Mechanisms of Microbial Biofilm Resistance and New Methods for Biofilm Control

A special issue of Antibiotics (ISSN 2079-6382). This special issue belongs to the section "Antibiofilm Strategies".

Deadline for manuscript submissions: 31 January 2026 | Viewed by 1097

Special Issue Editor


E-Mail Website
Guest Editor
Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
Interests: biofilm; cystic fibrosis; Pseudomonas aeruginosa; persisters; antibiotic resistance; efflux pumps

Special Issue Information

Dear Colleagues,

Biofilm growth represents a key microbial strategy in terms of colonization, pathogenicity, and resistance, allowing microorganisms to persist both in the environment and within a host during infection. Within biofilms, microbial cells exhibit peculiar features that differ from planktonic ones, and special phenotypes are induced that can endure antimicrobial pressure. Indeed, bacterial cells growing in biofilms can be 10 to 1000 times more resistant to antibiotics, and this constitutes one of the main reasons for the lack of eradication of infections. Moreover, biofilms favor DNA exchange between cells, increasing the spread of antimicrobial resistance.

The development of molecular and microscopy techniques has provided novel and valuable information about biofilm formation, architecture, and responses to antibiotic treatment; still, a number of details remain to be elucidated regarding the regulatory pathways controlling the physiology of sessile cultures. Furthermore, there is an urgent need for novel antibiofilm approaches and/or molecules, to achieve their eradication and infection clearance.

This Special Issue will focus on novel advances in the study of biofilm lifestyles, the features characterizing sessile cells, their resistance to antibiotics, and the identification of new compounds endowed with antibiofilm activity.

Dr. Gianmarco Mangiaterra
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antibiotics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • quorum sensing
  • chronic infections
  • antibiotic resistance
  • persistence
  • efflux pumps

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

46 pages, 4712 KB  
Review
Biofilms Exposed: Innovative Imaging and Therapeutic Platforms for Persistent Infections
by Manasi Haval, Chandrashekhar Unakal, Shridhar C. Ghagane, Bijay Raj Pandit, Esther Daniel, Parbatee Siewdass, Kingsley Ekimeri, Vijayanandh Rajamanickam, Angel Justiz-Vaillant, Kathy-Ann A. Lootawan, Fabio Muniz De Oliveira, Nivedita Bashetti, Tatheer Alam Naqvi, Arun Shettar and Pramod Bhasme
Antibiotics 2025, 14(9), 865; https://doi.org/10.3390/antibiotics14090865 - 28 Aug 2025
Viewed by 944
Abstract
Biofilms constitute a significant challenge in the therapy of infectious diseases, offering remarkable resistance to both pharmacological treatments and immunological elimination. This resilience is orchestrated through the regulation of extracellular polymeric molecules, metabolic dormancy, and quorum sensing, enabling biofilms to persist in both [...] Read more.
Biofilms constitute a significant challenge in the therapy of infectious diseases, offering remarkable resistance to both pharmacological treatments and immunological elimination. This resilience is orchestrated through the regulation of extracellular polymeric molecules, metabolic dormancy, and quorum sensing, enabling biofilms to persist in both clinical and industrial environments. The resulting resistance exacerbates chronic infections and contributes to mounting economic burdens. This review examines the molecular and structural complexities that drive biofilm persistence and critically outlines the limitations of conventional diagnostic and therapeutic approaches. We emphasize advanced technologies such as super-resolution microscopy, microfluidics, and AI-driven modeling that are reshaping our understanding of biofilm dynamics and heterogeneity. Further, we highlight recent progress in biofilm-targeted therapies, including CRISPR-Cas-modified bacteriophages, quorum-sensing antagonists, enzyme-functionalized nanocarriers, and intelligent drug-delivery systems responsive to biofilm-specific cues. We also explore the utility of in vivo and ex vivo models that replicate clinical biofilm complexity and promote translational applicability. Finally, we discuss emerging interventions grounded in synthetic biology, such as engineered probiotic gene circuits and self-regulating microbial consortia, which offer innovative alternatives to conventional antimicrobials. Collectively, these interdisciplinary strategies mark a paradigm shift from reactive antibiotic therapy to precision-guided biofilm management. By integrating cutting-edge technologies with systems biology principles, this review proposes a comprehensive framework for disrupting biofilm architecture and redefining infection treatment in the post-antibiotic era. Full article
Show Figures

Figure 1

Back to TopTop