the seeds had fully developed embryos, and the seed coat was permeable. When the seeds were incubated under four different temperature regimes (4, 15/6, 20/10, or 25/15 °C), they showed a low germination percentage (≤20%), indicating that a substantial proportion of the seeds remained in a dormant state. In the cold stratification experiment (0, 4, 8, or 12 weeks at 4 °C), germination increased, and the time required for germination shortened as the duration of cold treatment lengthened. This suggests that low temperatures are the primary environmental signal that induces germination. In the gibberellic acid (GA3) treatment (GA3 0, 10, 100, or 1000 mg·L−1), relatively high concentrations (100 and 1000 mg·L−1) were effective in promoting germination. The highest germination was obtained in GA3 1000 mg·L−1 with 100.0%, which is about 7 times higher than the control (13.6%). Therefore, seeds of S. indica var. coccinea were classified as having non-deep physiological dormancy (PD). Additionally, because the minimum germinable temperature range of the seeds was extended to lower temperatures, the seeds were classified as having type 2 non-deep PD. Full article
(This article belongs to the Special Issue Propagation and Flowering of Ornamental Plants)
Show Figures

Figure 1

46 pages, 4712 KB  
Review
Biofilms Exposed: Innovative Imaging and Therapeutic Platforms for Persistent Infections
by Manasi Haval, Chandrashekhar Unakal, Shridhar C. Ghagane, Bijay Raj Pandit, Esther Daniel, Parbatee Siewdass, Kingsley Ekimeri, Vijayanandh Rajamanickam, Angel Justiz-Vaillant, Kathy-Ann A. Lootawan, Fabio Muniz De Oliveira, Nivedita Bashetti, Tatheer Alam Naqvi, Arun Shettar and Pramod Bhasme
Antibiotics 2025, 14(9), 865; https://doi.org/10.3390/antibiotics14090865 - 28 Aug 2025
Viewed by 3829
Abstract
Biofilms constitute a significant challenge in the therapy of infectious diseases, offering remarkable resistance to both pharmacological treatments and immunological elimination. This resilience is orchestrated through the regulation of extracellular polymeric molecules, metabolic dormancy, and quorum sensing, enabling biofilms to persist in both [...] Read more.
Biofilms constitute a significant challenge in the therapy of infectious diseases, offering remarkable resistance to both pharmacological treatments and immunological elimination. This resilience is orchestrated through the regulation of extracellular polymeric molecules, metabolic dormancy, and quorum sensing, enabling biofilms to persist in both clinical and industrial environments. The resulting resistance exacerbates chronic infections and contributes to mounting economic burdens. This review examines the molecular and structural complexities that drive biofilm persistence and critically outlines the limitations of conventional diagnostic and therapeutic approaches. We emphasize advanced technologies such as super-resolution microscopy, microfluidics, and AI-driven modeling that are reshaping our understanding of biofilm dynamics and heterogeneity. Further, we highlight recent progress in biofilm-targeted therapies, including CRISPR-Cas-modified bacteriophages, quorum-sensing antagonists, enzyme-functionalized nanocarriers, and intelligent drug-delivery systems responsive to biofilm-specific cues. We also explore the utility of in vivo and ex vivo models that replicate clinical biofilm complexity and promote translational applicability. Finally, we discuss emerging interventions grounded in synthetic biology, such as engineered probiotic gene circuits and self-regulating microbial consortia, which offer innovative alternatives to conventional antimicrobials. Collectively, these interdisciplinary strategies mark a paradigm shift from reactive antibiotic therapy to precision-guided biofilm management. By integrating cutting-edge technologies with systems biology principles, this review proposes a comprehensive framework for disrupting biofilm architecture and redefining infection treatment in the post-antibiotic era. Full article
Show Figures

Figure 1

15 pages, 3707 KB  
Article
Conserved miR156 Mediates Phase-Specific Coordination Between Cotyledon Morphogenesis and Embryo Dormancy During Somatic Embryogenesis in Larix kaempferi
by Xin Li, Yuqin Huang, Wenhua Yang, Liwang Qi, Lifeng Zhang and Chenghao Li
Int. J. Mol. Sci. 2025, 26(17), 8206; https://doi.org/10.3390/ijms26178206 - 23 Aug 2025
Viewed by 665
Abstract
The miR156 family, crucial for phase transition and stress responses in plants, remains functionally uncharacterized in the ecologically and commercially important gymnosperm Larix kaempferi. This study systematically investigated L. kaempferi miR156 through phylogenetic analysis, structural prediction, expression profiling during somatic embryogenesis, and [...] Read more.
The miR156 family, crucial for phase transition and stress responses in plants, remains functionally uncharacterized in the ecologically and commercially important gymnosperm Larix kaempferi. This study systematically investigated L. kaempferi miR156 through phylogenetic analysis, structural prediction, expression profiling during somatic embryogenesis, and heterologous functional validation in Arabidopsis. Four MIR156 family members (LkMIR156s) were identified in Larix kaempferi, each with a characteristic stem-loop structure and highly conserved mature sequences. Computational predictions indicated that these LkMIR156s target four LkSPL family genes (LkSPL1, LkSPL2, LkSPL3, and LkSPL9). qRT-PCR analysis showed that mature LkmiR156s expression remained relatively low during early embryonic development but was significantly upregulated at the cotyledonary stage (21–42 days). Precursor transcript levels peaked earlier (around 28 days) than those of the mature LkmiR156, which remained highly expressed throughout cotyledonary embryo development. This sustained high expression coincided with cotyledon morphogenesis and embryonic dormancy. Functional validation via heterologous overexpression of LkMIR156b1 in Arabidopsis resulted in increased rosette leaf numbers (42.86% ± 6.19%) and individual leaf area (54.90% ± 6.86%), phenotypically consistent with the established role of miR156 in growth regulation. This study reveals the temporal expression dynamics of LkmiR156s during L. kaempferi somatic embryogenesis and its coordinated expression patterns with cotyledon development and embryonic dormancy. The functional conservation of the miR156-SPL module was confirmed in a model plant, providing key molecular insights into the developmental regulatory network of conifers. These findings offer potential strategies for optimizing somatic embryogenesis techniques in conifer species. Full article
(This article belongs to the Special Issue Plant Breeding and Genetics: New Findings and Perspectives)
Show Figures

Figure 1

29 pages, 2178 KB  
Article
Emerging Invasive Weeds in Iran: Occurrence, Ecological Impacts, and Sustainable Management
by Ali Reza Yousefi, Sirwan Babaei, Iraj Nosratti, Ehsan Zeidali, Masoumeh Babaei, Ebrahim Asadi Oskouei, Hesan Saberi, Mandeep Redhu and Amir Sadeghpour
Plants 2025, 14(17), 2611; https://doi.org/10.3390/plants14172611 - 22 Aug 2025
Viewed by 1268
Abstract
Invasive weeds pose a growing threat to global biodiversity, ecosystem stability, and agricultural productivity with significant ecological and economic consequences. In Iran, the rapid spread of invasive species such as Boreava orientalis, Azolla spp., Ibicella lutea, Physalis divaricata, Picnomon acarna [...] Read more.
Invasive weeds pose a growing threat to global biodiversity, ecosystem stability, and agricultural productivity with significant ecological and economic consequences. In Iran, the rapid spread of invasive species such as Boreava orientalis, Azolla spp., Ibicella lutea, Physalis divaricata, Picnomon acarna, Cynanchum acutum, Vicia hyrcanica, Eichhornia crassipes, and Ambrosia psilostachya has severely affected native ecosystems, disrupted ecological processes, and threatened food security. These species exhibit aggressive traits such as rapid maturity, high reproductive rates, seed dormancy, and allelopathy that enable them to outcompete native species and successfully invade and dominate delicate habitats. Despite their documented impacts, a critical gap remains in understanding their biology, ecology, and management, particularly in understudied regions like Iran. This review synthesizes current knowledge on major invasive weeds affecting Iranian agroecosystems, with a focus on their ecological impacts and the urgent need for sustainable management strategies. It presents an integrated framework that combines ecological, biological, and management perspectives to address invasiveness, particularly in highly adaptable species like B. orientalis and A. psilostachya. This review highlights the critical role of interdisciplinary collaboration, advanced technology, and community involvement in developing effective strategies. It offers practical guidance for researchers, policymakers, and agricultural stakeholders, serving as a model for managing invasive species in other vulnerable regions. Ultimately, it supports global efforts to safeguard biodiversity, improve crop productivity, and strengthen ecological resilience against the growing threat of invasive species. Full article
(This article belongs to the Topic Plant Invasion)
Show Figures

Figure 1

16 pages, 3363 KB  
Article
Efficient Production of Vigorous Scions by Optimizing Leaf Retention in Passiflora edulis
by Xiuqing Wei, Yajun Tang, Jianglong Lai, Liang Li, Ping Zhou, Dong Yu, Limei Tang and Jiahui Xu
Plants 2025, 14(16), 2483; https://doi.org/10.3390/plants14162483 - 10 Aug 2025
Viewed by 615
Abstract
Passiflora edulis propagation relies extensively on grafting, yet the optimization of pruning strategies for scion quality remains empirically guided. This study elucidates the physiological and molecular mechanisms underlying scion quality across five leaf retention treatments (0%, 25%, 50%, 75%, and unpruned control). The [...] Read more.
Passiflora edulis propagation relies extensively on grafting, yet the optimization of pruning strategies for scion quality remains empirically guided. This study elucidates the physiological and molecular mechanisms underlying scion quality across five leaf retention treatments (0%, 25%, 50%, 75%, and unpruned control). The 50% partial leaf retention (50% PLR) treatment optimally promoted axillary bud development in passion fruit through coordinated physiological and molecular adaptations. This treatment significantly outperformed other treatments in terms of both bud sprouting rate and growth parameters (including length and diameter). Physiological analyses demonstrated transient auxin accumulation coupled with synchronized antioxidant system activation, maintaining redox homeostasis. Transcriptomic profiling identified upregulation of genes in the auxin signaling pathway and cytokinin activators, while dormancy-related genes were suppressed. These findings establish 50% PLR as an optimal threshold that balances photosynthetic capacity with hormonal regulation, providing a science-based strategy to standardize grafted seedling production, while enhancing scion quality for grafting efficiency. Full article
(This article belongs to the Special Issue Advances in Planting Techniques and Production of Horticultural Crops)
Show Figures

Figure 1

19 pages, 9234 KB  
Article
Physiological Changes and Transcriptomics of Elodea nuttallii in Response to High-Temperature Stress
by Yanling Xu, Yuanyuan Jin, Manrong Zha, Yuhan Mao, Wenqiang Ren, Zirao Guo, Yufei Zhang, Beier Zhou, Tao Zhang, Qi He, Shibiao Liu and Bo Jiang
Biology 2025, 14(8), 993; https://doi.org/10.3390/biology14080993 - 4 Aug 2025
Viewed by 772
Abstract
Elodea nuttallii is a significant submerged macrophyte utilized in shrimp and crab aquaculture, yet it exhibits low thermotolerance. This study investigated the physiological responses and transcriptomic characteristics of E. nuttallii under high-temperature stress (HTS). The results indicated that HTS significantly reduced the absolute [...] Read more.
Elodea nuttallii is a significant submerged macrophyte utilized in shrimp and crab aquaculture, yet it exhibits low thermotolerance. This study investigated the physiological responses and transcriptomic characteristics of E. nuttallii under high-temperature stress (HTS). The results indicated that HTS significantly reduced the absolute growth rate (AGR) and photosynthetic efficiency of E. nuttallii while concurrently elevating antioxidant enzyme activities, malondialdehyde (MDA) content, and concentrations of osmotic adjustment compounds. Furthermore, the apical segments of E. nuttallii demonstrated greater sensitivity to HTS compared to the middle segments. Under exposure to 35 °C and 40 °C, antioxidant enzyme activities, MDA content, and osmotic adjustment compound levels were significantly higher in the apical segments than in the middle segments. Transcriptomic analysis revealed 7526 differentially expressed genes (DEGs) in the apical segments at 35 °C, a number substantially exceeding that observed in the middle segments. Enrichment analysis of DEGs revealed significant upregulation of key metabolic regulators under HTS, including carbohydrate metabolism genes (HXK, FRK) and phenylpropanoid biosynthesis enzymes (4CL, COMT). This transcriptional reprogramming demonstrates E. nuttallii’s adaptive strategy of modulating carbon allocation and phenolic compound synthesis to mitigate thermal damage. Our findings not only elucidate novel thermotolerance mechanisms in aquatic plants but also provide candidate genetic targets (HXK, 4CL) for molecular breeding of heat-resilient cultivars through transcriptomic screening. Full article
Show Figures

Figure 1

13 pages, 2629 KB  
Article
Seed Germination Requirements of the Threatened Local Greek Endemic Campanula pangea Hartvig Facilitating Species-Specific Conservation Efforts
by Margarita Paradisiotis, Elias Pipinis, Stefanos Kostas, Georgios Tsoktouridis, Stefanos Hatzilazarou, Anna Mastrogianni, Ioannis Tsiripidis and Nikos Krigas
Conservation 2025, 5(3), 39; https://doi.org/10.3390/conservation5030039 - 1 Aug 2025
Viewed by 1873
Abstract
Ex situ conservation is a vital strategy of preserving plant species at risk, offering practical methods to obtain information regarding species-specific germination characteristics. Campanula pangea, a local endemic species of NE Greece, has been previously classified as vulnerable, partly due to the [...] Read more.
Ex situ conservation is a vital strategy of preserving plant species at risk, offering practical methods to obtain information regarding species-specific germination characteristics. Campanula pangea, a local endemic species of NE Greece, has been previously classified as vulnerable, partly due to the lack of knowledge about its biology. This study focused on the germination behaviour of C. pangea stored seeds by assessing their germination success under the effects of incubation temperature and gibberellic acid (GA3). To contextualize the experimental conditions, a bioclimatic profile of the species was developed using open-access temperature and precipitation data that characterize its natural habitat. The results showed that the optimal germination temperature range for C. pangea is 15–20 °C. Pre-treatment of seeds with GA3 solution (1000 mg L−1) widened the germination range of the seeds only at the low temperature of 10 °C. The experimentation results showed that the seeds of C. pangea exhibit dormancy. These findings contribute to the development of a species-specific germination protocol for ex situ propagation and conservation, enhance understanding of the species’ germination requirements, and thus support future conservation efforts and assessments of extinction risk, or other ornamental applications and/or targeted medicinal research. Full article
Show Figures

Figure 1

15 pages, 2118 KB  
Article
Ribosomal Hibernation Factor Links Quorum-Sensing to Acid Resistance in EHEC
by Yang Yang, Xinyi Zhang, Zixin Han, Junpeng Li, Qiaoqiao Fang and Guoqiang Zhu
Microorganisms 2025, 13(8), 1730; https://doi.org/10.3390/microorganisms13081730 - 24 Jul 2025
Viewed by 547
Abstract
The mechanism by which quorum sensing (QS) enhances stress resistance in enterohemorrhagic Escherichia coli (E. coli) O157:H7 remains unclear. We employed optimized exogenous QS signal N-acyl-homoserinelactones (AHL) (100 μM 3-oxo-C6-AHL, 2 h) in EHEC O157:H7 strain EDL933, which was validated with [...] Read more.
The mechanism by which quorum sensing (QS) enhances stress resistance in enterohemorrhagic Escherichia coli (E. coli) O157:H7 remains unclear. We employed optimized exogenous QS signal N-acyl-homoserinelactones (AHL) (100 μM 3-oxo-C6-AHL, 2 h) in EHEC O157:H7 strain EDL933, which was validated with endogenous yenI-derived AHL, to investigate QS-mediated protection against acid stress. RNA-seq transcriptomics identified key upregulated genes (e.g., rmf). Functional validation using isogenic rmf knockout mutants generated via λ-Red demonstrated abolished stress resistance and pan-stress vulnerability. Mechanistic studies employing qRT-PCR and stress survival assays established Ribosomal Hibernation Factor (RMF) as a non-redundant executor in a SdiA–RMF–RpoS axis, which activates ribosomal dormancy and SOS response to enhance EHEC survival under diverse stresses. For the first time, we define ribosomal hibernation as the core adaptive strategy linking QS to pathogen resilience, providing crucial mechanistic insights for developing EHEC control measures against foodborne threats. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

25 pages, 39901 KB  
Article
A Novel Adaptive Cuboid Regional Growth Algorithm for Trunk–Branch Segmentation of Point Clouds from Two Fruit Tree Species
by Yuheng Cao, Ning Wang, Bin Wu, Xin Zhang, Yaxiong Wang, Shuting Xu, Man Zhang, Yanlong Miao and Feng Kang
Agriculture 2025, 15(14), 1463; https://doi.org/10.3390/agriculture15141463 - 8 Jul 2025
Cited by 2 | Viewed by 723
Abstract
Accurate acquisition of the phenotypic information of trunk-shaped fruit trees plays a crucial role in intelligent orchard management, pruning during dormancy, and improving fruit yield and quality. However, the precise segmentation of trunks and branches remains a significant challenge, limiting the accurate measurement [...] Read more.
Accurate acquisition of the phenotypic information of trunk-shaped fruit trees plays a crucial role in intelligent orchard management, pruning during dormancy, and improving fruit yield and quality. However, the precise segmentation of trunks and branches remains a significant challenge, limiting the accurate measurement of phenotypic parameters and high-precision pruning of branches. To address this issue, a novel adaptive cuboid regional growth segmentation algorithm is proposed in this study. This method integrates a growth vector that is adaptively adjusted based on the growth trend of branches and a growth cuboid that is dynamically regulated according to branch diameters. Additionally, an innovative reverse growth strategy is introduced to enhance the efficiency of the growth process. Furthermore, the algorithm can automatically and effectively identify the starting and ending points of growth based on the structural characteristics of fruit tree branches, solving the problem of where to start and when to stop. Compared with PointNet++, PointNeXt, and Point Transformer, ACRGS achieved superior performance, with F1-scores of 95.75% and 96.21% and mIoU values of 0.927 and 0.933 for apple and cherry trees. The results show that the method enables high-precision and efficiency trunk–branch segmentation, providing data support for fruit tree phenotypic parameter extraction and pruning. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop